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ABSTRACT 

Examination timetabling problem like all scheduling 

problems are NP-hard problems in which the complexity 

and time needed to solve the problem increase with the 

problem size. This paper aims to compare Genetic 

Algorithm and Tabu Search approaches to solve this kind 

of problem. Both algorithms were tested with regard to 

the quality of generated timetables and the speed with 

which the timetables are generated using collected test 

data. The test shows that though both algorithms are 

capable of handling the examination timetabling 

problem, the Tabu Search approach can produce better 

timetables than Genetic Algorithm, even at a greater 

speed. 
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1. INTRODUCTION 
Timetabling is a part of the large field of scheduling 

problems. The scheduling problems are essentially the 

problems that deal with the effective distribution of 

resource, because resources are usually limited. 

Wren in [1] describes timetabling as:”the allocation, 

subject to constraints, of given resources to objects being 

placed in space time, in such a way as to satisfy as nearly 

as possible a set of desirable objectives”.  

This study focuses on examination timetabling problem 

which is a kind of timetabling in which the problem is to 

assign a set of examinations to rooms and timeslots. 

Like all scheduling problems, examination timetabling 

problems are NP-hard, which makes it difficult to find 

timetables that satisfy all user requirements.  

The quality of the time table is measured by how well it 

satisfies the constraints. The constraints we consider for 

this problem are classed into two, they are: Hard and Soft 

constraints. 

Hard constraints are those constraints that are important 

to the problem at hand. For this problem, they define a  
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Hard constraints are those constraints that are important 

to the problem at hand. For this problem, they define a 

feasible timetable. Soft constraints are then used to 

improve the quality of the timetable to satisfy the users of 

the timetables. 

Different methods have already been proposed for 

solving examination timetabling problems. These 

methods come from areas such as: Operation Research, 

Artificial Intelligence and Computational Intelligence. 

[10] 

This paper attempts to compare the performance of two 

algorithms: Genetic Algorithm and Tabu Search 

Algorithm, with respect to their ability to solve the 

examination timetabling problem. This comparison is to 

be done with the following criteria: 

 The quality of the timetables generated. 

 The time used in generating the timetables...  

2. RELATED WORK 
Several works have tried to compare different algorithms 

for solving NP-hard problems. 

Garg [2] proposed a method based on Memetic 

Algorithm and Tabu Search for the cryptanalysis of 

Simplified Data Encryption Standard (SDES).This 

problem could be formulated as an NP-hard problem. 

These algorithms were also compared and analyzed with 

respect to their performance for the cryptanalysis on 

simplified data encryption standard. The results obtained 

from the test indicate that Memetic Algorithm is more a 

powerful technique for the handling of the cryptanalysis 

of SDES. 

Verma et al [3] presented a cryptanalysis method based 

on Genetic Algorithm and Tabu Search to break a Mono-

Alphabetic Substitution Cipher in Adhoc networks. They 

also compared and analyzed the performance of these 

algorithms in automated attacks on Mono-alphabetic 

Substitution Cipher. The work showed that Tabu Search 

is more powerful than genetic Algorithm for the attack 

on Mono-alphabetic Substitution Cipher. 

Hou et al [4] compared three meta-heuristics: Simulated 

Annealing, Genetic Algorithm and Tabu Search. This 
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was done by applying each algorithm to the docking 

procedure between inhibitors and protein which tends to 

be a sophisticated optimization problem. From the 

comparison made, it was found that Tabu search 

outperforms the other two algorithms. 

Merz and Freisleben [5] applied Memetic Algorithm, 

Tabu Search and Ant Colonies to the Quadratic 

Assignment problem. This work demonstrated that 

Memetic Algorithm is more suitable for the Quadratic 

assignment problem. 

Wilke and Ostler [6], using real world school time 

tabling problem, compared the performance of four 

algorithms, namely Tabu Search, Simulated Annealing, 

Genetic Algorithm and Branch & Bound. They 

recommended Simulated Annealing to generate the 

school timetable as it gives the best trade-off between 

execution time and quality of results. This was followed 

by Tabu Search, Genetic Algorithm and Branch & Bound 

in that order. 

Stutzle et al [12] compared the performances of some 

nature-inspired algorithms on the Travelling Salesman 

Problem. The algorithms compared include: Genetic 

Algorithm using DPX-crossover as proposed by Merz 

and Freisleben, Repair based Genetic Algorithm, Ant 

Colony Optimization and Iterated Local Search 

Algorithm. They concluded that the Iterated Local search 

Algorithm performed better than the other algorithms. 

Arostegui Jr. M.A et al [13] also compared the relative 

performance of Tabu search, Simulated Annealling and 

Genetic Algorithm on Facility Location Problem (FLP) 

on various types of FLP under time-limited, solution-

limited, and unrestricted conditions. They submitted that 

the performance of Tabu search was better in all cases 

while Simulated Annealing and Genetic Algorithm where 

more partial to the problem type and the criterion used. 

Houck et al [14] worked on problem characteristics that 

make one algorithm more efficient than the other by 

considering two kinds problems: Location-Allocation 

and the Quadratic Assignment Problem. The result of 

tabu search algorithm and genetic algorithm were then 

compared. They submitted that tabu search performs 

more efficiently than genetic algorithm in the quadratic 

assignment problem, while GA is more efficient for the 

location-allocation problem. 

Analyzed, the results obtained by the various works 

shows that various problems can be solved by the various 

algorithms, once they can be formulated as NP-hard 

problems. Also, the computation time and quality of 

solution differ from one algorithm to another. 

3. PROBLEM DESCRIPTION 
As stated earlier, examination timetabling is a problem in 

which the task is to assign a set of examinations to rooms 

and time slots, while satisfying some constraints. 

In this particular implementation, we consider the case of 

the examination timetable for the Faculty of Information 

and Communication Sciences in the University of Ilorin. 

This faculty consists of 5 departments with a total of 74 

examinations to be taken in a period of 12 days. Each day 

consist of 3 slots, namely: morning, afternoon, and 

evening. These examinations can be scheduled in any of 

3 venues, with capacities of: 100, 150, and 250. The table 

below shows the timeslot allocation for the examination. 

Table 1. Timeslot allocation for examination 

 Period 

Day 

Morning Afternoon Evening 

Day1 1 2 3 

Day2 4 5 6 

Day3 7 8 9 

Day4 10 11 12 

Day5 13 14 15 

Day6 16 17 18 

Day N N*3-2 N*3-1 N*3 

 

The constraints guiding the examination timetabling we 

are considering are: 

Hard constraints: 

 No student can sit more than one examination 

at a time. 

 The number of students for a particular exam 

must not exceed the available space. 

Soft constraint: 

 No student should have two exams 

consecutively. 

4. THE ALGORITHM 

4.1 Genetic Algorithm 
The originators of Genetic Algorithm (GA) were John 

Holland and De Jong. In their respective books titled 

“Adaptation in natural and artificial systems” and 
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“Adaptation of the behavior of a class of genetic adaptive 

systems,” both published in 1975. (Davis, 1991)[7]. 

Genetic Algorithms are metaheuristic methods based on 

Darwin‟s theory of evolution that aims to find solutions 

to NP-hard problems. The basic idea of Genetic 

Algorithms is to first generate an initial population 

randomly which consist of individual solution to the 

problem called Chromosomes, and then evolve this 

population after a number of iterations called 

Generations. During each generation, each chromosome 

is evaluated, using some measure of fitness. To create the 

next generation, new chromosomes, called offspring, are 

formed by either merging two chromosomes from current 

generation using a crossover operator or modifying a 

chromosome using a mutation operator. A new 

generation is formed by selection, according to the 

fitness values, some of the parents and offspring, and 

rejecting others so as to keep the population size 

constant. Fitter chromosomes have higher probabilities of 

being selected. After several generations, the algorithms 

converge to the best chromosome, which hopefully 

represents the optimum or suboptimal solution to the 

problem. [8] 

Pseudocode for GA 

Step 1  Generate initial population. 

Step 2 Evaluate population. 

Step 3  Apply Crossover to create offspring. 

Step 4  Apply Mutation to offspring. 

Step 5  Select parents and offspring to form the new 

population for the next generation. 

Step 6  If termination condition is met finish, 

otherwise go to Step 2. 

In general, a GA has five basic components: 

(i) A genetic representation of potential 

solutions to the problem. 

(ii) A way to create a population (an initial set 

of potential solutions). 

(iii) An evaluation function rating solutions in 

terms of their fitness. 

(iv) Genetic operators that alter the genetic 

composition of offspring (crossover, 

mutation, selection, etc.). 

(v) Parameter values that genetic algorithm 

uses (population size, probabilities of 

applying genetic operators, etc.) [8]. 

In this study we use direct encoding whereby each 

chromosome represents a candidate solution. In this 

representation, the chromosome is a list of numbers 

whose length is the number of courses to be scheduled 

(say e); each element of the list is the number of 

timeslots available (say between 1and t). The 

interpretation of such chromosome is that if nth number 

in the list is t, then exam n is scheduled to occur at time t. 

For example, if we have a chromosome [3, 8, 9, 4, 12, 6, 

15], then it means that exam 1 takes place timeslot 3; 

exam 2 takes place at timeslot 8, etc. 

 

Fitness function measures quality of the chromosomes. 

As the number of the constraints that a chromosome 

satisfied increases, so does the chromosome‟s quality. So 

the evaluation of the chromosomes and the selection of 

the constraints are also vital in GAs. 
In this study we use the following to calculate the fitness 

value: 

f (c)= P(1) R(1) + P(2) R(2) + P(3) R(3)  

Let P(1), P(2) and P(3) represent  the value of the penalty 

for each constraint. R(1), R(2) and R(3) represent the 

number of times the candidate timetable violates the 

restrictions 1, 2 and 3 respectively. In the computer 

program used, the weights can be determined by the user. 

In this way, a user can decide how much importance each 

constraint has. 

 

The initialization procedure is another important issue in 

all genetic algorithms because it should create a random 

initial population which spread in the whole search 

space. Diversity of initial population gives algorithm the 

opportunity to search the whole space of possible 

solutions and not to stick with the local optima. [8.] In 

our study, the chromosomes used for initial population 

are generated randomly. 

4.2 Tabu Search 
Fred Glover proposed in 1986 a new approach, which he 

called Tabu Search, to allow Local Search (LS) methods 

to overcome local optima. The basic principle of TS is to 

pursue LS whenever it encounters a local optimum by 

allowing non-improving moves; moving back to 

previously visited solutions is prevented by the use of 

memories, called tabu lists, that record the recent history 

of the search, a key idea that can be linked to Artificial 

Intelligence concepts.[11] 

It starts from a random initial solution and successively 

moves to one of the neighbors of the current solution. 

The difference of tabu search from other metaheuristic 

approaches is based on the notion of tabu list, which is a 

special short term memory. That is composed of 

previously visited solutions that include prohibited 

moves. In fact, short term memory stores only some of 

the attributes of solutions instead of whole solution. So it 

gives no permission to revisited solutions and then 
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avoids cycling and being stuck in local optima. During 

the local search only those moves that are not tabu will 

be examined if the tabu move does not satisfy the 

predefined aspiration criteria. These aspiration criteria 

are used because the attributes in the tabu list may also 

be shared by unvisited good quality solutions. A common 

aspiration criterion is better fitness, i.e. the tabu status of 

a move in the tabu list is overridden if the move produces 

a better solution. [9] 

Pseudocode for Tabu Search 

Step 1  Generate initial solution x. 

Step 2  Initialize the Tabu List. 

Step 3  While set of candidate solutions X‟ is not 

complete. 

Step 3.1 Generate candidate solution x‟ from current 

solution x 

Step 3.2  Add x‟ to X‟ only if x‟ is not tabu or if at least 

one Aspiration Criterion is satisfied. 

Step 4  Select the best candidate solution x* in X‟. 

Step 5  If fitness(x*) > fitness(x) then x = x*. 

Step 6 Update Tabu List and Aspiration Criteria 

Step 7  If termination condition met finish,  

otherwise go to Step 3. 

In this implementation, we used the same solution 

representation as that of the GA. A group of 100 

timetables are first generated and sorted according to 

their objective function, which is also similar to the 

fitness function in GA. The best timetable is then picked 

and tested by tabu restriction and aspiration criteria. Then 

this timetable is randomly mutated a number of times to 

generate its neighbors, which forms a new set solutions 

for the next iteration. 

5. EXPERIMENTS AND RESULTS 
The test on both examination schedulers was run on a 

Laptop with the following configurations: Pentium(R) 

Dual-Core 2.0 GHz, 2.0 GB RAM, Windows Vista 

Home Basic Operating System (SP1) 

This test was conducted with the following parameters 

for the GA and TS examination timetable: 

Parameters for GA:  

 Number of days for Examination=12 

 Maximum evolution=(See table below) 

 Population size=100 

 Weight of Class size error=10 

 Weight of group clash error=10 

 Weight of Consecutive exam error=5 

Parameters for TS: 

 Number of days for Examination=12 

 Maximum iteration=(See table below) 

 Neighborhood Size=100 

 Weight of Class size error=10 

 Weight of group clash error=10 

 Weight of Consecutive exam error=5 

In the first experiment, we aimed to analyze the quality 

of the timetables generated by both algorithms. This was 

done by comparing the fitness function of the generated 

timetable and varying the maximum number of iteration 

(Maximum evolution for GA). This gives the result in the 

table below. 

Table 2: Fitness of Generated Timetable at different 

given maximum iteration. 

Maximum 

Iteration 

Genetic Algorithm 

(Fitness) 

Tabu Search 

(Fitness) 

100 7260 1035 

200 7430 810 

300 7295 730 

400 7530 635 

500 7475 705 

600 7105 765 

700 7835 650 

800 7430 620 

900 6185 560 

1000 7270 575 

Average 5083 708.5 

 

The second experiment aimed to compare the two 

algorithms based on the speed of execution. This was 

done by comparing the time taken to generate the 
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timetable with the above maximum iteration and fitness. 

This gives the table below: 

 

Table 3: Time taken to generate timetable with the above 

fitness. 

Maximum 

Iteration 

Genetic 

Algorithm 

(Time)ms 

Tabu Search 

(Time)ms 

100 8268 4035 

200 16561 7781 

300 24847 11745 

400 32464 15884 

500 39609 19486 

600 47752 23721 

700 55365 27004 

800 64636 33773 

900 71947 37399 

1000 80188 39974 

Average 44163.7 22080.2 

 

6. DISCUSSION OF RESULTS 
The overall quality of the timetable is evaluated by the 

fitness function that adds up violations of all constraints 

by testing it with all examinations in the faculty. Each 

constraint has an associated „weight‟ or „penalty‟ defined 

during the run time by the user. The results are shown in 

the tables above. Table 2 compares the quality of the 

generated timetables by the fitness function of the 

timetables, it shows that the average fitness of GA and 

TS is 5083 and 708.5 respectively. 

Table 3 shows that the average time of generating the 

timetables with the above quality is 44163.7Ms and 

22080.2ms respectively. 

These tests show that TS can produce better solution, 

with less computing time, than those produced by GA. 

However, GA can produce several different near optimal 

solutions at the same time because of its holds the whole 

the whole generation of chromosomes which may not 

originate from the same parents. 

7. CONCLUSION 
It has been seen that both the GA and TS algorithms 

performed directed evolution on an examination 

Timetabling problem, and tried to produce timetables 

void of hard constraint and soft constraints violations. 

The results obtained from both were very promising. 

With the stated objectives, both algorithms have 

effectively demonstrated the ability to solve complex 

optimization problems of which examination timetabling 

is part of.  Tabu Search however, produced better results 

than Genetic Algorithm with respect to quality and speed 

of generating the timetables. 
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