
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

49

A Comparative Study of Adaptive Crossover

Operators for Genetic Algorithms to Resolve the

Traveling Salesman Problem

ABDOUN Otman

LaRIT, Department of Computer Science
IBN Tofail University, Kenitra, Morocco

ABOUCHABAKA Jaafar
LaRIT, Department of Computer Science
IBN Tofail University, Kenitra, Morocco

ABSTRACT

Genetic algorithm includes some parameters that should be

adjusting so that the algorithm can provide positive results.

Crossover operators play very important role by constructing

competitive Genetic Algorithms (GAs). In this paper, the basic

conceptual features and specific characteristics of various

crossover operators in the context of the Traveling Salesman

Problem (TSP) are discussed. The results of experimental

comparison of more than six different crossover operators for

the TSP are presented. The experiment results show that OX

operator enables to achieve a better solutions than other

operators tested.

Keywords

Travelers Salesman Problem, Genetic Algorithm, NP-Hard

Problem, Crossover Operator, probability of crossover, Genetic

Algorithm,

1. INTRODUCTION
This section introduces the current scientific understanding of

the natural selection process with the purpose of gaining an

insight into the construction, application, and terminology of

genetic algorithms. Natural selection –evolution- is discussed in

many texts and treatises, and one of its first proponents, Charles

Darwin.His theory of evolution was based on four primary

premises [7]. First, like begets like; equivalently, an offspring

has many of the characteristics of its parents. This premise

implies that the population is stable. Second, there are variations

in characteristics between individuals that can be passed from

one generation to the next. The third premise is that only a small

percentage of the offspring produced survive to adulthood.

Finally, which of the offspring survive depends on their

inherited characteristics. These premises combine to produce the

theory of natural selection. In modern evolutionary theory an

understanding of genetics adds impetus to the explanation of the

stages of natural selection.

Another set of biologically-inspired methods are Genetic

Algorithms (GAs). They derive their inspiration from combining

the concept of genetic recombination with the theory of

evolution and survival of the fittest members of a population [5].

Starting from a random set of candidate parameters, the learning

process devises better and better approximations to the optimal

parameters. The GA is primarily a search and optimization

technique. One can, however, pose nearly any practical problem

as one of optimization, including many environmental modeling

problems. To configure a problem for GA solution requires that

the modeler not only choose the representation methodology,

but also the cost function that judges the model’s soundness.

The genetic algorithm is a one of the family of evolutionary

algorithms. The population of a genetic algorithm (GA) evolves

by using genetic operators inspired by the evolutionary in

biology, "The survival is the individual most suitable to the

environment". Darwin discovered that species evolution based

on two components: the selection and reproduction. The

selection provides a reproduction of the strongest and more

robust individuals, while the reproduction is a phase in which

the evolution run.

Genetic algorithms are powerful methods of optimization used

successfully in different problems. Their performance is

depending on the encoding scheme and the choice of genetic

operators especially, the selection, crossover and mutation

operators. A variety of these latest operators have been

suggested in the previous researches. In particular, several

crossover operators have been developed and adapted to the

permutation presentations that can be used in a large variety of

combinatorial optimization problems. In this area, a typical

example of the most studied problems is the Traveling Salesman

Problem (TSP).

The traveling salesman problem (TSP) is a classical problem of

combinatorial optimization of Operations Research’s area. The

purpose is to find a minimum total cost Hamiltonian cycle [22].

There are several practical uses for this problem, such as vehicle

routing (with the additional constraints of vehicle’s route, such

as capacity’s vehicles) [23] and drilling problems [24].

The TSP has received considerable attention over the last two

decades and various approaches are proposed to solve the

problem, such as branch-and-bound [28], cutting planes [35], 2-

opt [33], simulated annealing [31], neural network [1,37], and

tabu search [9, 29]. Some of these methods are exact algorithms,

while the others are near-optimal or approximate algorithms.

The exact algorithms include the integer linear programming

approaches with additional linear constraints to eliminate

infeasible subtours [25, 27, 30, 34, 36,36]. On the other hand,

network models yield appropriate methods that are flexible

enough to include the precedence constraints [28,32]. More

recently, genetic algorithm (GA) approaches are successfully

implemented to the TSP [26]. Potvin [35] presents survey of GA

approaches for the general TSP.

These researches have provided the birth of several genetic

mechanisms in particular, the selection, crossover and the

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

50

mutation operators. In order to resolve the TSP problem, we

propose in this paper to study empirically the impact affiliation

of the different crossover operators.Finally we analyze the

experimental results.

2. TRAVELING SALESMAN PROBLEM
The Traveling Salesman Problem (TSP) is one of the most

intensively studied problems in computational mathematics.In

the TSP problem, which is closely related to the Hamiltonian

cycle problem, a salesman must visit n cities. Modeling the

problem as a complete graph with n vertices, we can say that the

salesman wishes to make a tour, or Hamiltonian cycle, visiting

each city exactly once and finishing at the city he starts from [1].

Given the cost of travel between all cities, how should he plan

his itinerary for minimum total cost of the entire tour?

As a concrete example, consider a delivery company with a

central depot. Each day, it loads up each delivery truck at the

depot and sends it around to deliver goods to several addresses.

At the end of the day, each truck must end up back at the

depotso that it is ready to be loaded for the next day. To reduce

costs, the company wants to select an order of delivery stops that

yields the lowest overall distance traveled by each truck. This

problem is the well-known “Traveling Salesman Problem,” andit

is NP-complete [1]. It has no known efficient algorithm. Under

certain assumptions, however, we know of efficient algorithms

that give an overall distance which is not too far above the

smallest possible.

The search space for the TSP is a set of permutations of n cities.

Any single permutation of n cities yields a solution (which is a

complete tour of n cities). The optimal solution is a permutation

which yields the minimum cost of the tour. The size of the

search space is n!.

In other words, a TSP of size V is defined by a set of points v=

{v1, v2, …,vn} which vi a city marked by coordinates vi.x and

vi.y where we define a metric distance function f as in (1). A

solution of TSP problem is a form of scheduling

T=(T[1],T[2],……,T[n], T[1]) which T[i] is a permutation on

the set {1, 2, …,V}. The evaluation function calculates the

adaptation of each solution of the problem by the following

formula:

𝑓 = 𝑣𝑖 . 𝑥 − 𝑣𝑖+1. 𝑥 2 + 𝑣𝑖 . 𝑦 − 𝑣𝑖+1. 𝑦 2

𝑛−1

𝑖=1

+ (𝑣𝑛 . 𝑥 − 𝑣1. 𝑥)2 + (𝑣𝑛 . 𝑦 − 𝑣1. 𝑦)2(1)

Where n is the number of cities.

If d, a distance matrix, is added to the TSP problem, and d(i,j) a

distance between the city vi and vj (2), hence the cost function f

(1) can be expressed as follows:

d(i , j) = 𝑣𝑖 . 𝑥 − 𝑣𝑗 . 𝑥
2

 + 𝑣𝑖 . 𝑦 − 𝑣𝑗 . 𝑦
2

(2)

𝑓(𝑇) = d(T[i] , T[i + 1])𝑛−1
𝑖=1 + d(T[n], T[1]) (3)

The mathematical formulation of TSP problem expresses by:

𝑚𝑖𝑛{𝑓 𝑇 , 𝑇 = 𝑇 1 , 𝑇 2 , …… , 𝑇 𝑛 } (4)

Which T[i] is a permutation on the set {1, 2, …,V}.

The travelling salesman problem (TSP) is an NP-hard problem

in combinatorial optimization studied in operations research and

theoretical computer science [5].

Theorem: The subset-sum problem is NP-complete [3].

Proof :We first show that TSP belongs to NP. Given an instance

of the problem, we use as a certificate the sequence of n vertices

in the tour. The verification algorithm checks that this sequence

contains each vertex exactly once, sums up the edge costs, and

checks whether the sum is at most k. This process can certainly

be done in polynomial time.

To prove that TSP is NP-hard, we show that HAM-CYCLE ≤ P

TSP. Let G =(V, E)be an instance of HAM-CYCLE. We

construct an instance of TSP asfollows. We form the complete

graph G’ = (V, E’), , whereE’={(i,j) : i, j  V andi ≠j }, and we

define the cost function c by

𝑐 𝑖, 𝑗 =
0 𝑖𝑓 𝑖, 𝑗 𝐸
1 𝑖𝑓 𝑖, 𝑗 𝐸

 (5)

(Note that because Gis undirected, it has no self-loops, and so

c(v, v)=1 for all vertices vV.) The instance of TSP is then (G’,

c, 0), which we can easily create in polynomial time.

We now show that graph Ghas a Hamiltonian cycle if and only

if graphG’has atour of cost at most0. Suppose that graphGhas a

Hamiltonian cycleh. Each edgeinhbelongs toE and thus has

cost0 in G’. Thus,his a tour inG’with cost0.

Conversely, suppose that graphG’has a tourh’of cost at most0.

Since the costsof the edges inE’are0 and1, the cost of tourh’is

exactly0and each edge on thetour must have cost0.

Therefore,h’contains only edges inE. We conclude thath’is a

Hamiltonian cycle in graphG.

A quick calculation shows that the complexity is O(n!) which n

is the number of cities (Table. 1).

Table 1. Number of possibilities and calculation time by the

number of cities

Number of

cities

Number of

possibilities

Computation time

5 12 12 μs

10 181440 0,18 ms

15 43 billions 12 hours

20 60 E+15 1928 years

25 310 E+21 9,8 billions of years

To solve the TSP, there are algorithms in the literature

deterministic (exact) and approximation algorithms (heuristics).

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

51

2.1 Deterministic algorithm
During the last decades, several algorithms emerged to

approximate the optimal solution: nearest neighbor, greedy

algorithm, nearest insertion, farthest insertion, double minimum

spanning tree, strip, space-filling curve and Karp, Litke and

Christofides algorithm, etc. (some of these algorithms assume

that the cities correspond to points in the plane under some

standard metric).

The TSP can be modeled in a linear programming problem

under constraints, as follows:

We associate to each city a number between 1 and V. For each

pair of cities (i, j), we define cij the transition cost from city i to

the city j, and the binary variable:

𝑥𝑖𝑗 =
1 𝐼𝑓𝑡ℎ𝑒𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑟𝑚𝑜𝑣𝑒𝑠𝑓𝑟𝑜𝑚𝑐𝑖𝑡𝑦𝑖𝑡𝑜𝑐𝑖𝑡𝑦𝑗

0 𝑒𝑙𝑠𝑒
 (6)

So the TSP problem can be formulated as a problem of integer

linear programming, as follows:

𝑚𝑖𝑛 𝑐𝑖𝑗 𝑥𝑖𝑗
𝑖−1
𝑗=1

𝑛
𝑖=1 (7)

Under the following constraints:

1 − 𝑥𝑖𝑗𝑖 𝑗 = 2, ∀𝑖 ∈ 𝑁 = 1,2,… , 𝑛 (8)

2 − 𝑥𝑖𝑗𝑗𝑆 ≥ 2 𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑆𝑁𝑖∈𝑆 (9)

There are several deterministic algorithms; we mention the

method of separation and evaluation and the method of cutting

planes.

The deterministic algorithm used to find the optimal solution,

but its complexity is exponential order, and it takes a lot of

memory space and it requires a very high computation time. In

large size problems, this algorithm cannot be used.

Because of the complexity of the problem and the limitations of

the linear programming approach, other approaches are needed.

2.2 Approximation algorithm
Many problems of practical significance are NP-complete, yet

they are too important to abandon merely because we don’t

know how to find an optimal solution in polynomial time. Even

if a problem is NP-complete, there may be hope. We have at

least three ways to get around NP-completeness. First, if the

actual inputs are small, an algorithm with exponential running

time may be perfectly satisfactory. Second, we may be able to

isolate important special cases that we can solve in polynomial

time. Third, we might come up with approaches to find near-

optimal solutions in polynomial time (either in the worst case or

the expected case). In practice, near-optimality is often good

enough. We call an algorithm that returns near-optimal solutions

an approximation algorithm.

An approximate algorithm, like the Genetic Algorithms, Ant

Colony [17] and Tabu Search [9], is a way of dealing with NP-

completeness for optimization problem. This technique does not

guarantee the best solution. The goal of an approximation

algorithm is to come as close as possible to the optimum value

in a reasonable amount of time which is at most polynomial

time.

3. GENETIC ALGORITHM
A genetic algorithm (GA) is one such versatile optimization

method. Figure 1 shows the optimization process of a GA – the

two primary operations are mating and mutation. The GA

combines the best of the last generation through mating, in

which parameter values are exchanged between parents to form

offspring. Some of the parameters mutate [6]. The objective

function then judges the fitness of the new sets of parameters

and the algorithm iterates until it converges. With these two

operators, the GA is able to explore the full cost surface in order

to avoid falling into local minima. At the same time, it exploits

the best features of the last generation to converge to

increasingly better parameter sets.

Fig.1. Flowchart of optimization with a genetic algorithm

GAs are remarkably robust and have been shown to solve

difficult optimization problems that more traditional methods

can not. Some of the advantages of GAs include:

 They are able to optimize disparate variables, whether

they are inputs to analytic functions, experimental

data, or numerical model output.

 They can optimize either real valued, binary variables,

or integer variables.

 They can process a large number of variables.

 They can produce a list of best variables as well as the

single best solution.

 They are good at finding a global minimum rather than

local minima.

 They can simultaneously sample various portions of a

cost surface.

 They are easily adapted to parallel computation.

Some disadvantages are the lack of viable convergence proofs

and the fact that they are not known for their speed. As seen

later in this chapter, speed can be gained by careful choice of

GA parameters. Although mathematicians are concerned with

convergence, often scientists and engineers are more interested

in using a tool to find a better solution than obtained by other

means. The GA is such a tool.

These algorithms were modeled on the natural evolution of

species. We add to this evolution concepts the observed

properties of genetics (Selection, Crossover, Mutation, etc),

from which the name Genetic Algorithm. They attracted the

interest of many researchers, starting with Holland [15], who

developed the basic principles of genetic algorithm, and

Goldberg [8] has used these principles to solve a specific

optimization problems. Other researchers have followed this

path [10]-[14].

Initialize

population
Evaluate

Cost

Crossover

Mutation Selection

Converge? Solution
Yes

 No

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

52

3.1 Principles and Functioning
Irrespective of the problems treated, genetic algorithms,

presented in figure (Fig. 1), are based on six principles:

 Each treated problem has a specific way to encode the

individuals of the genetic population. A chromosome

(a particular solution) has different ways of being

coded: numeric, symbolic, or alphanumeric;

 Creation of an initial population formed by a finite

number of solutions;

 Definition of an evaluation function (fitness) to

evaluate a solution;

 Selection mechanism to generate new solutions, used to

identify individuals in a population that could be

crossed, there are several methods in the literature,

citing the method of selection by rank, roulette, by

tournament, random selection, etc.;

 Reproduce the new individuals by using Genetic

operators:

i. Crossover operator: is a genetic operator that

combines two chromosomes (parents) to

produce a new chromosome (children) with

crossover probability Px ;

ii. Mutation operator: it avoids establishing a

uniform population unable to evolve. This

operator used to modify the genes of a

chromosome selected with a mutation

probability Pm;

 Insertion mechanism: to decide who should stay and

who should disappear.

 Stopping test: to make sure about the optimality of the

solution obtained by the genetic algorithm.

We presented the various steps which constitute the general

structure of a genetic algorithm: Coding, method of selection,

crossover and mutation operator and their probabilities,

insertion mechanism, and the stopping test. For each of these

steps, there are several possibilities. The choice between these

various possibilities allows us to create several variants of

genetic algorithm. Subsequently, our work focuses on finding a

solution to that combinative problem: What are the best settings

which create an efficient genetic variant to solve the Traveling

Salesman Problem?

4. APPLIED GENETIC ALGORITHMS

TO THE TRAVELING SALESMAN

PROBLEM

4.1 Problem representation methods
In this section we will present the most adapted method of data

representation, the path representation method, with the treated

problem.

The path representation is perhaps the most natural

representation of a tour. A tour is encoded by an array of

integers representing the successor and predecessor of each city.

Table 2. Coding of a tour (3, 5, 2, 9, 7, 6, 8, 4)

4.2 Generation of the initial population
The initial population conditions the speed and the convergence

of the algorithm. For this, we applied several methods to

generate the initial population:

 Random generation of the initial population.

 Generation of the first individual randomly, this one will be

mutated N-1 times with a mutation operator.

Generation of the first individual by using a heuristic

mechanism. The successor of the first city is located at a

distance smaller compared to the others. Next, we use a

mutation operator on the route obtained in order to generate (N-

2) other individuals who will constitute the initial population.

4.3 Selection
While there are many different types of selection, we will cover

the most common type - roulette wheel selection. In roulette

wheel selection, the individuals are given a probability Pi of

being selected (10) that is directly proportionate to their fitness.

The algorithm for a roulette wheel selection algorithm is

illustrated in algorithm (Fig. 3)

1

N−1
 1 −

fi

 fjj∈Population

 (10)

Which fi is value of fitness function for the individual i.

Fig.2. Roulette wheel selection algorithm

Thus, individuals who have low values of the fitness function

may have a high chance of being selected among the individuals

to cross.

4.4 Crossover Operator
The search of the solution space is done by creating new

chromosomes from old ones. The most important search process

is crossover. Firstly, a pair of parents is randomly selected from

the mating pool. Secondly, a point, called crossover site, along

their common length is randomly selected, and the information

after the crossover site of the two parent strings are swapped,

thus creating two new children. Of course, this basic crossover

method does not support for the TSP [18]. The two newborn

chromosomes may be better than their parents and the evolution

process may continue. The crossover in carried out according to

the crossover probability Px.In this paper, we chose five

crossover operators; we will explain their ways of proceeding in

the following.

3 5 2 9 7 6 8 4

for all members of population

sum += fitness of this individual

endfor

for all members of population
probability = sum of probabilities + (fitness / sum)

sum of probabilities += probability

endfor

number = Random between 0 and 1

for all members of population
if number > probability but less than next probability

then you have been selected

endfor

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

53

4.4.1 Uniform crossover operator
The child is formed by a alternating randomly between the two

parents.

4.4.2 Cycle Crossover
The Cycle Crossover (CX) proposed by Oliver [15] builds

offspring in such a way that each city (and its position) comes

from one of the parents. We explain the mechanism of the cycle

crossover using the following algorithm (Fig.3).

Table 3. Cycle Crossover operator

Parent 1 Child 1

1 2 3 4 5 6 7 4 2 1 3 5 6 7

 *
 (G.XP.1)

(G.XP.2)

 *

7 5 1 3 2 6 4 1 5 3 4 2 6 7

Parent 1 Child 2

Fig.3. Cycle Crossover (CX) algorithm

4.4.3 Partially-Mapped Crossover (PMX)
Partially matched crossover PMX noted, introduced by

Goldberg and Lingel [19], is made by randomly choosing two

crossover points XP1 and XP2 which break the two parents in

three sections.

Table 4. The partition of a parent

S1 and S3 the sequences of Parent1 are copied to the Child1, the

sequence S2 of the Child1 is formed by the genes of Parent2,

beginning with the start of its part S2 and leaping the genes that

are already established. The algorithm (Fig.4) shows the

crossover method PMX.

Table 5. Example of PMX operator

Parent 1 Child 1

3 5 1 4 7 6 2 8 3 4 5 1 8 6 2 7

4 6 5 1 8 3 2 7 1 6 4 5 7 3 2 8

Parent 2 Child 2

Fig.4. PMXCrossover Algorithm

4.4.4 The uniform partially-mapped crossover

(UPMX)
The Uniform Partially Matched Crossover presented by

Cicirello and Smith [21], uses the technique of PMX. Any times,

it does not use the crossover points; instead, it uses a probability

of correspondence for each iteration. The algorithm (Fig.5) and

the following example describe this crossover method.

Table 6. UPMX operator example

Parent 1 Child 1

3 5 1 4 7 6 2 8 5 6 1 4 8 3 2 7

4 6 5 1 8 3 2 7 4 3 6 1 7 5 2 8

Parent 2 Child 2

Fig.5. Algorithm of UPMXCrossover

S1 S2 S3

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]
--

Initialize

 y1 = x1 and y2 = x2;

 Initialize p1 and p2 the position of each index in y1 and y2;

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n;

For each i between 1 and n do

Chose a random number q between 0 and 1;

if q ≥ p then

t1 = y1,i and t2 = y2,i ;

y1,i = t2 and y1,p1,t1 = t1 ;

y2,i = t1 and y2,p2,t2 = t2 ;

p1,t1= p1,t2 and p1,t2 = p1,t1 ;

p2,t1 = p2,t2 and p2,t2 = p2,t1 ;

endif

endfor

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]
Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]

--

Initialize

 y1 = x1 and y2 = x2;

 Initialize p1 and p2 the position of each index in y1 and y2;

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n;

for each i between a and b do

t1 = y1,i and t2 = y2,i ;

y1,i = t2 and y1,p1,t1 = t1 ;

y2,i = t1 and y2,p2,t2 = t2 ;

p1,t1= p1,t2 and p1,t2 = p1,t1 ;

p2,t1 = p2,t2 and p2,t2 = p2,t1 ;

endfor

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]
--

Initialize

 Initialize y1 and y2 being a empty genotypes;

y1,1= x1,1;
y2,1 = x2,1;

i = 1;

Repeat

j ← Index where we find x2,i, in X1;

y1,j = x1,j ;

 y2,j = x2,j ;

i = j;

Until x2,i y1

For each gene not yet initialized do

 y1,i = x2,i;

 y2,i = x1,i;

Endfor

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

54

4.4.5 Non-Wrapping Ordered Crossover (NWOX)
Non-Wrapping Ordered Crossover (NWOX) operator

introduced by Cicirello [20], is based upon the principle of

creating and filling holes, while keeping the absolute order of

genes of individuals. The holes are created at the retranscription

of the genotype, if xj,i {xk,a, . . . ,xk,b}then xj,i is a hole. The

example (Table.7) and the algorithm (Fig.6) explain this

technique:

Table 7. NWOX operator example

Parent 1 Child 1

3 5 1 4 7 6 2 8 3 4 5 1 8 7 6 2

4 6 5 1 8 3 2 7 6 5 1 4 7 8 3 2

Parent 2 Child 2

Fig 6.Algorithm of NWOXcrossover operator

4.4.6 Ordered Crossover (OX)
The Ordered Crossover method is presented by Goldberg[8], is

used when the problem is of order based, for example in U-

shaped assembly line balancing etc. Given two parent

chromosomes, two random crossover points are selected

partitioning them into a left, middle and right portion. The

ordered two-point crossover behaves in the following way:

child1 inherits its left and right section from parent1, and its

middle section is determined.

Table 8. OX operator example

Parent 1 Child 1

3 5 1 4 7 6 2 8 4 7 5 1 8 6 2 3

4 6 5 1 8 3 2 7 5 8 1 4 7 3 2 6

Parent 2 Child 2

Fig 7. Algorithm of Crossover operator OX

4.4.7 Crossover with reduced surrogate
The reduced surrogate operator constrains crossover to always

produce new individuals wherever possible. This is implemented

by restricting the location of crossover points such that

crossover points only occur where gene values differ.

4.4.8 Shuffle crossover
Shuffle crossover is related to uniform crossover. A single

crossover position (as in single-point crossover) is selected. But

before the variables are exchanged, they are randomly shuffled

in both parents. After recombination, the variables in the

offspring are unstuffed. This removes positional bias as the

variables are randomly reassigned each time crossover is

performed.

4.5 Mutation Operators
The two individuals (children) resulting from each crossover

operation will now be subjected to the mutation operator in the

final step to forming the new generation. This operator randomly

flips or alters one or more bit values at randomly selected

locations in a chromosome.

The mutation operator enhances the ability of the GA to find a

near optimal solution to a given problem by maintaining a

sufficient level of genetic variety in the population, which is

needed to make sure that the entire solution space is used in the

search for the best solution. In a sense, it serves as an insurance

policy; it helps prevent the loss of genetic material.

In this study, we chose as mutation operator the Mutation

methodReverse Sequence Mutation (RSM).

In the reverse sequence mutation operator, we take a sequence S

limited by two positions i and j randomly chosen, such that i<j.

The gene order in this sequence will be reversed by the same

way as what has been covered in the previous operation. The

algorithm (Fig. 8) shows the implementation of this mutation

operator.

Table 9.Mutation operator RSM

 * *

Parent 1 2 3 4 5 6 Child 1 5 4 3 2 6

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]

--

Initialize

 Initialize y1 and y2 being a empty genotypes;

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n;
j1 = j2 = k = b+1;

i = 1;

Repeat

if x1,i {x2,a, . . . ,x2,b} then y1,j1 = x1,k ;j1++;

if x2,i {x1,a, . . . ,x1,b} theny2,j1 = x2,k ;j2++;
k=k+1;

Until i ≤ n

y1 = [y1,1 ……y1,a−1 x2,a ……x2,b y1,a ……y1,n−a];

 y2 = [y2,1 ……y2,a−1 x1,a ……x1,b y2,a ……y2,n−a];

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]
--

Initialize

 Initialize y1 and y2 being a empty genotypes;

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n;

y1,1= x1,1;
y2,1 = x2,1;

i = 1;

for each i between a and n do

ifx1,i {x2,a, . . . ,x2,b} then y1 = [y1 x1,i] ;

ifx2,i {x1,a, . . . ,x1,b} then y2 = [y2 x2,i] ;

endfor

y1 = [y1,1 ……y1,a−1 x2,a ……x2,b y1,a ……y1,n−a];

y2 = [y2,1 ……y2,a−1 x1,a ……x1,b y2,a ……y2,n−a];

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

55

Fig.8. Algorithm of RSM operator

4.6 Insertion Method
We used the method of inserting elitism that consists in copy the

best chromosome from the old to the new population. This is

supplemented by the solutions resulting from operations of

crossover and mutation, in ensuring that the population size

remains fixed from one generation to another.

We would also like to note that the GAs without elitism can also

be modeled as a Markov chain and Davis and Principe [38]

proved their convergence to the limiting distributions under

some conditions on the mutation probabilities [16]. However, it

does not guarantee the convergence to the global optimum. With

the introduction of elitism or by keeping the best string in the

population allows us to show the convergence of the GA to the

global optimal solution starting from any arbitrary initial

population.

5. NUMERICAL RESULTS AND

DISCUSSION
Traveler Salesman Problem (TSP) is one the most famous

problems in the field of operation research and optimization [1].

We use as a test of TSP problem the BERLIN52, witch has52

locations in the city of Berlin (Fig. 9). The only optimization

criterion is the distance to complete the journey. The optimal

solution to this problem is known, it's 7542 m (Fig. 10).

Fig.9. The 52 locations in the Berlin city

Fig.10. The optimal solution of Berlin52

5.1 Environment
The operators of the genetic algorithm and its different

modalities, which will be used later, are grouped together in the

next table (Table 10):

Table 10. The operators used

Crossover operators OX ; NWOX ; PMX ; UPMX ; CX

Probability of crossover
1; 0.9 ; 0.8 ; 0.7 ; 0.6 ; 0.5 ; 0.4 ; 0.3 ;

0.2 ; 0.1 ; 0

Mutation operator PSM ; RSM

Mutation probability
1; 0.9 ; 0.8 ; 0.7 ; 0.6 ; 0.5 ; 0.4 ; 0.3 ;

0.2 ; 0.1 ; 0

We change at a time one parameter and we set the others and we

execute the genetic algorithm fifty times. The programming was

done in C++ on a PC machine with Core2Quad 2.4GHz in CPU

and 2GB in RAM with a CentOS 5.5 Linux as an operating

system.

5.2 Results and Discussion
To compare statistically the operators, these are tested one by

one on 50 different initial populations after that those

populations are reused for each operator.

Fig.11. Evolutionary algorithm

To compare statistically the operators, these are tested one by

one on 50 different initial populations after that those

populations are reused for each operator. In the case of the

comparison of crossover operators, the evolutionary algorithm is

presented in Figure 11 which the operator of variation is given

Generate the initial population P0
i = 0

Repeat

P’i = Variation (Pi);
Evaluate (P’i);

Pi+1 = Selection ([P’i, Pi]);

Until i<Itr

Input: Parents x1=[x1,1,x1,2,……,x1,n] and x2=[x2,1,x2,2,……,x2,n]

Output:Children y1=[y1,1,y1,2,……,y1,n] and y2=[y2,1,y2,2,……,y2,n]
--

Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n;

Repeat
Permute (xa, xb);

a = a + 1;

b = b − 1;

until a<b

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

56

by the crossover algorithms and the selection is made by

Roulette for choosing the shortest route.

Figure 12 shows the statistics of the experiments relating to the

operators of crossover. It is interesting to note that the OX

operator has not yet reached its shelf of evolution while the

NWOX operator is on the quasi-shelf.

In addition, on average, NWOX does not always produce similar

results, its standard deviation of the best of final individuals on

50 different initial populations is higher than all other operators,

we can conclude that this operator is more much influenced by

the initial population than its competitors.

Fig.12. Comparison of the crossover operators

6. CONCLUSION
In this paper, the solution recombination, i.e. crossover operators

in the context of the traveling salesman problem are discussed.

These operators are known as playing an important role by

developing robust genetic algorithms.

We implemented six different crossover procedures and their

modifications in order to test the influence of the recombination

operators to the genetic search process when applied to the

traveling salesman problem. The following crossover operators

have been used in the experimentation: the Uniform Crossover

Operator (UXO), the Cycle Crossover (CX), the Partially-

Mapped Crossover (PMX), the Uniform Partially-Mapped

Crossover (UPMX), the Non-Wrapping Ordered Crossover

(NWOX) and the Ordered Crossover (OX). The obtainedresults

with BERLIN52,as a test instance of the TSP, show high

performance of the crossover operators based on the creating

and filling holes. The best known solution for the TSP instance

BERLIN52 was obtained by using the OX operator.

According to thecomparative study of the crossover operators

mentioned, the development of innovative crossover operators

for the traveling salesman problem may be the subject of the

future research.

7. REFERENCES
[1] Alireza Arab Asadi, Ali Naserasadi and Zeinab Arab Asadi.

Article: A New Hybrid Algorithm for Traveler Salesman

Problem based on Genetic Algorithms and Artificial Neural

Networks. International Journal of Computer Applications

24(5):6–9, June 2011. Published by Foundation of

Computer Science.

[2] Dr. Nitin S Choubey. A Novel Encoding Scheme for

Traveling Tournament Problem using Genetic Algorithm.

IJCA Special Issue on Evolutionary Computation (2):79–

82, 2010. Published by Foundation of Computer Science.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,

Introduction to Algorithms, 3rd edition, MIT press, 2010.

[4] Randy L. Haupt and Sue Ellen Haupt, PRACTICAL

GENETICALGORITHMS, 2nd edition, A JOHN WILEY

& SONS, INC., PUBLICATION, 2004.

[5] C. DARWIN. The origin of species by means of natural

selection, 1859.

[6] Sue Ellen Haupt. Introduction toGenetic Algorithms.

Artificial Intelligence Methods in the Environmental

Sciences. Springer Science (103-126), 2009.

[7] Sue Ellen Haupt, ValliappaLakshmanan, CarenMarzban,

AntonelloPasini, and John K. Williams. Environmental

Science Models and Artificial Intelligence. Artificial

Intelligence Methods in the Environmental Sciences.

Springer Science (3-14, 103-126), 2009.

[8] D. Goldberg, Genetic Algorithm in Search, Optimization,

ans Machine Learning. Addison Wesley, 1989.

[9] Misevicius, A. (2004). Using iterated Tabu search for the

traveling salesman problem. Information Technology and

Control, 3(32), 29–40.

[10] Elaoud S, Loukil T, Teghem J (2007) A Pareto Fitness

Genetic Algorithm: test function study. European Journal

Operational Research, 177 (3), 1703-1719.

[11] Murat AlbayrakNovruzAllahverdi Development a new

mutation operator to solve the Traveling Salesman Problem

by aid of Genetic Algorithms. Expert Systems with

Applications 38 (2011) 1313–1320.

[12] Albayrak Murat (2008). Determination of route by means

of Genetic Algorithms for printed circuit board driller

machines. Master dissertation (p. 180). Selcuk University.

[13] F. Glover, Artificial intelligence, heuristic frameworks and

tabu search, Managerial & Decision Economics 11 (1990)

365–378.

[14] Lust T, Teghem J MEMOTS (2008) Amemetic algorithm

integrating tabusarch for combinatorial multiobjective

optimization. RAIRO, 42, 3-33.

[15] Oliver, I. M., Smith, D. J., & Holland, J. R. C. (1987). A

study of permutation crossover operators on the traveling

salesman problem. In Proceedings of the second

international conference. on genetic algorithms (ICGA’87)

(pp. 224–230). Cambridge, MA:Massachusetts Institute of

Technology.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

57

[17] Chakraborty, B and Chaudhuri, P (2003) On the use of

genetic algorithm with elitism in robust and nonparametric

mulltivariate analysis. Austrian Journal of Statistics, 32 .

13--27.

[18] Dorigo, M., &Gambardella, L. M. (1997). Ant colonies for

the traveling salesman problem. BioSystems, 43, 73–81.

[19] Zakir H. Ahmed. Genetic Algorithm for the Traveling

Salesman Problem using Sequential Constructive

Crossover Operator. IJBB 3(6). 2010.

[20] D. E. Goldberg and R. Lingle. Alleles, loci, and the

traveling salesman problem. In Proceedings of the

International Conference on Genetic Algorithms and Their

Applications, pages 154–159, 1985.

[21] V. A. Cicirello. Non-wrapping order crossover : An order

preserving crossover operator that respects absolute

position. GECCO, pages 1125–1131, 2006.

[22] V. A. Cicirello and S. F. Smith. Modeling ga performance

for control parameter optimization. GECCO, pages 235–

242, 2000.

[23] R.K. Ahuja, T.L. Mangnanti, J.B. Orlin, Network Flows,

Prentice-Hall, New Jersey, 1993.

[24] G. Laporte, The vehicle roting problem: an overview of

exact and approximate algorithms, Eur. J. Oper. Res. 59 (2)

(1992) 345–358.

[25] G.C. Onwubolu, M. Clerc, Optimal path for automated

drilling operations by a new heuristic approach using

particle swarm optimization, Int. J. Prod. Res. 42 (3) (2004)

473–491.

[26] G. Carpaneto, P. Toth, Some new branching and bounding

criteria for the asymmetric traveling salesman problem,

Management Science 26 (1980) 736–743.

[27] M. Gen, R. Cheng, Genetic Algorithms and Engineering

Design, Wiley, New York, 1997.

[28] M. Fischetti, P. Toth, An additive bounding procedure for

combinatorial optimization problems, Operations Research

37 (1989) 319–328.

[29] G. Finke, A. Claus, E. Gunn, A two-commodity network

flow approach to the traveling salesman problem,

CongressusNumerantium 41 (1984) 167–178.

[30] L. Gouveia, J.M. Pires, The asymmetric travelling salesman

problem and a reformulation of the Miller–Tucker– Zemlin

constraints, European Journal of Operational Research 112

(1999) 134–146.

[31] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Configuration

space analysis of travelling salesman problem, Journal

Physique 46 (1985) 1277–1292.

[32] A. Langevin, F. Soumis, J. Desrosiers, Classification of

travelling salesman problem formulation, Operational

Research Letters 9 (1990) 127–132.

[33] S. Lin, B.W. Kernighan, An effective heuristic algorithm

for travelling salesman problem, Operations Research

(1973) 498–516.

[34] J. Lysgaard, Cluster based branching for the asymmetric

traveling salesman problem, European Journal of

Operational Research 119 (1999) 314–325.

[35] P. Miliotis, Using cutting planes to solve the symmetric

travelling salesman problem, Mathematical programming

15 (1978) 177–188.

[36] J.Y. Potvin, Genetic algorithms for the travelling salesman

problem, Annals of Operations Research 63 (1996) 339–

370.

[37] R. Wong, Integer programming formulations of the

travelling salesman problem, in: Proceedings of the IEEE

International Conference of Circuits and Computers, 1980,

pp. 149–152.

[38] B. Shirrish, J. Nigel, M.R. Kabuka, A boolean neural

network approach for the travelling salesman problem,

IEEE Transactions on Computers 42 (1993) 1271–1278.

[39] T. E. Davis and J.C. Principe. A simulated annealing-like

convergence theory for the simple genetic algorithm. In R.

K. Belew and L. B. Booker, editors, Proceedings of the

Fourth International Conference on Genetic Algorithms,

pages 174–181. Morgan Kaufmann, San Mateo, CA, 1991.

