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ABSTRACT 
Direct modeling plays a very important role in many 

engineering applications including telecommunication, power 

system, image processing, VLSI design, biological processes, 

control engineering and geophysics applications. In case of 

control and telecommunication applications, direct modeling is 

used for channel estimation, parameter estimation and 

forecasting. There are standard algorithms and models which 

can be conveniently used for effectively identifying the 

parameters of simple direct and inverse systems. However, in 

practice we encounter with various complex systems, whose 

direct models needs to be created for various applications. As an 

illustration, the system can be non linear, dynamic or both of it. 

In such situations, creation of direct models is a difficult task. It 

is evident from the literature survey that, many sincere attempts 

have been made to create direct model of such complex systems. 
However, their performance has been observed to be 

unsatisfactory. Therefore in the present work, a sincere attempt 

has been made to address all these issues and provide possible 

satisfactory solutions by using low complexity nonlinear 

network and population based differential evolution(DE) based 

learning algorithm. 

General Terms 

Direct modeling, dynamic systems, low complexity nonlinear 

network 

Keywords 
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1. INTRODUCTION 
Identification of a nonlinear dynamic plant is a major area in 

engineering today. System identification is widely used in a 

number of applications like biological processes [1], control 

system [2], signal processing [3] and communication 

engineering [4]. Many practical systems used in process control, 

robotics and autonomous system are nonlinear and dynamic in 

nature. To find a perfect model of these type of plants is a 

challenging task. There are certain classical parameterized 

models such as Wiener-Hamarstein [5], Voltera Series [6] and 

Polynomial identification model [7-8] which offer a reasonable 

precision, but the problem with these methods is that they 

involve lot of computational complexity. Subsequently, many 

neural network based models using multi-layer perception 

(MLP), radial basis function (RBF) and recurrent neural network 

have been proposed for nonlinear system identification problem. 

For basic neural network generally back propagation (BP) is 

used as an adaptive algorithm, to provide better accuracy.  

Earlier, Nerandra and Parthasarathy [9] have employed the 

multilayer perceptron (MLP) networks for effective 

identification and control of dynamic systems like truck-backer-

upper problem [10].However, the major disadvantage of earlier 

methods is that, they employ derivative based learning algorithm 

such as back propagation algorithm (BP), to train the system 

parameters which at times lead to local minima thereby leading 

to incorrect estimation. On the other hand the functional link 

artificial neural network (FLANN) is basically a single layer 

structure in which nonlinear mapping of the input is achieved by 

expanding them with nonlinear functions. The literature survey 

reveals that the identification models need further improvement 

in terms of achieving performance accuracy and architectural 

simplicity. These two issues have been addressed in this work. 

Firstly, a single layer nonlinear architecture incorporating 

nonlinear mapping of the inputs have been introduced as the 

back bone of the model. Secondly, the feed forward as well as 

feedback parameters are proposed to be updated more accurately 

with DE based learning rule. The work has been organized into 

five sections. In Section 2 a brief introduction of nonlinear 

identification scheme is presented. A low complexity nonlinear 

architecture which serves as the backbone of the model is dealt 

in Section 3. It also outlines the fundamental of DE algorithm 

and its variants which are used for training the weights of the 

model. The DE based training scheme used in the proposed 

identification model is developed in same section. The 

simulation study of some benchmark problem and the results 

obtained are outlined in Section 4. Finally in Section 5 the 

conclusion of the investigation is dealt. 

 

2. IDENTIFICATION OF NONLINEAR 

DYNAMIC SYSTEMS 
System Identification is defined as the problem of determining a 

mathematical model satisfying a set of input-output data. Once a 

system has been identified, its output can be predicted for a 

given input. Fig 1 shows an identification model of nonlinear 

dynamic plant.  
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Fig 1 A nonlinear system identification scheme 

, where ( )x k  is the input to both the plant and the model and 

( )y k  and ˆ( )y k  are the desired and estimated outputs at 
thk  

instant respectively. The objective of the identification task is to 

minimize the error ( )e k  recursively, such that ˆ( )y k   

approaches the desired plant output when same input ( )x k is 

applied to both the plant and the model. Three types of single-

input single-output (SISO) plants [9] used in the study are 

described in form of difference equations (1) to (3). 
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where, ( )x k and ( )y k are the input and output of the SISO 

plant respectively at the 
thk  time instant under the condition 

that m n . Here ( 1)ia i n   and ( 1)ia i m  are the 

parameters of the feed forward and feedback paths of the plant. 

In addition (.)f  and (.)g represent the nonlinear function 

associated with the output. The error signal obtained by the 

difference between plant and model outputs as well as the output 

information are used by a suitable learning algorithms to train 

the weights of the model so that the squared error value 

progressively decreases to a minimum value as iteration 

proceeds. When the squared error attains a lowest value, training 

is stopped and the adaptive structure corresponding to the last 

weight vector represents the desired identification model. 

3. Development of a novel nonlinear 

Identification scheme 
Fig 2 shows a single layered nonlinear structure proposed by 

Pao, which is capable of forming complex decision regions by 

generating nonlinear decision boundaries [25]. In this structure, 

the nonlinear adaptive architecture input dimension is increased 

by nonlinearly mapping the input patterns by using 

trigonometric functions. For nonlinear dynamic system 

identification, a similar structure has been proposed in [26] in 

which the weights of the model are updated using a steepest 

decent algorithm. In order to identify dynamic plants a series-

parallel scheme is employed during training phase [9] where the 

feedback is taken from the plant output instead of the model. 

 

Fig 2 Structure of the nonlinear identification model 

Each input ( )x k  undergoes an nonlinear expansion and then 

applied to an adaptive linear combiner whose weights are 

updated by using adaptive algorithm. In [26] trigonometric 

expansion has been proposed, because it has yielded better 

performance for most of the applications. Accordingly in the 

proposed model sine and cosine expansions have been adopted. 

The expanded vector ( )v k  of ( )x k  is written as follows:                        

( ) [1,sin{ ( )},cos{ ( )}...sin{ ( )},cos{ ( )}]V k x k x k n x k n x k    
                             (4)                                     

=  
0 1 2 1[ ( ), ( )... ( )]T

nv k v k v k
                                 (5)   

If n numbers of sine and cosine expansions of input samples are 

made and the first term is an unity input then after expansion the 

total number of terms become 2 1N n  . Then the 

corresponding weight vector related to the 
thk  input vector is 

mathematically defined by the  following equation:                     

0 1 2 2 1( ) [ ( ), ( ), ( )... ( )]T

nH k h k h k h k h k                   (6)                                                           

Then the estimated output of the model is given by: 

                                                                                                  (7) 

If the plant output at 
thk instant is denoted as )(ky  then the 

corresponding error generated from the model is given by: 
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( ) ( ) ( )e k y k y k       (8) 

This nonlinear structure employs single but efficient sine/cosine 

expansions and does not require more layers to offer the desired 

nonlinearity. Because of this the heavy computational 

requirement as in case of multilayer artificial neural network 

(ANN) is avoided and hence it is named as a low complexity 

adaptive structure.  For designing the proposed model its weight 

are adjusted using the input and error information of the model 

and DE based training scheme. Before this scheme is detailed a 

brief overview of DE is provided in this section. Further in this 

section other standard forms of DE which are employed for 

performance comparison are outlined.  

                                                             

3.1 Basic Principle of Differential Evolution 

and its variants 
Differential Evolution (DE) is a global optimization algorithm 

and adapts an encoding scheme with real valued number as used 

in binary GA. In DE, initially some vectors which are possible 

solution within a D -dimensional search space are randomly 

created, and then evolved over a time, to explore the entire 

search area, so that location corresponding to a minimum of 

objective function is achieved. The initial population is denoted 

by NP which is represented as , ( ),( 0,1..( 1))i jX g i NP   

and ( 1,2,... )j D  , where i  is the population j  is the 

number of parameters and g  is the generation to which the 

population belongs. 

Stepwise algorithm: 

Initialization: The upper and lower bounds of each parameter 

are specified before population initialization. A random number 

is assigned to each parameter of every vector a value from 

within the prescribed range. As an example ( 0g ) the value 

of a 
thj  parameter of an 

thi  vector is given by 

        (9) 

Where Up   and Lp   are upper and lower bound, of that 

variable. 

Mutation: In mutation operation the difference of two randomly 

selected vectors are multiplied by a constant factor and then 

added with a randomly selected vector from the population 

.Equation (10) shows how a mutant vector; 
,
( 1)

i j
gv   is created.  

 

                                                                                                (10) 

This type of mutation is called as de/rand/1. There are other 

forms of creating the mutant vector like de/rand/2, de/best/1, 
de/best/2 and de/current to best/2 which are obtained as given in 

equations (11) to (14) : 

(11)                                                                        

(12)  

                                                                                                   

          (13) 

                                                                                                                                                                                                                                

(14)                                           

The scale factor, F is a positive real number mostly lying 

between 0 to 2 and controls the rate at which the population 

evolves.  

Crossover: Subsequently a trail vector )1(, gu ji  is created 

using crossover operator: 

 

 
                                                                                                (15) 

The crossover ratio within the range 0 to 1, controls the fraction 

of parameter values that are to be copied from the mutant vector. 

If the value of a first random number is less than the chosen 

CR   then the corresponding element of mutant vector is 

inherited to the target vector otherwise it is copied from the trial 

vector. This process is repeated for all elements and for the 

entire population. 

 

Selection: If the objective function value of the trial vector, 

,i jU  has an equal or lower than that of its target vector,
,i jX , it 

replaces the target vector in the next generation; otherwise, the 

target retains its place in the population for at least one 

generation. 

 In other words 

 

 

                                                                                               (16) 

 

3.2 DE based training scheme of the model 

parameters 
The identification problem can be viewed as an optimization 

problem. Referring to Figs 1 and 2 it may be observed that the 

squared error value needs to be minimized so that the plant and 

the model outputs would match. This can be achieved either 

through an one time or iterative solution. In the proposed 

approach the DE optimization technique is suitably employed to 

iteratively minimize the squared error cost function. To achieve 

this objective the following DE based identification algorithm is 

proposed. In this approach instead of minimizing the 

instantaneous error, the mean squared error computed from a 

number of input samples is minimized in an iterative manner 

using DE tool. In this section the algorithm pertaining to 

identification of nonlinear plant using DE based training of 

weights of adaptive structure is outlined in steps. For this 

purpose the identification schemes depicted in Figs 1 and 2 are 

used to develop the algorithms. In this study a set of weight 

vector (trail vector) each consisting of N weights is considered 

as the population of the DE( which needs optimization). The 

mean square error (E) of the identification scheme is considered 

as the cost or objective function which is iteratively minimized 

LjLjUjj bpprand ,,,ij, )).(1,0()0(x 

i,j 1, 2, 3,v ( 1) ( ) .( ( ) ( ))r j r j r jg x g F x g x g   

V (g+1) = X (g) + F.(X (g) + X (g) - X (g) - X (g))
r1i,j r5,j ,j r2,j r3,j r4,j

V (g+1) = X (g) F.( X (g) - X (g))
i,j best,j r2,j r3,j



V (g+1) = X (g) + F.(X (g) + X (g) - X (g) - X (g))
r1i,j best,j ,j r2,j r3,j r4,j

V (g+1) = X (g) + .(X (g) - X (g)) F.( X (g) - X (g))
i,j i,j best,j i,j r1,j r2,j

 

, rand

,

, rand

( 1) if rand (0,1)  CR or j j
( 1)

( ) if rand (0,1)  CR or j j

i j

i j

i j

v g
u g

x g

  
  

 

, i,j i,j

,

,

( ) if f(u ) f(x )
( 1)

( )  otherwise

i j

i j

i j

u g
x g

x g


  





International Journal of Computer Applications (0975 – 8887) 

Volume 31– No.8, October 2011 

41 

by suitably varying the trail vectors. In this case the cost 

function due to 
thp  trail vector is computed from (17) by 

successively feeding m input samples and generating m errors 

( , )e m p  from the model. 

2

1

1
( ) ( , )

M

m

E p m p
M

e

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                                            (17)

                                                                          

The various steps involved in the algorithm are 

 

Step 1: Initialize the DE parameter: 

  

P = Number of members in the population each corresponding 

to the weight vector of the model 

F = Scale factor which controls the rate at which the population 

evolves.  

CR = Crossover ratio which is a constant value, which selects 

whether the new population is copied from the trial vector or 

from the target vector. 

N = number of weights of the model present in the trail vector 

g = generation number 

M = number of input samples.    

Step 2:  Referring to Figs 1 and 2, M  uniformly distributed 

random signals generated between [-1, 1] are again generated 

and are used as output. Similarly P sets of D -dimensional 

random vectors between [-1, 1] are generated to represent the 

trail vectors which constitutes the set of weight vectors H of the 

model. 

Step 3: The plant output acts as the training signal and the 

estimated output is computed from adaptive model using (7).  

Step 4: Each of the training samples, ( )y k  is compared with 

the corresponding estimated output ˆ( )y k and thus M errors are 

produced using (8). 

Step 5: The MSE (E) defined in (17) is calculated for each 
thp  

trail vector. 

Step 6:  Corresponding to each trail weight vector three vectors 

are randomly selected from the initial population and a 

corresponding mutant weight vector is obtained by using (10) by 

suitably choosing a scale factor F . This process continues for 

all the trail vectors and the desired mutant vectors are generated. 

Step 7: After mutations a random number between 0 to 1 is 

generated and compared with CR . Then using (17) a 

population of target vector is created. 

Step 8: Based on the survival of fittest principle one out of the 

trail and corresponding target vectors which yields lower mean 

square error, E  is chosen. In this way N  sets of weight 

vectors are obtained after the first generation. The average of the 

MSE contributed by finally chosen all the weight vector is 

computed.  

Step 9: Steps 2 to 9 are repeated so long the average MSE in 

each generation continues to decrease and remains almost 

constant at the end. 

Step 10: According to equation (15) population for next 

generation are selected from the trail vector or from the target 

vector and new population is created for next generation. 

4. SIMULATION STUDY 
In this section simulation study of three types of standard 

dynamic plants explained in Section 2 are used for identification 

using the proposed method. Three types of plants chosen for 

identification are: 

Type-1: Pole-zero plants with nonlinearity on the input side. 

Type-2: Pole-zero plants with nonlinearity on the output side. 

Type-3: Pole-zero plants with nonlinearity introduced on both 

sides.  

For training purpose zero-mean random input uniformly 

distributed between -0.5 to 0.5 is used to feed both the plants 

and model. But for validating the performance of the proposed 

scheme sinusoidal input [9] defined in (18) is employed in all 

cases. The testing is analyzed by parallel scheme. The input to 

the identified model is given as 

                                                                                                (18) 

 For comparing the performance and assessing the potentiality 

the proposed method of identification (Scheme-3) gradient 

descent (Scheme-1)[26] and GA(Scheme-2) based training 

schemes are also simulated. For assessing and comparing the 

performance of different models normalized MSE defined in 

(19) as performance index I 

^
2

2
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4.1 Identification of SISO Dynamic Systems 

Type-I Plants 
In this example, the plant is represented by the difference 

equation [9] given in equation (20) 

                                                                            (20)                                                                        

 where g  represents a nonlinear function. In the present 

simulation three nonlinearities defined in (21), (22) and (23) are 

used. 
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(23)                                                                                                                                                                            

The corresponding model used for identification is given by (24) 

                                                                                                                                                                 

(24)       

where )]([ kxG  represents the nonlinear schemes 1 to 3 used 

in the simulation study. The input is expanded to ten terms for 

(21) and eleven terms for (22) and (23) respectively. In scheme 

3 the training is carried out for 500 iterations. The mutation 

probability and selection rate are chosen to be 0.05 and 0.5 

respectively. In scheme 1 the data used are : CR =0.5, F =0.5, 

number of generations = 500 and DE/best/1 mutation process.   

Both the convergence parameter µ and the momentum factor η 

are chosen to be 0.1 for scheme-2.The response of the models of 

three schemes are shown in Figs 3,4 and 5 respectively. 

 
(a) Scheme-1 model of Type-1 plant 

(b) Scheme-2 model of Type-1 plant 

 

(c) Scheme-3 model of Type-1 plant 

Fig 3 Comparison of responses of Type-1 plant with 

nonlinearity (21) between three different models   

 

(a) Scheme-1 model of Type-1 plant 

 

(b) Scheme-2 model of Type-1 plant 
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(c) Scheme-3 model of Type-1 plant 

Fig 4 Comparison responses of Type-1 plant with 

nonlinearity (3.22) and three different models 

        (a) Scheme-1 model of Type-1 plant 

 

(b) Scheme-2 model of Type-1 plant 

 

 
(c) Scheme-3 model of Type-1 plant  

 

Fig 5 Comparison of responses of type-1 plant with 

nonlinearity (23) and three different models 

 

4.2 Type-2 Plants 

In plants simulated under this category is represented by the 

difference equation [3.9]: 

                                                                                                                                                                

(25) 

the nonlinear function associated with  g(.) is given by 

                                                                                                                                                                 

             (26) 

To identify this plant the model used is of the form 

                                                                                                (27) 

Where G (.) represents the nonlinear schemes 1 to 3 used with 

simulation study. 

The convergence and momentum parameters for Scheme-2 

model are 0.05 and 0.1 respectively. All other parameters in 

other two schemes are same as used in Type-I case. The 

responses obtained from the plant and the models are shown in 

Fig.6. From the plots it is the proposed model of scheme 

provides accurate identification compared to that of other two 

schemes. 
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(a) Scheme-1 model of Type-2 plant 

(b) Scheme-2 model of Type-2 plant 

 

(c ) Scheme-3 model of Type-2 plant 

 

Fig 6 Comparison of responses of type-2 plant with 

nonlinearity (25) and three different models.    

4.3 Type-3 Plants: 

In this case the plant to be identified is of type-3 and is given by: 

                                                                                    (28)                                                                            

Where f( .) and g(.) is nonlinearity associated as 

                                                                  (29)                                                                                                              

                                                                                          (30) 

                                                                                                                                  

The identification model for the plant (27) is given by: 

                                                                                                                                                                 

                                                (31)                                                       

where 1(.)G  and 2 (.)G are the nonlinear schemes 1 to 3 

proposed in the paper. Various parameters used in this case are 

same as in case of type-I simulation. The results of identification 

are shown in Fig.7 where it is observed that the proposed 

scheme-3 shows better performance compared to other two.  

 

(a) Scheme-I model of Type-3 plant 

 

(b) Scheme-2 model of Type-3 plant 
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(c ) Scheme-3 model of Type-3 plant 

 

Fig 7 Comparison of responses of type-3plants with 

nonlinearities (28) and (29) and three different models.    

Comparison of identification for each scheme and results are 

listed in Table-.1  

 

Table-1 Comparison of NMSE obtained with different 

schemes 

The results of Table-1 clearly demonstrate enhanced 

performance of the proposed DE based model compared to that 

of existing two schemes. For training the parameters of the 

proposed model all five variants of De have been employed. 

However the simulation study reveals that for identifying plants 

of Type 1 and 2 DE/best/1 and that for type-3 DE/current to 

best/2 mutation show best performance respectively. Therefore 

the results presented in this section pertain to that provided by 

such choice. The convergence characteristics of obtained during 

training of various DEs are shown in Figs 8,9 and 10. 

Further, the convergence patterns of various variants of DEs are 

obtained during training and are displayed in Figs. 8 to 10 for 

Types 1-3 plants respectively. From these plots it is observed 

that for Type 1 and 2 the DE/best/1 performs best, but for Type-

3 the DE/current to best/2 shows better results.  

 

Fig  8 Comparison of convergence performance different 

DEs for identification of Type-1 Plant  

 

 Fig 9  Comparison of convergence performance of different 

DEs for identification of Type-2 Plant  

 

Fig 10 Comparison of convergence performance of different 

DEs for identification of Type-3 Plant 

5. CONCLUSION 
This work proposes a new adaptive identification scheme using 

a low complexity nonlinear structure with its connecting weights 

trained by a DE-based optimization strategy. For achieving 

improved performance different variants of DE has been 

employed and the appropriate ones have been chosen. Three 

different complex dynamic nonlinear plants are selected for 
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Plants with 

different 

non 

linearities 

No. of 

expansion 

used 

NMSE in dB 

Scheme-1 Scheme-2 Scheme-

3 

Type-1with 

(21) 

10 -33.5807 -34.3218 -40.8738 

Type-1 

with(22) 

11 -18.7387 -17.9180 -22.1631 

Type-1 

with(23) 

11 -23.9670 -31.5231 -32.5503 

Type-2 

with(25) 

9 -19.3256 -24.8696 -31.6770 

Type-3 

with (28) 

and (29) 

14 -16.4079 -20.1859 -24.6417 
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identification. A DE based identification algorithm is proposed 

to develop the models. Two different existing identification 

models have also been simulated for comparing the results with 

those of the proposed model. Various simulation results reveal 

enhanced identification performance of the proposed method 

compared to other competing models. The proposed method is 

shown to be superior both in terms of less computation and 

simple learning strategy. On comparing the performance of 

different DEs, it is observed that DE/best/1 outperforms better 

than others for Types 1 and 2 plants whereas it is DE/current to 

best/2 for Type 3 plants. 
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