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ABSTRACT  
Texture-based computer-aided diagnosis (CADx) of 

microcalcification clusters is more robust than the state-of-art 

shape-based CADx because the performance of shape-based 

approach heavily depends on the effectiveness of 

microcalcification (MC) segmentation. This paper presents a 

texture-based CADx that consists of two stages. The first one 

characterizes MC clusters using texture features from gray-level 

co-occurrence matrix (GLCM). In the second stage, an embedded 

feature selection based on particle swarm optimization and a k-

nearest neighbor (KNN) classifier, called PSO-KNN, is applied to 

simultaneously determine the most discriminative GLCM features 

and to find the best k value for a KNN classifier. Testing the 

proposed CADx using 25 MC clusters from mini-MIAS dataset 

produced classification accuracy of 88% that obtained using 2 

GLCM features. 
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classify 191 MC clusters from a local dataset. Using shape and 

GLCM texture features and a GA-based feature selection to 

diagnose 145 MC clusters,Chan et al. [4] achieved an area under 

the ROC curve of 0.89. An earlier study [5] by Zadeh and his 

colleagues demonstrated the superior performance of the shape 

features over GLCM features. In a more detailed study and 

using same mammographic dataset, Zadeh et al.[6] achieved an 

area under the receiver operating characteristic (ROC) curve of 

0.89 using texture features derived using multi-wavelet 

transforms, feature selection using GAs, and a KNN classifier. 

The results of this study demonstrate that texture features from 

multi-wavelets are more superior than other features including 

wavelet packets, GLCM, and shape features. Zadeh et al. [6] 

also demonstrated that including the background texture when 

extracting GLCM features of MCs produced better results than 

only characterizing the texture of the regions representing 

individual MCs. Singh et. al  [7] combined  shape, spectral, and 

GLCM features  to classify microcalcifications using kernel-

based support vector machine classifiers.  Hamdi et al. [8] 

classified MC clusters from MIAS database using GLCM and 

spectral features, feature selection using Fisher discriminate 

analysis (FDA), and a KNN classifier. Other studies [9], [10] 

demonstrated that it is not the texture of MCs objects but it the 

texture of breast tissue surrounding microcalcifications that can 

be useful for cancer diagnosis. 

 

Most texture-based CADx systems [3]-[7] used a heuristic 

feature search based on GA approach and a KNN classifier for 

accomplishing the feature selection and pattern classification 

stages, respectively. Also, none of the previous studies has 

incorporated the feature selection during the classifier learning 

and parameter selection stages. Hence, this paper presents a 

PSO-KNN embedded feature selection framework for solving 

the model selection problem associated with texture-based 

diagnosis of microcalcification clusters. This PSO-KNN uses a 

heuristic parameter search based on a particle swarm 

optimization (PSO) algorithm for selecting the best GLCM 

features and for optimizing the performance of the KNN 

classifier. Advantages of performing parameter selection using 

an embedded PSO-KNN scheme include utilizing a PSO 

heuristic parameter search that is computationally more 

attractive than GA approaches [11] and integrating the feature 

selection and classifier’s parameter optimization tasks that is 

more efficient than performing each task individually.  

1. INTRODUCTION 
Computer-aided diagnosis (CADx) is mainly intended to provide 

radiologists with a second opinion that might improve the 

positive predictive value of mammography. The development of 

robust feature extraction and automated feature selection methods 

are the major demands of the current computer-aided diagnosis 

technology in mammography [1],[2]. Unlike the state of the art 

shape-based CADx of mammographic MC clusters, a texture-

based CADx does not need a microcalcification segmentation 

stage. Another advantage of texture based schemes is their ability 

to characterize texture dependency and spectral properties, which 

cannot be characterized using shape measures.  

 

Commonly used texture features are those derived by using Laws 

measure of texture, spectral descriptors, and texture features 

derived from gray-level co-occurrence matrices (GLCMs) [2].  

Among these approaches, GLCM based texture analysis is very 

common and has been examined in several studies [3]-[9]. 

Dhawan et al. [3] used a heuristic feature search based on GA and 

neural network classifier to  
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The organization of the remaining sections of this paper is as 

follows: the theoretical background of the GLCM texture features 

and heuristic search using PSO are briefly explained in Section 2. 

Section 3 describes the proposed computed aided diagnosis using 

texture features and PSO-KNN feature selection and 

classification approach. The experimental results and conclusions 

are discussed in Sections 4 and 5, respectively. 

 

2. BACKGROUND  

2.1    Texture analysis using GLCM features  

Analysis of image texture using a gray level co-occurrence matrix 

(GLCM), that is also known as spatial gray-level dependence 

matrix (SGLDM), was first applied for feature extraction and   

diagnosis Alzheimer’s disease [12]. During the last two decades, 

GLCM based texture analysis has become a very popular feature 

extraction method for the detection and classification masses and 

microcalcifications in digital mammography [1], [3]-[9]. 

 

A gray-level co-occurrence matrix analyzes second order 

statistics of the gray-level histogram of an image. This step is 

done by measuring the probability of the occurrence of different 

gray-level patterns. Such patterns are formed by two gray-levels 

spatially separated by a distance d and located along a line 

oriented at angle . These orientations are represented by the four 

neighboring pixels of the pixel located at x and y. Orientation 

angle   takes four values: 0o (horizontal), 45o (diagonal),90o 

(vertical), and 135o(anti-diagonal). These angles represent the 

orientation of four neighboring pixels of a pixel (x, y). For an 

image I of size NM   and L gray-levels, a GLCM of size 

LL  is computed as    
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where {.}p   is 1 if the condition described by  the argument is 

satisfied. ( ji, ) are gray-level values, orientation indicator  is 

given by ( ,v  u ) , which is  (1, 0)  for  equals 0 ,  (0,1)  for 

90 , and   (1,-1) for 45 ,  and (-1,1) 
135 . Moreover, 

,dN  is a 

normalizing factor used to make the sum of all GLCM entries 

equal to 1.   
 

2.2  Particle swarm optimization  
Exhaustive parameter and feature selection guarantee a global 

solution to the problem of model selection in machine learning. 

However, the major shortcomings of this method are the 

computationally complexity of the process and the poor 

generalization of the solution. This makes heuristic optimization 

methods such as PSO and GAs more appropriate for solving the 

model selection task. 

The idea of the heuristic optimization using a particle swarm 
optimization method [13] is similar in principle to other 

population based methods such as Genetic and evolutionary 

algorithms [14].The heuristic parameter selection based on a 

PSO algorithm is started by randomly initializing the 

candidates’ solution (i.e. members of the swarm) in the 

parameter space. For this study, the parameter space consists of 

the feature space and the classifier’s parameter space. Then, 

PSO particles move and collaborate to find the optimal solution 

to the parameter selection task.  

 

2.3 K-nearest neighbor (KNN) classifier  
A KNN classifier is one of the most straightforward supervised 

learning machines that continues to perform very well in solving 

many pattern recognition problems including diagnosis of MC 

clusters [2]. Basically, pattern classification using a KNN 

classifier uses experience from the previous training patterns. 

That is an input test data is classified into a certain class, a 

malignant or benign in this study, by using majority voting 

among the nearest k neighbors. This k nearest neighbors are 

selected by using a predefined distance metric (correlation, 

Euclidian distance) to compute and select the nearest training 

patterns that are neighbor to input sample in the sense of the 

selected metric.  

 

3. TEXTURE-BASED CADX USING PSO-

KNN  
The proposed texture-based CADx of MC cluster as shown by 

Figure 1 consists of two stages. In the first stage, a 

mammographic region depicting MC cluster is characterized 

using second order statistics of gray-levels. The second stage 

represents parameter selection using PSO-KNN framework, 

which involves reducing the dimensionality of the feature space, 

selecting the optimal subset of GLCM features, and tuning the 

classifier parameters to improve the generalization ability of the 

classification process. 

 

3.1  GLCM texture features 
From each GLCM matrix, various texture descriptors can be 

computed. In this paper, we have measured a group of 14 

GLCM descriptors that are commonly used to characterize MC 

clusters in mammography. GLCM descriptors measured in this 

paper are: energy, correlation, homogeneity, contrast, entropy, 

sum of squares, sum average, sum entropy, difference average, 

difference variance, difference entropy, two information 

measures of correlation, and Inverse difference normalized.  

 

Instead of using GLCM descriptors computed from each 

directional GLCM matrix, combining the values of each 

descriptor is usually used to form a summary GLCM feature [6].  

One approach for generating a summary feature from the four 

directional ones is by computing some statistical moments such 

as average, standard deviation, and range of a given GLCM 

descriptor [6]. In addition to computing summary features by 

averaging, we use the range of the four directional GLCM 

descriptors. This process leads to a set of 28 GLCM features.  
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                    Fig1: Classification of microcalcification clusters using PSO-KNN and GLCM texture features.   

 

3.2 Parameter selection using PSO-KNN 

Model or parameter selection using a PSO-KNN embedded 

strategy represents a unified scheme for feature selection and for 

tuning the parameter of the classifier. The presented PSO-KNN 

heuristic method uses a binary feature search to select the most 

discriminative GLCM features. 

 

PSO-KNN also optimizes the performance of a KNN classifier 

by finding the best k value that produces the best classification 

performance. Hence, the PSO-KNN framework uses a discrete-

valued PSO [15] with particles of 29 coordinates to accomplish 

the model selection process.  

 
The fitness of each PSO-KNN candidate’s solution is evaluated 

using leave-one-out cross validation method. The objective 

function of the POS-KNN optimization is defined as the product 

of true positive fraction (classification sensitivity), true-negative 

fraction (classification specificity), and penalization factor that 

decreases as the size of the selected feature subset increases. 

 

4.  EXPERIMENTAL RESULTS  

 
4.1 Test data  
The proposed texture based CADx, including the GLCM features 

and PSO-kNN heuristic model selection, has been investigated 

using mammographic regions with proven biopsy mammographic 

microcalcification clusters. These regions were obtained from 

mini-MIAS dataset [16] that contains 20 mammogram with 25 

MC clusters of which 12 are malignant and 13 are benign. 

Samples of this test data are shown in Figure 2. 

  

4.2 Implementation and experiment setup   
All feature extraction, heuristic search and parameter selection 

using a PSO algorithm, and pattern classification using a KNN 

classifier are implemented in MATLAB software. For the 

heuristic model selection using PSO-KNN method, the size of the 

population and the number of iterations were set to 100 and 50, 

respectively.  Moreover, we used typical values from [17] to 

control the search process of the PSO algorithm.   

 
 
 
 
 
                          
 
 
 
 

 
(a) Malignant (mdb241)                              (b)  Benign (mdb223) 

 
Fig 2: Examples of microcalcification clusters from mini-MIAS public dataset. 
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4.3  Results Analysis  

The results of the proposed classification and model selection 

methods are presented in Table 1 and Table 2.  In this work, the 

fitness function of the PSO-KNN estimated using leave-one-out 

cross validation is designed to find a learning model that 

produces the highest sensitivity or true positive fraction, highest 

specificity or true negative fraction, and the smallest size of the 

feature subset. The main reason for adopting this type of fitness 

function instead of the classification accuracy alone is that we 

are trying to find the solution that have lower tendency to over 

fit  the training data. 

 
As presented by Table 1, the best classification performance 

produced by PSO-KNN model selection of is of 88% accuracy 

that corresponds to sensitivity of 100 % (0 FN) and specificity of 

77% (3 FP). This result is achieved using two GLCM features, 

which represented by the average of homogeny and the range of 

the contrast. Another learning model that also produces accuracy 

of 88% and demonstrates a trade-off of the specificity and 

sensitivity rates is achieved by using a set of three GLCM 

features. 

These features include the average of difference entropy, range 

of difference variance, and range of information of correlation I.  

 

This paper also has examined the impact of the size of 

mammographic texture used to characterize micro-calcification 

clusters on the discriminative power of the GLCM features and 

its affect on the outcomes of feature selection using a PSO-KNN 

method. Table 2 results of MC clusters classification using 

GLCM features extracted from three different mammographic 

regions of size of 128 × 128, 256 × 256, and 512 × 512 pixels. 

Because some MC clusters are extracted from the same 

mammogram, using larger region sizes as 256 × 256 and 512 × 

512 pixels has led to merging these MC clusters into one region 

with two or three clusters. For instance, two benign clusters, 

extracted from mdb223 mammogram, enclosed using two region 

of size 128 × 128, are combined when the region size is 256 × 

256 or 512 × 512 pixels. This process is illustrated by Figure 3. 

This process reduced the size of dataset from 25 in case of 128 × 

128 region size to 22 and 21 for 256 × 256 and 512 × 512 sizes, 

respectively.  

 

As demonstrated by Table 2, the classification accuracy has not 

significantly degraded by using larger mammographic regions of 

size of 256 × 256 and 512 × 512 pixels. That is using GLCM 

features extracted from 512 × 512 pixels; we achieved 

classification accuracy of 90% that corresponds to 1 FP and 1 

FN.   

 
Table 1.  Results of classifying MC clusters using PSO-KNN feature and parameter 

                selection method. * 

k N** Sensitivity \FN Specificity \ FP Accuracy Fitness value 

3 3 0.92\1 0.85\2 0.88 0.28 

3 2 1.0\0 0.77\3 0.88 0.26 

3 1 0.83\2 0.77\3 0.80 0.36 

3 5 0.83\2 0.92\1 0.88 0.33 

3 8 0.92\1 0.85\2 0.88 0.40 
 

                *Size of mammographic region used to derive GLCM features is 128 × 128 pixels. 

                        ** N is the size of the feature subset. 
 

 

  

 

 

 

 

    

 

 

  

 
      Fig. 3: An example of merging MC clusters enclosed by regions of 128 × 128 pixels into a region of 256 × 256 pixels.  
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This result, which produced using 4 GLCM texture features, might 

indicate the positive impact of the tissue surrounding MC cluster 

[9].   

 

 
 

Results of this study also demonstrated the impact of the region size 

on the set of GLCM features with the strongest discriminating 

power. Although the set of GLCM features are different from one 

region size to another, some GLCM futures such as the sum average 

and the sum difference were common among region sizes. 

 

Diagnosis of  MC clusters in mammography has been investigated 

in several studies [2]-[10], [18],[19]. CADx systems presented in 

these studies were different in terms of the feature spaces, feature 

selection methods, and the classifiers used for discriminating 

malignant and benign clusters, and datasets used for evaluating the 

proposed schemes. Using different datasets makes any direct 

comparison impropriate. Hence, the comparison presented in this 

paper only includes CADx studies used MIAS dataset for 

performance evaluation. Using shape features and a full model 

selection based on PSO-SVM approach, Zyout et al. [2] obtained a 

perfect (100%) classification accuracy. Hamdi et al. [8] obtained a 

classification accuracy of 95.5% using 6 GLCM features and a 

KNN classifier. Papadopoulos et al. [18] obtained an area under 

ROC (Az) of 0.81 and 0.78 using SVM and ANN classifiers, 

respectively. Further, Wang et al. [19] used mixed texture and shape 

features and GA for SVM model selection and dimensionality 

reduction of the feature space and achieved Az of 0.86.    

 

5.    CONCLUSIONS   
This paper has classified MC clusters using GLCM features and 

PSO-KNN embedded feature selection approach. The results of 

classifying MC clusters from mini-MIAS have revealed the 

effectiveness of feature selection, dimensionality reduction, and 

classifier parameter selection using PSO-KNN. Moreover, results of 

examining the relation between the size mammographic regions 

used to compute GLCM features and the discriminative power of 

GLCM features indicated the positive impact of the texture 

surrounding MC clusters. Extension of the proposed PSO-KNN 

approach to other feature spaces and validating the results of this 

paper using a larger dataset of mammograms are planned as an 

ongoing and future work of this paper. 
 

 

 

Table 2. Impact of the mammographic region size on the   

                classification using GLCM features. 

      

 

    Size   

( in pixels) 
N Sensitivity Specificity Accuracy 

 
128× 128  3 0.92 0.85 0.88 

 
256 ×256 9 0.82 0.91 0.86 

 
512 ×512 4 0.90 0.90 0.90 

6.    REFERENCES 
[1] Elter, M. and Horsch, A. 2009. CADx of 

mammographic mass and clustered micro-

calcifications: A review. Medical Physics, 36(6), 

2052-2068. 

[2] Zyout, I. 2010. Toward automated   detection and 

diagnosis of mammographic microcalcifications.  

Doctoral dissertation,  Dept. of  Elect. & Comp. 

Eng., Western Michigan University. 

[3] Dhawan, A. P., Chitre, Y., Bonasso, C., and Wheele, 

K.   1995. Radial-basis-function-based classification 

of mammographic microcalcifications using texture 

features. In Proceedings of  the 17th Annual 

International Conference and 21st Canadian Medical 

and Biological Engineering Conference, 535–536. 

[4] Chan, H. P., Sahiner, B.,   Lam, K. L.,  Petrick, N.,  

Helvie, M. A., Goodsitt, M. M., and  Adler, D. D.  

1998. Computerized analysis of mammographic 

microcalcifications in morphological and texture 

feature spaces. Medical Physics, 2007–2019. 

[5] Zadeh, H. S., Nezhad, P.S., and Rad, F. R.  2001. 

Shape based and texture-based feature extraction for 

classification of microcalcifications in 

mammograms. In Proceedings of SPIE Medical 

Imaging, 4322, 3010-310. 

[6] Zadeh, H. S., Rad, F. R., and Nejad, S. P.  2004. 

Comparison of multiwavelet, wavelet, Haralick, and 

shape features for microcalcification classification in 

mammograms.  Pattern Recognition, 37, 1973-1986. 

[7] Singh, S., Kumar, V., Verma, H. K., and Singh, D.  

2006. SVM Based System for classification of 

Microcalcifications in Digital Mammograms. In 

proceeding of the 28th IEEE EMBS Annual 

International Conference, New York City, USA. 

[8] Hamdi, N., Auhmani, K., and Hassani, M. M.  2008. 

Design of a high-accuracy classifier based on   fisher 

discriminate analysis: Application to Computer-

Aided Diagnosis of Microcalcifications. In 

Proceedings of the International Conference on 

Computational Sciences and its Applications ( 

ICCSA 2008). 

[9] Karahaliou, A., Boniatis, I., Sakellaropoulos,P., 

Skiadopoulos, S., Panayiotakis, G., and Costaridou, 

L. 2007. Can texture of tissue surrounding 

microcalcifica-tions in mammography be used for 

breast cancer diagnosis? Nuclear Instruments and 

Methods in Physics Research, 580, 1071–1074. 

[10] Thiele, D. L., Kimme-Smith, C., Johnson, T. D., 

McCombs, M., and Bassett, L. W.  1996. Using 

tissue texture surrounding calcification clusters to 

predict benign vs malignant outcomes. Medical 

Physics, 23, 549-555. 

[11] Guo, X. C. , Yang, J. H., Wu, G. C., Wang, C. Y., 

and Liang, Y. C.  2008.  A novel LS-SVMs hyper- 

 

 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Elter%2C+Matthias&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Horsch%2C+Alexander&possible1zone=author&maxdisp=25&smode=strresults&aqs=true


International Journal of Computer Applications (0975 – 8887) 

Volume 31– No.2, October 2011 

 

39 
 

parameter selection based on particle swarm optimization. 

Neurocomputing, 71, 3211– 3215. 

[12] Haralick, R. M. 1979. Statistical and structural 

approaches to texture. In Proceedings of IEEE, 67 (5), 

786–804. 

[13] Kennedy, J. and Eberhart, R. 1995.  Particle swarm 

optimization. In Proceedings of the IEEE International 

Conference on Neural Networks, Perth: IEEE Service 

Center, Piscataway, NJ, 4, 1942–1948.  

[14] Siedlecki, W. and Sklansky, J. 1989. A note on genetic 

algorithm for large scale feature selection. Pattern 

recognition letter, 10, 335-347. 

[15] Kennedy, J.  and  Eberhart, R. C. 1997. A discrete binary 

version of the particle swarm algorithm. In  Proceedings 

of the Conference on Systems, Man, and Cybernetics, 

Piscataway, NJ, 4104-4109. 

 

 

[16] Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., 

Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, 

S., Taylor, P., Betal, D., and Savage, J. 1994.  The 

mammographic image analysis society digital 

mammogram database. Exerpta Medica, 1069, 375-378.  

[17] Escalante, H. J., Montes, M., and Sucar, L. E. 2009. 

Particle Swarm Model Selection. Journal of Machine 

Learning Research, 10, 405-440.  

[18] Papadopoulos, A., Fotiadis, D. I., and Likas, A. 2005. 

Characterization of clustered microcalcifications in 

digitized mammograms using neural networks and 

support vector machines. Artificial Intelligence in 

Medicine, 4( 2),141-150. 

 


