
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

43

Optimization: A Comparative Study of Genetic and
Tabu Search Algorithms

Bajeh, A. O.

Dept. of Computer Science
University of Ilorin

Ilorin, Nigeria

ABSTRACT

Examination timetabling problem like all scheduling

problems are NP-hard problems in which the complexity

and time needed to solve the problem increase with the

problem size. This paper aims to compare Genetic

Algorithm and Tabu Search approaches to solve this kind

of problem. Both algorithms were tested with regard to

the quality of generated timetables and the speed with

which the timetables are generated using collected test

data. The test shows that though both algorithms are

capable of handling the examination timetabling

problem, the Tabu Search approach can produce better

timetables than Genetic Algorithm, even at a greater

speed.

General Terms

Algorithm, Scheduling, Optimization

Keywords

Chromosome, Examination timetabling, Genetic

Algorithm, Tabu Search, Generation

1. INTRODUCTION
Timetabling is a part of the large field of scheduling

problems. The scheduling problems are essentially the

problems that deal with the effective distribution of

resource, because resources are usually limited.

Wren in [1] describes timetabling as:”the allocation,

subject to constraints, of given resources to objects being

placed in space time, in such a way as to satisfy as nearly

as possible a set of desirable objectives”.

This study focuses on examination timetabling problem

which is a kind of timetabling in which the problem is to

assign a set of examinations to rooms and timeslots.

Like all scheduling problems, examination timetabling

problems are NP-hard, which makes it difficult to find

timetables that satisfy all user requirements.

The quality of the time table is measured by how well it

satisfies the constraints. The constraints we consider for

this problem are classed into two, they are: Hard and Soft

constraints.

Hard constraints are those constraints that are important

to the problem at hand. For this problem, they define a

Abolarinwa, K. O.
Dept. of Computer Science

University of Ilorin
Ilorin, Nigeria

Hard constraints are those constraints that are important

to the problem at hand. For this problem, they define a

feasible timetable. Soft constraints are then used to

improve the quality of the timetable to satisfy the users of

the timetables.

Different methods have already been proposed for

solving examination timetabling problems. These

methods come from areas such as: Operation Research,

Artificial Intelligence and Computational Intelligence.

[10]

This paper attempts to compare the performance of two

algorithms: Genetic Algorithm and Tabu Search

Algorithm, with respect to their ability to solve the

examination timetabling problem. This comparison is to

be done with the following criteria:

 The quality of the timetables generated.

 The time used in generating the timetables...

2. RELATED WORK
Several works have tried to compare different algorithms

for solving NP-hard problems.

Garg [2] proposed a method based on Memetic

Algorithm and Tabu Search for the cryptanalysis of

Simplified Data Encryption Standard (SDES).This

problem could be formulated as an NP-hard problem.

These algorithms were also compared and analyzed with

respect to their performance for the cryptanalysis on

simplified data encryption standard. The results obtained

from the test indicate that Memetic Algorithm is more a

powerful technique for the handling of the cryptanalysis

of SDES.

Verma et al [3] presented a cryptanalysis method based

on Genetic Algorithm and Tabu Search to break a Mono-

Alphabetic Substitution Cipher in Adhoc networks. They

also compared and analyzed the performance of these

algorithms in automated attacks on Mono-alphabetic

Substitution Cipher. The work showed that Tabu Search

is more powerful than genetic Algorithm for the attack

on Mono-alphabetic Substitution Cipher.

Hou et al [4] compared three meta-heuristics: Simulated

Annealing, Genetic Algorithm and Tabu Search. This

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

44

was done by applying each algorithm to the docking

procedure between inhibitors and protein which tends to

be a sophisticated optimization problem. From the

comparison made, it was found that Tabu search

outperforms the other two algorithms.

Merz and Freisleben [5] applied Memetic Algorithm,

Tabu Search and Ant Colonies to the Quadratic

Assignment problem. This work demonstrated that

Memetic Algorithm is more suitable for the Quadratic

assignment problem.

Wilke and Ostler [6], using real world school time

tabling problem, compared the performance of four

algorithms, namely Tabu Search, Simulated Annealing,

Genetic Algorithm and Branch & Bound. They

recommended Simulated Annealing to generate the

school timetable as it gives the best trade-off between

execution time and quality of results. This was followed

by Tabu Search, Genetic Algorithm and Branch & Bound

in that order.

Stutzle et al [12] compared the performances of some

nature-inspired algorithms on the Travelling Salesman

Problem. The algorithms compared include: Genetic

Algorithm using DPX-crossover as proposed by Merz

and Freisleben, Repair based Genetic Algorithm, Ant

Colony Optimization and Iterated Local Search

Algorithm. They concluded that the Iterated Local search

Algorithm performed better than the other algorithms.

Arostegui Jr. M.A et al [13] also compared the relative

performance of Tabu search, Simulated Annealling and

Genetic Algorithm on Facility Location Problem (FLP)

on various types of FLP under time-limited, solution-

limited, and unrestricted conditions. They submitted that

the performance of Tabu search was better in all cases

while Simulated Annealing and Genetic Algorithm where

more partial to the problem type and the criterion used.

Houck et al [14] worked on problem characteristics that

make one algorithm more efficient than the other by

considering two kinds problems: Location-Allocation

and the Quadratic Assignment Problem. The result of

tabu search algorithm and genetic algorithm were then

compared. They submitted that tabu search performs

more efficiently than genetic algorithm in the quadratic

assignment problem, while GA is more efficient for the

location-allocation problem.

Analyzed, the results obtained by the various works

shows that various problems can be solved by the various

algorithms, once they can be formulated as NP-hard

problems. Also, the computation time and quality of

solution differ from one algorithm to another.

3. PROBLEM DESCRIPTION
As stated earlier, examination timetabling is a problem in

which the task is to assign a set of examinations to rooms

and time slots, while satisfying some constraints.

In this particular implementation, we consider the case of

the examination timetable for the Faculty of Information

and Communication Sciences in the University of Ilorin.

This faculty consists of 5 departments with a total of 74

examinations to be taken in a period of 12 days. Each day

consist of 3 slots, namely: morning, afternoon, and

evening. These examinations can be scheduled in any of

3 venues, with capacities of: 100, 150, and 250. The table

below shows the timeslot allocation for the examination.

Table 1. Timeslot allocation for examination

 Period

Day

Morning Afternoon Evening

Day1 1 2 3

Day2 4 5 6

Day3 7 8 9

Day4 10 11 12

Day5 13 14 15

Day6 16 17 18

Day N N*3-2 N*3-1 N*3

The constraints guiding the examination timetabling we

are considering are:

Hard constraints:

 No student can sit more than one examination

at a time.

 The number of students for a particular exam

must not exceed the available space.

Soft constraint:

 No student should have two exams

consecutively.

4. THE ALGORITHM

4.1 Genetic Algorithm
The originators of Genetic Algorithm (GA) were John

Holland and De Jong. In their respective books titled

“Adaptation in natural and artificial systems” and

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

45

“Adaptation of the behavior of a class of genetic adaptive

systems,” both published in 1975. (Davis, 1991)[7].

Genetic Algorithms are metaheuristic methods based on

Darwin‟s theory of evolution that aims to find solutions

to NP-hard problems. The basic idea of Genetic

Algorithms is to first generate an initial population

randomly which consist of individual solution to the

problem called Chromosomes, and then evolve this

population after a number of iterations called

Generations. During each generation, each chromosome

is evaluated, using some measure of fitness. To create the

next generation, new chromosomes, called offspring, are

formed by either merging two chromosomes from current

generation using a crossover operator or modifying a

chromosome using a mutation operator. A new

generation is formed by selection, according to the

fitness values, some of the parents and offspring, and

rejecting others so as to keep the population size

constant. Fitter chromosomes have higher probabilities of

being selected. After several generations, the algorithms

converge to the best chromosome, which hopefully

represents the optimum or suboptimal solution to the

problem. [8]

Pseudocode for GA

Step 1 Generate initial population.

Step 2 Evaluate population.

Step 3 Apply Crossover to create offspring.

Step 4 Apply Mutation to offspring.

Step 5 Select parents and offspring to form the new

population for the next generation.

Step 6 If termination condition is met finish,

otherwise go to Step 2.

In general, a GA has five basic components:

(i) A genetic representation of potential

solutions to the problem.

(ii) A way to create a population (an initial set

of potential solutions).

(iii) An evaluation function rating solutions in

terms of their fitness.

(iv) Genetic operators that alter the genetic

composition of offspring (crossover,

mutation, selection, etc.).

(v) Parameter values that genetic algorithm

uses (population size, probabilities of

applying genetic operators, etc.) [8].

In this study we use direct encoding whereby each

chromosome represents a candidate solution. In this

representation, the chromosome is a list of numbers

whose length is the number of courses to be scheduled

(say e); each element of the list is the number of

timeslots available (say between 1and t). The

interpretation of such chromosome is that if nth number

in the list is t, then exam n is scheduled to occur at time t.

For example, if we have a chromosome [3, 8, 9, 4, 12, 6,

15], then it means that exam 1 takes place timeslot 3;

exam 2 takes place at timeslot 8, etc.

Fitness function measures quality of the chromosomes.

As the number of the constraints that a chromosome

satisfied increases, so does the chromosome‟s quality. So

the evaluation of the chromosomes and the selection of

the constraints are also vital in GAs.
In this study we use the following to calculate the fitness

value:

f (c)= P(1) R(1) + P(2) R(2) + P(3) R(3)

Let P(1), P(2) and P(3) represent the value of the penalty

for each constraint. R(1), R(2) and R(3) represent the

number of times the candidate timetable violates the

restrictions 1, 2 and 3 respectively. In the computer

program used, the weights can be determined by the user.

In this way, a user can decide how much importance each

constraint has.

The initialization procedure is another important issue in

all genetic algorithms because it should create a random

initial population which spread in the whole search

space. Diversity of initial population gives algorithm the

opportunity to search the whole space of possible

solutions and not to stick with the local optima. [8.] In

our study, the chromosomes used for initial population

are generated randomly.

4.2 Tabu Search
Fred Glover proposed in 1986 a new approach, which he

called Tabu Search, to allow Local Search (LS) methods

to overcome local optima. The basic principle of TS is to

pursue LS whenever it encounters a local optimum by

allowing non-improving moves; moving back to

previously visited solutions is prevented by the use of

memories, called tabu lists, that record the recent history

of the search, a key idea that can be linked to Artificial

Intelligence concepts.[11]

It starts from a random initial solution and successively

moves to one of the neighbors of the current solution.

The difference of tabu search from other metaheuristic

approaches is based on the notion of tabu list, which is a

special short term memory. That is composed of

previously visited solutions that include prohibited

moves. In fact, short term memory stores only some of

the attributes of solutions instead of whole solution. So it

gives no permission to revisited solutions and then

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

46

avoids cycling and being stuck in local optima. During

the local search only those moves that are not tabu will

be examined if the tabu move does not satisfy the

predefined aspiration criteria. These aspiration criteria

are used because the attributes in the tabu list may also

be shared by unvisited good quality solutions. A common

aspiration criterion is better fitness, i.e. the tabu status of

a move in the tabu list is overridden if the move produces

a better solution. [9]

Pseudocode for Tabu Search

Step 1 Generate initial solution x.

Step 2 Initialize the Tabu List.

Step 3 While set of candidate solutions X‟ is not

complete.

Step 3.1 Generate candidate solution x‟ from current

solution x

Step 3.2 Add x‟ to X‟ only if x‟ is not tabu or if at least

one Aspiration Criterion is satisfied.

Step 4 Select the best candidate solution x* in X‟.

Step 5 If fitness(x*) > fitness(x) then x = x*.

Step 6 Update Tabu List and Aspiration Criteria

Step 7 If termination condition met finish,

otherwise go to Step 3.

In this implementation, we used the same solution

representation as that of the GA. A group of 100

timetables are first generated and sorted according to

their objective function, which is also similar to the

fitness function in GA. The best timetable is then picked

and tested by tabu restriction and aspiration criteria. Then

this timetable is randomly mutated a number of times to

generate its neighbors, which forms a new set solutions

for the next iteration.

5. EXPERIMENTS AND RESULTS
The test on both examination schedulers was run on a

Laptop with the following configurations: Pentium(R)

Dual-Core 2.0 GHz, 2.0 GB RAM, Windows Vista

Home Basic Operating System (SP1)

This test was conducted with the following parameters

for the GA and TS examination timetable:

Parameters for GA:

 Number of days for Examination=12

 Maximum evolution=(See table below)

 Population size=100

 Weight of Class size error=10

 Weight of group clash error=10

 Weight of Consecutive exam error=5

Parameters for TS:

 Number of days for Examination=12

 Maximum iteration=(See table below)

 Neighborhood Size=100

 Weight of Class size error=10

 Weight of group clash error=10

 Weight of Consecutive exam error=5

In the first experiment, we aimed to analyze the quality

of the timetables generated by both algorithms. This was

done by comparing the fitness function of the generated

timetable and varying the maximum number of iteration

(Maximum evolution for GA). This gives the result in the

table below.

Table 2: Fitness of Generated Timetable at different

given maximum iteration.

Maximum

Iteration

Genetic Algorithm

(Fitness)

Tabu Search

(Fitness)

100 7260 1035

200 7430 810

300 7295 730

400 7530 635

500 7475 705

600 7105 765

700 7835 650

800 7430 620

900 6185 560

1000 7270 575

Average 5083 708.5

The second experiment aimed to compare the two

algorithms based on the speed of execution. This was

done by comparing the time taken to generate the

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

47

timetable with the above maximum iteration and fitness.

This gives the table below:

Table 3: Time taken to generate timetable with the above

fitness.

Maximum

Iteration

Genetic

Algorithm

(Time)ms

Tabu Search

(Time)ms

100 8268 4035

200 16561 7781

300 24847 11745

400 32464 15884

500 39609 19486

600 47752 23721

700 55365 27004

800 64636 33773

900 71947 37399

1000 80188 39974

Average 44163.7 22080.2

6. DISCUSSION OF RESULTS
The overall quality of the timetable is evaluated by the

fitness function that adds up violations of all constraints

by testing it with all examinations in the faculty. Each

constraint has an associated „weight‟ or „penalty‟ defined

during the run time by the user. The results are shown in

the tables above. Table 2 compares the quality of the

generated timetables by the fitness function of the

timetables, it shows that the average fitness of GA and

TS is 5083 and 708.5 respectively.

Table 3 shows that the average time of generating the

timetables with the above quality is 44163.7Ms and

22080.2ms respectively.

These tests show that TS can produce better solution,

with less computing time, than those produced by GA.

However, GA can produce several different near optimal

solutions at the same time because of its holds the whole

the whole generation of chromosomes which may not

originate from the same parents.

7. CONCLUSION
It has been seen that both the GA and TS algorithms

performed directed evolution on an examination

Timetabling problem, and tried to produce timetables

void of hard constraint and soft constraints violations.

The results obtained from both were very promising.

With the stated objectives, both algorithms have

effectively demonstrated the ability to solve complex

optimization problems of which examination timetabling

is part of. Tabu Search however, produced better results

than Genetic Algorithm with respect to quality and speed

of generating the timetables.

8. REFERENCE
[1] Wren, A. (1996): Scheduling, Timetabling and

Rostering – a special relationship? In Lecture Notes

in Computer Science: Practice and Theory of

Automated Timetabling, E. Burke and P. Ross,

editors. Springer Berlin, Germany, Vol 1153 pp. 46-

75.

[2] Garg, P. (2005): A Comparison of Memetic & Tabu

Search for the Cryptanalysis of Simplified Data

Encryption Standard Algorithm, Journal of

Theoretical and Applied Information Technology,

Vol IV No. 4, 2005-2008 pp. 360-366.

[3] Verma, A. K., Dave, M. and Joshi, R. C. (2007):

Genetic Algorithm and Tabu Search attack on the

Mono-Alphabetic Substitution Cipher in Adhoc

Networks, Journal of Computer Science(3): pp. 134-

137, 2007.

[4] Hou, J. H., Wang, J. M. and Xu, X. J. (1999): A

Comparison of Three Heuristic Algorithms for

Molecular Docking, Chinese Chemical Letters Vol.

10, No. 7, pp. 615-618, 1999.

[5] Merz, P. and Freisleben, B. (1999): A Comparison of

Memetic Algorithms, Tabu Search and Ant

Colonies for the Quadratic Assignment Problem, In

1999 Congress on Evolutionary Computation

(CEC'99) IEEE Press, Piscataway, NJ, pp. 2063–

2070.

[6] Wilke, P. and Ostler, J. (2008): Solving the School

Time Tabling Problem using Tabu Search,

Simulated Annealing, Genetic and Branch & bound

Algorithms. In the proceedings of the 7th

International Conference on the Practice and Theory

of Automated Timetabling (PATAT 2008),

Montreal,

http://w1.cirrelt.ca/~patat2008/PATAT_7_PROCEE

DINGS/ Papers/Wilke-WD2c.pdf, last accessed 19

April, 2011.

[7] Davis, L. (1991): Handbook of Genetic Algorithms.

New York: Van Nostrand Reinhold

[8] Gen, M., Cheng, R. and Lin, L. (2008): Network

Models and Optimization; Multiobjective Genetic

Algorithm Approach. Springer-Verlag London.

[9] Glover, F. (1990): Tabu search, A tutorial Interfaces,

20(4): pp. 74-94, July 1990

[10] Al-Milli N.R (2010): Hybrid Genetic Algorithms

with Great Deluge for Course Timetabling.

International Journal of Computer Science and

Network Security, Vol.10 No.4. Page 283-288.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.5, October 2011

48

[11]Gendreau M, (2002): An Introduction to Tabu

Search.

http://home.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS

_Gendreau.htm (Last visited on 18th October,

2011.)

[12] Stutzle T., grun A., Linke S., Ruttger M.(2000): A

Comparison of Nature Inspired Heuristics on the

Travelling Salesman Problem, Proceedings of

PPSN-VI, Sixth International Conference on

Parallel Problem

Solving from Nature, volume 1917 of LNCS.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10

.1.1.30.791 (Last visited 19th of October, 2011).

[13] Arostegui Jr. M.A, Kadipasaoglu S.N, Khumawala

B.M (2006): An empirical comparison of Tabu

Search, Simulated Annealing, and Genetic

Algorithms for facilities location problems.

International Journal of Production Economics

(2006)

Volume: 103, Issue: 2, Pages: 742-754.

[14]Houck C.R, Joines J.A, Kay M.G (2011):

Characterizing Search Spaces For Tabu Search.

Currently under second review in European Journal

of Operational Research.

http://home.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm
http://home.ifi.uio.no/infheur/Bakgrunn/Intro_to_TS_Gendreau.htm

