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ABSTRACT 

Genetic algorithm includes some parameters that should be 

adjusting so that the algorithm can provide positive results. 

Crossover operators play very important role by constructing 

competitive Genetic Algorithms (GAs). In this paper, the basic 

conceptual features and specific characteristics of various 

crossover operators in the context of the Traveling Salesman 

Problem (TSP) are discussed. The results of experimental 

comparison of more than six different crossover operators for 

the TSP are presented. The experiment results show that OX 

operator enables to achieve a better solutions than other 

operators tested. 
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1. INTRODUCTION 
This section introduces the current scientific understanding of 

the natural selection process with the purpose of gaining an 

insight into the construction, application, and terminology of 

genetic algorithms. Natural selection –evolution- is discussed in 

many texts and treatises, and one of its first proponents, Charles 

Darwin.His theory of evolution was based on four primary 

premises [7]. First, like begets like; equivalently, an offspring 

has many of the characteristics of its parents. This premise 

implies that the population is stable. Second, there are variations 

in characteristics between individuals that can be passed from 

one generation to the next. The third premise is that only a small 

percentage of the offspring produced survive to adulthood. 

Finally, which of the offspring survive depends on their 

inherited characteristics. These premises combine to produce the 

theory of natural selection. In modern evolutionary theory an 

understanding of genetics adds impetus to the explanation of the 

stages of natural selection. 

Another set of biologically-inspired methods are Genetic 

Algorithms (GAs). They derive their inspiration from combining 

the concept of genetic recombination with the theory of 

evolution and survival of the fittest members of a population [5]. 

Starting from a random set of candidate parameters, the learning 

process devises better and better approximations to the optimal 

parameters. The GA is primarily a search and optimization 

technique. One can, however, pose nearly any practical problem 

as one of optimization, including many environmental modeling 

problems. To configure a problem for GA solution requires that 

the modeler not only choose the representation methodology, 

but also the cost function that judges the model’s soundness. 

The genetic algorithm is a one of the family of evolutionary 

algorithms. The population of a genetic algorithm (GA) evolves 

by using genetic operators inspired by the evolutionary in 

biology, "The survival is the individual most suitable to the 

environment". Darwin discovered that species evolution based 

on two components: the selection and reproduction. The 

selection provides a reproduction of the strongest and more 

robust individuals, while the reproduction is a phase in which 

the evolution run. 

Genetic algorithms are powerful methods of optimization used 

successfully in different problems. Their performance is 

depending on the encoding scheme and the choice of genetic 

operators especially, the selection, crossover and mutation 

operators. A variety of these latest operators have been 

suggested in the previous researches. In particular, several 

crossover operators have been developed and adapted to the 

permutation presentations that can be used in a large variety of 

combinatorial optimization problems. In this area, a typical 

example of the most studied problems is the Traveling Salesman 

Problem (TSP). 

The traveling salesman problem (TSP) is a classical problem of 

combinatorial optimization of Operations Research’s area. The 

purpose is to find a minimum total cost Hamiltonian cycle [22]. 

There are several practical uses for this problem, such as vehicle 

routing (with the additional constraints of vehicle’s route, such 

as capacity’s vehicles) [23] and drilling problems [24]. 

The TSP has received considerable attention over the last two 

decades and various approaches are proposed to solve the 

problem, such as branch-and-bound [28], cutting planes [35], 2-

opt [33], simulated annealing [31], neural network [1,37], and 

tabu search [9, 29]. Some of these methods are exact algorithms, 

while the others are near-optimal or approximate algorithms. 

The exact algorithms include the integer linear programming 

approaches with additional linear constraints to eliminate 

infeasible subtours [25, 27, 30, 34, 36,36]. On the other hand, 

network models yield appropriate methods that are flexible 

enough to include the precedence constraints [28,32]. More 

recently, genetic algorithm (GA) approaches are successfully 

implemented to the TSP [26]. Potvin [35] presents survey of GA 

approaches for the general TSP. 

These researches have provided the birth of several genetic 

mechanisms in particular, the selection, crossover and the 
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mutation operators. In order to resolve the TSP problem, we 

propose in this paper to study empirically the impact affiliation 

of the different crossover operators.Finally we analyze the 

experimental results. 

2. TRAVELING SALESMAN PROBLEM 
The Traveling Salesman Problem (TSP) is one of the most 

intensively studied problems in computational mathematics.In 

the TSP problem, which is closely related to the Hamiltonian 

cycle problem, a salesman must visit n cities. Modeling the 

problem as a complete graph with n vertices, we can say that the 

salesman wishes to make a tour, or Hamiltonian cycle, visiting 

each city exactly once and finishing at the city he starts from [1]. 

Given the cost of travel between all cities, how should he plan 

his itinerary for minimum total cost of the entire tour? 

As a concrete example, consider a delivery company with a 

central depot. Each day, it loads up each delivery truck at the 

depot and sends it around to deliver goods to several addresses. 

At the end of the day, each truck must end up back at the 

depotso that it is ready to be loaded for the next day. To reduce 

costs, the company wants to select an order of delivery stops that 

yields the lowest overall distance traveled by each truck. This 

problem is the well-known “Traveling Salesman Problem,” andit 

is NP-complete [1]. It has no known efficient algorithm. Under 

certain assumptions, however, we know of efficient algorithms 

that give an overall distance which is not too far above the 

smallest possible. 

The search space for the TSP is a set of permutations of n cities. 

Any single permutation of n cities yields a solution (which is a 

complete tour of n cities). The optimal solution is a permutation 

which yields the minimum cost of the tour. The size of the 

search space is n!. 

In other words, a TSP of size V is defined by a set of points v= 

{v1, v2, …,vn} which vi a city marked by coordinates vi.x and 

vi.y where we define a metric distance function f as in (1). A 

solution of TSP problem is a form of scheduling 

T=(T[1],T[2],……,T[n], T[1]) which T[i] is a permutation on 

the set {1, 2, …,V}. The evaluation function calculates the 

adaptation of each solution of the problem by the following 

formula: 

𝑓 =    𝑣𝑖 . 𝑥 − 𝑣𝑖+1. 𝑥 2 +  𝑣𝑖 . 𝑦 − 𝑣𝑖+1. 𝑦 2

𝑛−1

𝑖=1

 

+  (𝑣𝑛 . 𝑥 − 𝑣1. 𝑥)2 + (𝑣𝑛 . 𝑦 − 𝑣1. 𝑦)2(1) 

Where n is the number of cities. 

If d, a distance matrix, is added to the TSP problem, and d(i,j) a 

distance between the city vi and vj (2), hence the cost function f  

(1) can be expressed as follows: 

d(i , j) =   𝑣𝑖 . 𝑥 − 𝑣𝑗 . 𝑥 
2

 +  𝑣𝑖 . 𝑦 − 𝑣𝑗 . 𝑦 
2

(2) 

𝑓(𝑇) =  d(T[i] , T[i + 1])𝑛−1
𝑖=1  +  d(T[n], T[1])   (3) 

 

The mathematical formulation of TSP problem expresses by: 

𝑚𝑖𝑛{𝑓 𝑇 , 𝑇 =  𝑇 1 , 𝑇 2 , …… , 𝑇 𝑛   }        (4) 

 

Which T[i] is a permutation on the set {1, 2, …,V}. 

The travelling salesman problem (TSP) is an NP-hard problem 

in combinatorial optimization studied in operations research and 

theoretical computer science [5].  

Theorem: The subset-sum problem is NP-complete [3]. 

Proof :We first show that TSP belongs to NP. Given an instance 

of the problem, we use as a certificate the sequence of n vertices 

in the tour. The verification algorithm checks that this sequence 

contains each vertex exactly once, sums up the edge costs, and 

checks whether the sum is at most k. This process can certainly 

be done in polynomial time. 

To prove that TSP is NP-hard, we show that HAM-CYCLE ≤ P 

TSP. Let G =(V, E)be an instance of HAM-CYCLE. We 

construct an instance of TSP asfollows. We form the complete 

graph G’ = (V, E’), , whereE’={(i,j) : i, j  V andi ≠j }, and we 

define the cost function c by 

𝑐 𝑖, 𝑗 =   
0  𝑖𝑓 𝑖, 𝑗 𝐸
1  𝑖𝑓 𝑖, 𝑗 𝐸

 (5) 

(Note that because Gis undirected, it has no self-loops, and so 

c(v, v)=1 for all vertices vV.) The instance of TSP is then (G’, 

c, 0), which we can easily create in polynomial time. 

We now show that graph Ghas a Hamiltonian cycle if and only 

if graphG’has atour of cost at most0. Suppose that graphGhas a 

Hamiltonian cycleh. Each edgeinhbelongs toE and thus has 

cost0 in G’. Thus,his a tour inG’with cost0. 

Conversely, suppose that graphG’has a tourh’of cost at most0. 

Since the costsof the edges inE’are0 and1, the cost of tourh’is 

exactly0and each edge on thetour must have cost0. 

Therefore,h’contains only edges inE. We conclude thath’is a 

Hamiltonian cycle in graphG. 

A quick calculation shows that the complexity is O(n!) which n 

is the number of cities (Table. 1). 

Table 1. Number of possibilities and calculation time by the 

number of cities 

Number of 

cities 

Number of 

possibilities 

Computation time 

5 12 12 μs 

10 181440 0,18 ms 

15 43 billions 12 hours 

20 60 E+15 1928 years 

25 310 E+21 9,8 billions of years 

To solve the TSP, there are algorithms in the literature 

deterministic (exact) and approximation algorithms (heuristics). 
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2.1 Deterministic algorithm 
During the last decades, several algorithms emerged to 

approximate the optimal solution: nearest neighbor, greedy 

algorithm, nearest insertion, farthest insertion, double minimum 

spanning tree, strip, space-filling curve and Karp, Litke and 

Christofides algorithm, etc. (some of these algorithms assume 

that the cities correspond to points in the plane under some 

standard metric).  

The TSP can be modeled in a linear programming problem 

under constraints, as follows: 

We associate to each city a number between 1 and V. For each 

pair of cities (i, j), we define cij the transition cost from city i to 

the city j, and the binary variable: 

𝑥𝑖𝑗 =  
1  𝐼𝑓𝑡ℎ𝑒𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑟𝑚𝑜𝑣𝑒𝑠𝑓𝑟𝑜𝑚𝑐𝑖𝑡𝑦𝑖𝑡𝑜𝑐𝑖𝑡𝑦𝑗

0                                                                                    𝑒𝑙𝑠𝑒
 (6) 

So the TSP problem can be formulated as a problem of integer 

linear programming, as follows: 

𝑚𝑖𝑛  𝑐𝑖𝑗  𝑥𝑖𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1                                                         (7) 

Under the following constraints: 

1 −  𝑥𝑖𝑗𝑖 𝑗 = 2, ∀𝑖 ∈ 𝑁 =  1,2,… , 𝑛 (8) 

2 −   𝑥𝑖𝑗𝑗𝑆 ≥ 2 𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑆𝑁𝑖∈𝑆 (9) 

There are several deterministic algorithms; we mention the 

method of separation and evaluation and the method of cutting 

planes. 

The deterministic algorithm used to find the optimal solution, 

but its complexity is exponential order, and it takes a lot of 

memory space and it requires a very high computation time. In 

large size problems, this algorithm cannot be used. 

Because of the complexity of the problem and the limitations of 

the linear programming approach, other approaches are needed. 

2.2 Approximation algorithm 
Many problems of practical significance are NP-complete, yet 

they are too important to abandon merely because we don’t 

know how to find an optimal solution in polynomial time. Even 

if a problem is NP-complete, there may be hope. We have at 

least three ways to get around NP-completeness. First, if the 

actual inputs are small, an algorithm with exponential running 

time may be perfectly satisfactory. Second, we may be able to 

isolate important special cases that we can solve in polynomial 

time. Third, we might come up with approaches to find near-

optimal solutions in polynomial time (either in the worst case or 

the expected case). In practice, near-optimality is often good 

enough. We call an algorithm that returns near-optimal solutions 

an approximation algorithm. 

An approximate algorithm, like the Genetic Algorithms, Ant 

Colony [17] and Tabu Search [9], is a way of dealing with NP-

completeness for optimization problem. This technique does not 

guarantee the best solution. The goal of an approximation 

algorithm is to come as close as possible to the optimum value 

in a reasonable amount of time which is at most polynomial 

time. 

3. GENETIC ALGORITHM 
A genetic algorithm (GA) is one such versatile optimization 

method. Figure 1 shows the optimization process of a GA – the 

two primary operations are mating and mutation. The GA 

combines the best of the last generation through mating, in 

which parameter values are exchanged between parents to form 

offspring. Some of the parameters mutate [6]. The objective 

function then judges the fitness of the new sets of parameters 

and the algorithm iterates until it converges. With these two 

operators, the GA is able to explore the full cost surface in order 

to avoid falling into local minima. At the same time, it exploits 

the best features of the last generation to converge to 

increasingly better parameter sets.  

 
Fig.1. Flowchart of optimization with a genetic algorithm 

GAs are remarkably robust and have been shown to solve 

difficult optimization problems that more traditional methods 

can not. Some of the advantages of GAs include: 

 They are able to optimize disparate variables, whether 

they are inputs to analytic functions, experimental 

data, or numerical model output. 

 They can optimize either real valued, binary variables, 

or integer variables. 

 They can process a large number of variables. 

 They can produce a list of best variables as well as the 

single best solution. 

 They are good at finding a global minimum rather than 

local minima. 

 They can simultaneously sample various portions of a 

cost surface. 

 They are easily adapted to parallel computation. 

Some disadvantages are the lack of viable convergence proofs 

and the fact that they are not known for their speed. As seen 

later in this chapter, speed can be gained by careful choice of 

GA parameters. Although mathematicians are concerned with 

convergence, often scientists and engineers are more interested 

in using a tool to find a better solution than obtained by other 

means. The GA is such a tool. 

These algorithms were modeled on the natural evolution of 

species. We add to this evolution concepts the observed 

properties of genetics (Selection, Crossover, Mutation, etc), 

from which the name Genetic Algorithm. They attracted the 

interest of many researchers, starting with Holland [15], who 

developed the basic principles of genetic algorithm, and 

Goldberg [8] has used these principles to solve a specific 

optimization problems. Other researchers have followed this 

path [10]-[14]. 

Initialize 

population 
Evaluate 

Cost 

Crossover 

Mutation Selection 

Converge? Solution 
Yes 

   No 
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3.1 Principles and Functioning 
Irrespective of the problems treated, genetic algorithms, 

presented in figure (Fig. 1), are based on six principles: 

 Each treated problem has a specific way to encode the 

individuals of the genetic population. A chromosome 

(a particular solution) has different ways of being 

coded: numeric, symbolic, or alphanumeric; 

 Creation of an initial population formed by a finite 

number of solutions; 

 Definition of an evaluation function (fitness) to 

evaluate a solution; 

 Selection mechanism to generate new solutions, used to 

identify individuals in a population that could be 

crossed, there are several methods in the literature, 

citing the method of selection by rank, roulette, by 

tournament, random selection, etc.; 

 Reproduce the new individuals by using Genetic 

operators: 

i. Crossover operator: is a genetic operator that 

combines two chromosomes (parents) to 

produce a new chromosome (children) with 

crossover probability Px ; 

ii. Mutation operator: it avoids establishing a 

uniform population unable to evolve. This 

operator used to modify the genes of a 

chromosome selected with a mutation 

probability Pm; 

 Insertion mechanism: to decide who should stay and 

who should disappear. 

 Stopping test: to make sure about the optimality of the 

solution obtained by the genetic algorithm. 

We presented the various steps which constitute the general 

structure of a genetic algorithm: Coding, method of selection, 

crossover and mutation operator and their probabilities, 

insertion mechanism, and the stopping test. For each of these 

steps, there are several possibilities. The choice between these 

various possibilities allows us to create several variants of 

genetic algorithm. Subsequently, our work focuses on finding a 

solution to that combinative problem: What are the best settings 

which create an efficient genetic variant to solve the Traveling 

Salesman Problem? 

4. APPLIED GENETIC ALGORITHMS 

TO THE TRAVELING SALESMAN 

PROBLEM 

4.1 Problem representation methods 
In this section we will present the most adapted method of data 

representation, the path representation method, with the treated 

problem. 

The path representation is perhaps the most natural 

representation of a tour. A tour is encoded by an array of 

integers representing the successor and predecessor of each city. 

Table 2. Coding of a tour (3, 5, 2, 9, 7, 6, 8, 4) 

 

 

4.2 Generation of the initial population  
The initial population conditions the speed and the convergence 

of the algorithm. For this, we applied several methods to 

generate the initial population: 

 Random generation of the initial population. 

 Generation of the first individual randomly, this one will be 

mutated N-1 times with a mutation operator. 

Generation of the first individual by using a heuristic 

mechanism. The successor of the first city is located at a 

distance smaller compared to the others. Next, we use a 

mutation operator on the route obtained in order to generate (N-

2) other individuals who will constitute the initial population. 

4.3 Selection 
While there are many different types of selection, we will cover 

the most common type - roulette wheel selection. In roulette 

wheel selection, the individuals are given a probability Pi of 

being selected (10) that is directly proportionate to their fitness. 

The algorithm for a roulette wheel selection algorithm is 

illustrated in algorithm (Fig. 3) 

1

N−1
 1 −

fi

 fjj∈Population

 (10) 

Which fi is value of fitness function for the individual i. 

 
Fig.2. Roulette wheel selection algorithm  

Thus, individuals who have low values of the fitness function 

may have a high chance of being selected among the individuals 

to cross. 

4.4 Crossover Operator 
The search of the solution space is done by creating new 

chromosomes from old ones. The most important search process 

is crossover. Firstly, a pair of parents is randomly selected from 

the mating pool. Secondly, a point, called crossover site, along 

their common length is randomly selected, and the information 

after the crossover site of the two parent strings are swapped, 

thus creating two new children. Of course, this basic crossover 

method does not support for the TSP [18]. The two newborn 

chromosomes may be better than their parents and the evolution 

process may continue. The crossover in carried out according to 

the crossover probability Px.In this paper, we chose five 

crossover operators; we will explain their ways of proceeding in 

the following. 

3 5 2 9 7 6 8 4 

for all members of population 

sum += fitness of this individual 

endfor 
 

for all members of population 
probability = sum of probabilities + (fitness / sum) 

sum of probabilities += probability 

endfor 
 

number = Random between 0 and 1 

for all members of population 
if number > probability but less than next probability  

then you have been selected 

endfor 
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4.4.1 Uniform crossover operator 
The child is formed by a alternating randomly between the two 

parents. 

4.4.2 Cycle Crossover 
The Cycle Crossover (CX) proposed by Oliver [15] builds 

offspring in such a way that each city (and its position) comes 

from one of the parents. We explain the mechanism of the cycle 

crossover using the following algorithm (Fig.3). 

Table 3. Cycle Crossover operator 

Parent 1   Child 1 

1 2 3 4 5 6 7  4 2 1 3 5 6 7 

      * 
  (G.XP.1) 
 
(G.XP.2) 

      * 
 

 

7 5 1 3 2 6 4  1 5 3 4 2 6 7 

Parent 1   Child 2 

 

 

Fig.3. Cycle Crossover (CX) algorithm 

4.4.3 Partially-Mapped Crossover (PMX) 
Partially matched crossover PMX noted, introduced by 

Goldberg and Lingel [19], is made by randomly choosing two 

crossover points XP1 and XP2 which break the two parents in 

three sections. 

Table 4. The partition of a parent 

 

S1 and S3 the sequences of Parent1 are copied to the Child1, the 

sequence S2 of the Child1 is formed by the genes of Parent2, 

beginning with the start of its part S2 and leaping the genes that 

are already established. The algorithm (Fig.4) shows the 

crossover method PMX. 

Table 5. Example of PMX operator 

Parent 1     Child 1 

3 5 1 4 7 6 2 8  3 4 5 1 8 6 2 7 

 
 

 

 
 

4 6 5 1 8 3 2 7  1 6 4 5 7 3 2 8 

Parent 2     Child 2 

 

Fig.4. PMXCrossover Algorithm 

4.4.4 The uniform partially-mapped crossover 

(UPMX) 
The Uniform Partially Matched Crossover presented by 

Cicirello and Smith [21], uses the technique of PMX. Any times, 

it does not use the crossover points; instead, it uses a probability 

of correspondence for each iteration. The algorithm (Fig.5) and 

the following example describe this crossover method. 

Table 6. UPMX operator example 

Parent 1     Child 1 

3 5 1 4 7 6 2 8  5 6 1 4 8 3 2 7 

 
 

 

 
 

4 6 5 1 8 3 2 7  4 3 6 1 7 5 2 8 

Parent 2     Child 2 

 

Fig.5. Algorithm of UPMXCrossover  

S1 S2 S3 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 
------------------------------------------------------------------------------------ 

Initialize 

 y1 = x1 and y2 = x2; 

 Initialize p1 and p2 the position of each index in y1 and y2; 

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 
 
For each i between 1 and n do 

Chose a random number q between 0 and 1; 

if q ≥ p then 

t1 = y1,i      and    t2 = y2,i ; 

y1,i = t2         and    y1,p1,t1 = t1 ; 

y2,i = t1      and    y2,p2,t2 = t2 ; 

p1,t1= p1,t2 and    p1,t2 = p1,t1 ; 

p2,t1 = p2,t2 and    p2,t2 = p2,t1 ; 

endif 

endfor 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 
Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 

------------------------------------------------------------------------------------ 

Initialize 

 y1 = x1 and y2 = x2; 

 Initialize p1 and p2 the position of each index in y1 and y2; 

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 

 
for each i between a and b do 

t1 = y1,i      and    t2 = y2,i ; 

y1,i = t2         and    y1,p1,t1 = t1 ; 

y2,i = t1      and    y2,p2,t2 = t2 ;  

p1,t1= p1,t2  and    p1,t2 = p1,t1 ; 

p2,t1 = p2,t2  and    p2,t2 = p2,t1 ; 

endfor 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 
------------------------------------------------------------------------------------ 

Initialize 

 Initialize y1 and y2 being a empty genotypes; 
 

y1,1= x1,1; 
y2,1 = x2,1; 

i = 1; 

Repeat  

j ← Index where we find x2,i, in X1; 

y1,j = x1,j ; 

 y2,j = x2,j ; 

i = j; 

Until   x2,i y1 

 

For each gene not yet initialized do 

 y1,i = x2,i; 

 y2,i = x1,i; 

Endfor 
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4.4.5 Non-Wrapping Ordered Crossover (NWOX) 
Non-Wrapping Ordered Crossover (NWOX) operator 

introduced by Cicirello [20], is based upon the principle of 

creating and filling holes, while keeping the absolute order of 

genes of individuals. The holes are created at the retranscription 

of the genotype, if xj,i {xk,a, . . . ,xk,b}then xj,i is a hole. The 

example (Table.7) and the algorithm (Fig.6) explain this 

technique: 

Table 7. NWOX operator example 

Parent 1     Child 1 

3 5 1 4 7 6 2 8  3 4 5 1 8 7 6 2 

 
 

 

 
 

4 6 5 1 8 3 2 7  6 5 1 4 7 8 3 2 

Parent 2     Child 2 

 

Fig 6.Algorithm of NWOXcrossover operator 

4.4.6 Ordered Crossover (OX) 
The Ordered Crossover method is presented by Goldberg[8], is 

used when the problem is of order based, for example in U-

shaped assembly line balancing etc. Given two parent 

chromosomes, two random crossover points are selected 

partitioning them into a left, middle and right portion. The 

ordered two-point crossover behaves in the following way: 

child1 inherits its left and right section from parent1, and its 

middle section is determined. 

Table 8. OX operator example 

Parent 1     Child 1 

3 5 1 4 7 6 2 8  4 7 5 1 8 6 2 3 

 
 

 

 
 

4 6 5 1 8 3 2 7  5 8 1 4 7 3 2 6 

Parent 2     Child 2 

 

 

Fig 7. Algorithm of Crossover operator OX 

4.4.7 Crossover with reduced surrogate 
The reduced surrogate operator constrains crossover to always 

produce new individuals wherever possible. This is implemented 

by restricting the location of crossover points such that 

crossover points only occur where gene values differ. 

4.4.8 Shuffle crossover 
Shuffle crossover is related to uniform crossover. A single 

crossover position (as in single-point crossover) is selected. But 

before the variables are exchanged, they are randomly shuffled 

in both parents. After recombination, the variables in the 

offspring are unstuffed. This removes positional bias as the 

variables are randomly reassigned each time crossover is 

performed. 

4.5 Mutation Operators 
The two individuals (children) resulting from each crossover 

operation will now be subjected to the mutation operator in the 

final step to forming the new generation. This operator randomly 

flips or alters one or more bit values at randomly selected 

locations in a chromosome.  

The mutation operator enhances the ability of the GA to find a 

near optimal solution to a given problem by maintaining a 

sufficient level of genetic variety in the population, which is 

needed to make sure that the entire solution space is used in the 

search for the best solution. In a sense, it serves as an insurance 

policy; it helps prevent the loss of genetic material. 

In this study, we chose as mutation operator the Mutation 

methodReverse Sequence Mutation (RSM). 

In the reverse sequence mutation operator, we take a sequence S 

limited by two positions i and j randomly chosen, such that i<j. 

The gene order in this sequence will be reversed by the same 

way as what has been covered in the previous operation. The 

algorithm (Fig. 8) shows the implementation of this mutation 

operator. 

Table 9.Mutation operator RSM 

  *   *         

Parent 1 2 3 4 5 6 Child 1 5 4 3 2 6 

 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 

------------------------------------------------------------------------------------ 

Initialize 

 Initialize y1 and y2 being a empty genotypes; 

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 
j1 = j2 = k = b+1; 

 

i = 1; 

Repeat 

if  x1,i {x2,a, . . . ,x2,b}  then  y1,j1 = x1,k ;j1++; 

if  x2,i {x1,a, . . . ,x1,b}  theny2,j1 = x2,k ;j2++; 
k=k+1; 

Until i ≤ n 

 
y1 = [y1,1 ……y1,a−1 x2,a  ……x2,b y1,a  ……y1,n−a]; 

 y2 = [y2,1 ……y2,a−1 x1,a  ……x1,b y2,a  ……y2,n−a]; 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 
------------------------------------------------------------------------------------ 

Initialize 

 Initialize y1 and y2 being a empty genotypes; 

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 

y1,1= x1,1; 
y2,1 = x2,1; 

i = 1; 

 

for each i between a and n do 

ifx1,i {x2,a, . . . ,x2,b} then y1 = [y1 x1,i] ; 

ifx2,i {x1,a, . . . ,x1,b} then y2 = [y2 x2,i] ; 

endfor 

 

y1 = [y1,1 ……y1,a−1 x2,a  ……x2,b y1,a  ……y1,n−a]; 

y2 = [y2,1  ……y2,a−1 x1,a  ……x1,b y2,a  ……y2,n−a]; 
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Fig.8. Algorithm of RSM operator  

4.6 Insertion Method 
We used the method of inserting elitism that consists in copy the 

best chromosome from the old to the new population. This is 

supplemented by the solutions resulting from operations of 

crossover and mutation, in ensuring that the population size 

remains fixed from one generation to another. 

We would also like to note that the GAs without elitism can also 

be modeled as a Markov chain and Davis and Principe [38] 

proved their convergence to the limiting distributions under 

some conditions on the mutation probabilities [16].  However, it 

does not guarantee the convergence to the global optimum. With 

the introduction of elitism or by keeping the best string in the 

population allows us to show the convergence of the GA to the 

global optimal solution starting from any arbitrary initial 

population.  

5. NUMERICAL RESULTS AND 

DISCUSSION 
Traveler Salesman Problem (TSP) is one the most famous 

problems in the field of operation research and optimization [1]. 

We use as a test of TSP problem the BERLIN52, witch has52 

locations in the city of Berlin (Fig. 9). The only optimization 

criterion is the distance to complete the journey. The optimal 

solution to this problem is known, it's 7542 m (Fig. 10). 

 
Fig.9. The 52 locations in the Berlin city 

 

Fig.10. The optimal solution of Berlin52 

5.1 Environment 
The operators of the genetic algorithm and its different 

modalities, which will be used later, are grouped together in the 

next table (Table 10): 

Table 10. The operators used 

Crossover operators OX ; NWOX ; PMX ; UPMX ; CX 

Probability of crossover 
1; 0.9 ; 0.8 ; 0.7 ; 0.6 ; 0.5 ; 0.4 ; 0.3 ; 

0.2 ; 0.1 ; 0 

Mutation operator PSM ; RSM 

Mutation probability 
1; 0.9 ; 0.8 ; 0.7 ; 0.6 ; 0.5 ; 0.4 ; 0.3 ; 

0.2 ; 0.1 ; 0 

 
We change at a time one parameter and we set the others and we 

execute the genetic algorithm fifty times. The programming was 

done in C++ on a PC machine with Core2Quad 2.4GHz in CPU 

and 2GB in RAM with a CentOS 5.5 Linux as an operating 

system.  

5.2 Results and Discussion 
To compare statistically the operators, these are tested one by 

one on 50 different initial populations after that those 

populations are reused for each operator. 

 

Fig.11. Evolutionary algorithm 

To compare statistically the operators, these are tested one by 

one on 50 different initial populations after that those 

populations are reused for each operator. In the case of the 

comparison of crossover operators, the evolutionary algorithm is 

presented in Figure 11 which the operator of variation is given 

Generate the initial population P0 
i = 0 

Repeat   

P’i = Variation (Pi); 
Evaluate (P’i); 

Pi+1 = Selection ([P’i, Pi]); 

Until i<Itr 

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n] 

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n] 
------------------------------------------------------------------------------------ 

Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 

Repeat  
Permute (xa, xb); 

a = a + 1; 

b = b − 1; 

until  a<b 
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by the crossover algorithms and the selection is made by 

Roulette for choosing the shortest route. 

Figure 12 shows the statistics of the experiments relating to the 

operators of crossover. It is interesting to note that the OX 

operator has not yet reached its shelf of evolution while the 

NWOX operator is on the quasi-shelf.  

In addition, on average, NWOX does not always produce similar 

results, its standard deviation of the best of final individuals on 

50 different initial populations is higher than all other operators, 

we can conclude that this operator is more much influenced by 

the initial population than its competitors.  

 

Fig.12. Comparison of the crossover operators 

6. CONCLUSION 
In this paper, the solution recombination, i.e. crossover operators 

in the context of the traveling salesman problem are discussed. 

These operators are known as playing an important role by 

developing robust genetic algorithms.  

We implemented six different crossover procedures and their 

modifications in order to test the influence of the recombination 

operators to the genetic search process when applied to the 

traveling salesman problem. The following crossover operators 

have been used in the experimentation: the Uniform Crossover 

Operator (UXO), the Cycle Crossover (CX), the Partially-

Mapped Crossover (PMX), the Uniform Partially-Mapped 

Crossover (UPMX), the Non-Wrapping Ordered Crossover 

(NWOX) and the Ordered Crossover (OX). The obtainedresults 

with BERLIN52,as a test instance of the TSP, show high 

performance of the crossover operators based on the creating 

and filling holes. The best known solution for the TSP instance 

BERLIN52 was obtained by using the OX operator.  

According to thecomparative study of the crossover operators 

mentioned, the development of innovative crossover operators 

for the traveling salesman problem may be the subject of the 

future research. 
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