
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

29

Natural Language Interface to Database using

Semantic Matching

Neelu Nihalani
Associate Professor

RGPV
Bhopal, MP India

Dr. Mahesh Motwani
Associate Professor

RGPV
Bhopal, MP India

Dr. Sanjay Silakari
Professor & Head CSE

RGPV
Bhopal, MP India

ABSTRACT
Information is playing an important role in our lives. One

of the major sources of information is databases. Databases

and database technology are having major impact on the

growing use of computers. In order to retrieve information

from a database, one needs to formulate a query in such

way that the computer will understand and produce the

desired output. The Structured Query Language (SQL)

norms are been pursued in almost all languages for

relational database systems. However, not everybody is

able to write SQL queries as they may not be aware of the

structure of the database. So there is a need for non-expert

users to query relational databases in their natural language

instead of working with the values of the attributes. The

idea of using natural language instead of SQL, has

promoted the development of Natural Language Interface

to Database systems (NLIDB). The need of NLIDB is

increasing day by day as more and more people access

information through web browsers, PDA’s and cell phones.

In this paper we introduce an intelligent interface for

database. We prove that our NLIDB is guaranteed to map a

natural language query to the corresponding SQL query.

We have tested our system on Northwind database and

show that our NLIDB compares favourably with MS

English Query product.

Keywords: Databases, Database Management System

(DBMS), Structured Query Language (SQL), Natural

Language Interface for Databases (NLIDB)

1. INTRODUCTION
Databases are the common entities that are processed by

experts and non-experts with varied levels of knowledge.

Databases respond only to standard SQL queries. It is

highly impossible for a common person to be well versed

in SQL querying as they may be unaware of the database

structure namely tables , their corresponding fields and

types , primary keys and more. NLIDBs were proposed as a

solution to the problem of accessing information in a

simple way, allowing ideally any type of users, mainly

inexperienced ones, to retrieve information from a database

(DB) using natural language (NL).On account of this we

have designed an intelligent layer which accepts common

user’s imperative sentences as input and converts them into

standard SQL queries to retrieve data from relational

databases based on knowledge base. The primary

advantage of NLIDB is that it conceals the inherent

complexity involved in information retrieval based on

unqualified user queries and it avoids the tedious process of

configuring the NLIDB for a given domain.

Our Natural Language Interface to database system accepts

queries in English language and attempts to understand

them. Interface maintains its own dictionary. This

dictionary contains words related to database and

relationships. In addition to this, interface also maintains

pre-defined data structures and in order to interpret the

query. NLI refers to words in its own dictionary as well as

to the words of standard dictionary. If the interface

interprets the natural language query successfully, the

corresponding SQL query is generated and submitted to the

DBMS for processing.

2. MAIN OBJECTIVES
Before describing the characteristic of the system, it is

necessary to discuss the context where our proposed

solution is applicable and the background that took in

account the problem.
We can access the databases in the following ways:

 We can access/retrieve data through application

programs that are specially designed for the database.

 We can operate on data directly through relational

language.

The second one is unavoidable, when an occasional

operation (in particular terms) is performed. Our problem

relates exactly to this situation, when human operator tries

to directly interact with the database through relational

languages, in order to retrieve/search data. This kind of

interaction is often useful to those who are not specialists in

informatics; they are interested only in looking up data.

They may be managers or analysts, or individuals accessing

the database.

3. BACKGROUND
According to Androutsopoulos et al. (1995), the earliest

natural language interfaces to databases (NLIDB)

research started in the late sixties. At that time, most

of the research has concentrated on one database at a time

as the implementation target, therefore they could not be

modified to be implemented on other databases. One of

the well-known NLIDB system in the sixties is Lunar [1], a

system developed for a database which contained

information about chemical analysis of moon rocks.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

30

By the mid- eighties NLIDB was a very popular research

topic, indicated by the numerous systems were being

implemented [2]. During this time, the research focus

had changed to the issue of portability, and some

systems were even brought to commercial use, though

they did not get the expected gain. The main reason for

the lack of acceptance is probably due to the difficulties

to fully understand a natural language.

The area of NLP research is still very experimental and the

systems so far has been limited to very small domain[1].

When the systems are scaled up to cover large domains

,conversion of natural language to SQL becomes very

difficult due to vast amount of information that needs to be

incorporated in order to parse statement.

Despite the achievements attained in Natural Language

Interfaces, present day NLIDBs do not guarantee correct

translation of natural language queries into database

languages. However there are many problems which have

not been fully or adequately solved by existing NLIDBs.

The main issue is of domain independence.

Some of the most important NLIDBs that are domain

dependent VILIB [3], Kid [4], . PLANES [6]. In this type

of interfaces the percentage of correctly answered queries is

high (69.4–96.2% [5]), mainly because they are limited to

one domain. In domain-independent interfaces the success

percentage is usually lower than that of domain-dependent

interfaces.

The most important of domain independent interfaces are:

EnglishQuery [7,19], PRECISE [8], ELF [9], SQLHAL

[10], and MASQUE/SQL [11]. Rendezvous [12], STEP

[13], TAMIC [14], CoBase [15], CLARE [16], LOQUI

[17], and Inbase [18].

Researchers have proposed numerous methods for mapping

of natural language to SQL. The works developed on these

NLIDBs are diverse. In these works different approaches

for domain independent interfaces. We have proposed a

different approach for domain independent interface and

have compared with the commercially available natural

language interface English Query[7]. Experiments were

conducted to compare the performance of the interfaces on

the basis of accuracy.

4. THE INTELLIGENT NLIDB

SYSTEM ARCHITECTURE
Here, we present the architecture, of the Intelligent Natural

Language Interface to Database system. The system is

designed to accept any relational database schema. Our

NLIDB system accepts users natural language sentences as

input , parses them semantically and builds an SQL query

for the database. The core functionality is based on the

semantics and rules, which can be modified by the system

administrator. Our system is composed of two modules : a

pre-processor and a run time processor. Figure 1 shows the

architecture of our NLIDB.

4.1. Pre-processor
The pre-processor automatically generates the domain

dictionary by reading the schema of the database, uses

WordNet to create semantic sets for each table and attribute

name. The pre-processor also creates the rules that can be

edited by the system administrator. Our system addresses

the semantic parsing through the use of rules that are

generated by the pre-processor. The rules are based on the

schema of the database, which describe the relationship

between the tables and their attributes. These are generated

automatically when the system is configured for the given

database and can be edited by the administrator.

4.2. Domain Dictionary
Domain dictionary which consists of metadata set and

semantic set are generated automatically by the interface

for the database. Data dictionary also contains rules related

to the database schema which are derived from the

Metadata set.

4.2.1. The Metadata Set
In general, a database is termed as set of tables organized in

some common structure. The vital information that briefly

describes the tables in the database is organized into a

metadata set (M). The metadata set holds entries for all the

‘n’ tables in the relational database with all their

corresponding fields, foreign keys and their unique primary

key.

4.2.2. The Semantic sets
In our system there are two types of semantic sets, first is

the single lexicon semantic set and the second is a

composite lexicon semantic set. The single lexicon

semantic set consists of individual words and some of their

synonyms that are used in English Language grammar. The

composite lexicon semantic set is a combination of terminal

words that form phrases or sentences in a specific structure.

The pre-processor of the system uses WordNet to relate

words semantically. Each word is assigned a family of

synonyms and hyponyms, which forms the semantic set of

the word. The semantic set (S) contains the list of all

possible semantics related to table names and fields in the

database. Semantic set for tables ST and fields SF are and

respectively.

4.2.3. Rules related to database schema
The schema of the database gets translated into the rules.

These rules are produced by the pre-processor, and they are

based on the relationships between the tables. If in a query

two tables Suppliers and Shippers are referenced and field

Sno in Shippers table is a foreign key which references

Sno field in Supplier table , then the attribute equation

Suppliers.Sno = Shippers.Sno should be used with in the

where clause and this rule is added in the table.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

31

4.3. Run Time Processor
The run time processor uses the predefined data structures

to parse the statements and tries to match the input words

with the domain dictionary to extract the tables and fields

involved in the natural language query.We have assumed

that the tables and attributes names in the schema are

meaningful and can be found in the English Dictionary. If

this is not the case, the system administrator has possibility

to specify the synonyms.

4.3.1. The Pre-defined data structures
The proposed approach employs a set of predefined

training structures. The primary benefit of these training

sets is that they can be expanded or appended when the

intelligent information system discovers some new

knowledge. The significant training sets used are:

Conjunction set (CT) , Expression mapping (Emap), Stop-

words set (SW) and Display part set (DPT)

The Conjunction training set (CT) consists of the list of

generally used Conjunctive clauses like hailing, having,

when, where, who, whose, with etc. These conjunctive

clauses determine the exact Query definition. When the

system encounters a relatively new conjunctive clause, it is

appended to the existing training set.

The trained stop word set (SW) contains the list of all

common stop words that are likely to occur in a user typed

query.

Display part training set (DPT) contains the list of words

like Detail ,details, display, displays, extract, find, out, get,

get me, Gets ,limit, limits , list, lists, produce ,select, show,

summarise, summarize, view for determination of Display

part

The Expression mapping set (Emap) contains the list of

commonly used conditional clauses(Figure 2) and their

associated mathematical symbols. It acts as a look up table

to locate the SQL defined mathematical operators.

Expression Mapping

Element Semantic set name

greater than >

less than <

greater than or equal >=

less than or equal <=

not equal <>

greaterthan >

lessthan <

greater than or equal to >=

less than or equal to <=

like like

equal =

order by order by

equal to =

Figure 2 Expression mapping set

User

Natural Language

Query (English)

Parsing

Semantic Matching

& Distance Measure

Build SQL query

Database

Result Set

Domain

Dictionary

Pre-processor

Schema

WordNet

Dictionary

User Input

The run time
Processor

Rules

Return result
set to the user

Figure 1 Architecture of our NLIDB

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

32

5. EXPERIMENTS AND RESULTS
Here, we demonstrate the capabilities of our system via

experiments. The experiment deals with generation of SQL

for a natural language query and compare the performance

of the our interfaces on the basis of accuracy.

5.1. Experiments
We ran our experiments on NORTHWIND database

sample that is shipped with MS SQL server and MS

ACCESS. The standard eight tables selected. The figure 3

below shows and overview of tables, fields, and joins in the

NORTHWIND database.

Figure 3 Schema of Northwind Database

Experiment is related to the generation of the SQL

statement from the English natural query. In this section ,

we demonstrate our system capabilities in generating the

different form of the SQL statements depending on the

structure of the English natural queries. A general query

simple is a query where there are no specifics for the

attributes list, conditions, relationship, etc… Table-1

depicts some examples.

Table-1: Simple queries.

User query Generated SQL

Display all Employees
SELECT * FROM

employee

Get me supplier details
SELECT * FROM

suppliers

Who are our customers
SELECT * FROM

customers

What are product

categories

SELECT * FROM

categories

A specific query is a query with some certain attributes. So,

the selection of the attributes is done from tables. Table-2

depicts some examples of SQL with the specific attributes.

Table-2: Examples of specific attributes.

User query Generated SQL

tell me our supplier

location

SELECT address FROM

suppliers

display employee address
SELECT address FROM

employee

Display names of

suppliers

SELECT lname, fname

FROM supplier

what are our employee

name?

SELECT employee.name

FROM employee

Get me the name of

categories

SELECT categoryname

FROM categories

Display employee name

and location ?

SELECT lname,fname,

address FROM suppliers

tell me our employees

names and addresses

SELECT lname,fname,

address FROM employee

display employees

addresses and names

SELECT lname,fname,

address FROM employee

A conditioned query is a query that will select some certain

tuples of the database giving some specific criteria. Table-3

depicts some examples of SQL statement with WHERE

clause. Sometimes the user would like to inquire about

some certain attributes that satisfy some given condition(s).

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

33

Table- 4 depicts some examples of SQL statements with

specific attributes and conditions.

 Table-3: Examples with WHERE clause.

User query Generated SQL

Get the details of

employees who are

located in LONDON

SELECT * FROM

employee WHERE

city=’LONDON’

Get supplier details for

supplier id is S1

SELECT * FROM

supplier WHERE

suplierid=’S1’

Get employee details not

located in PARIS

SELECT * FROM

employee WHERE city

NOT IN ’PARIS’

List employee details

who are located in

LONDON or SEATTLE

None

Get the details of

employees in LONDON
None

Find the products which

have units in stock 20

and unit price is 18

SELECT * FROM

products WHERE

unitsinstock = 20 a nd

unitprice = 18

tell me product details for

product name TOFU

SELECT * FROM

product WHERE

productname = ’TOFU’

Table-4: Examples with specific attributes with

WHERE clauses

User query Generated SQL

Get names of employees

whose hometown is

PARIS

SELECT lname,fname

FROM employee

WHERE city =’PARIS’

Get names of employees

in PARIS
None

display employee address

for employee id is E101

SELECT address FROM

employee WHERE

employeeid=’E101’

tell me unit price for

product name TOFU

SELECT unitprice

FROM product WHERE

productname =’TOFU’

Get product id of product

for qty ordered greater

than 30 and unit price is

less than 10

SELECT productid

FROM orderdetails

WHERE quantity > 30

AND unitprice < 10

 Our system can also deal with queries that need data from

more than one relational database. In such case the system

has the capabilities to perform the appropriate joins to

retrieve the required data. Table- 5 depicts some examples

of SQL statements which involves more than one table

Table-5: Examples involving more than one table

User query Generated SQL

Get supplier details

whose product id is P1

SELECT * from

Supplier, Products where

supplier.

Supplierid=products.sup

plierid AND

productid=’P1’

display customer id

whose order date is

01/10/1996

SELECT customerid

FROM customers,orders

WHERE

coustomers.cusomerid=o

rders.customerid AND

orderdate =

‘01/10/1996’

List all suppliers whose

supply product category

Beverages

SELECT * FROM

products, suppliers

,products WHERE

categoryname

=’Beverages’ AND

categories.categoryid =

products.categoryid AND

suppliers.supplierid =

products.supplierid

List all products supplied

to country Germany

SELECT * FROM

products , suppliers

WHERE

suppliers.city=’Germany

’ AND

suppliers.supplierid =

products.supplierid

 Result Incorrect

5.2. Results
Much experiment on a trial basis has been conducted on

our system. The trials have given accurate and satisfactory

results when the generated SQL statements have been run

against the used database. We have compared our interface

with natural language interface which is commercially

available.

 There are many Natural Language Interfaces available for

commercial use and each claim to perform better than the

other. We have selected Microsoft English Query[19] to

compare with our interface. Experiments are conducted to

compare the performance of these two interfaces on the

basis of accuracy. We have evaluated the performance of

English Query and our system and reach to a conclusion as

to which one performs better. The experiment was to test

the questions in both the applications using only the basic

model. This tested the capabilities of Our Interface and EQ

to automatically extract relationships from the underlying

database. Figure 4 shows the results of this test. Our

interface gives correct results for most of the questions and

English Query does not. This is because English Query

does not extract all of the relationships and requires

refining of the model by adding relationships.

The relationships in the EQ were added for only those

queries which failed the first test. The performance of

English Query improved by adding relationships. The

results clearly illustrate that Our Interface compares

favorably with Microsoft English Query.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.11, October 2011

34

Interface

No of

question

asked

No of

correct

result

No of

incorrect

results

Our

Interface
20 15 5

EQ 20 8 12

 Figure 4 Test Results

In our system, the basic model was used and no

modifications were made. This shows that our system is

effective and automatically extracts relationships from

database. Whereas EQ builds up a model with only few

basic relationships and so requires a lot of modification and

refinement. This is tedious and involves a lot of work.

6. REFERENCES
[1] Androutsopoulos, G.D. Ritchie, and P.

Thanisch, Natural Language Interfaces to

Databases - An introduction, Journal of Natural

Language Engineering 1 Part 1 (1995), 29–81.

[2] Raymond J. Mooney, Learning Language from

Perceptual Context:A Challenge Problem for AI,

American Association for Artificial Intelligence

(2006).

[3] VILIB Virtual Library (1999), www.islp.uni-

koeln.de/aktuell/vilib/

[4] Chae, J., Lee, S.: Frame-based Decomposition Method

for Korean Language Query Processing. Computer

Processing of Oriental Languages (1998)

[5] Popescu, A.:Modern Natural Language Interfaces to

Databases: Composing Statistical Parsing with

Semantic Tractability, University of Washington

(2004)

[6] Waltz, D.: An English Language Question Answering

System for a Large Relational Database.

Communications of the ACM (1978)

[7] Microsoft TechNet., chapter 32- English Query Best

Practices (2008),

www.microsoft.com/technet/prodtechnol/sql/2000/res

kit/part9/c3261.mspx?mfr=true

[8] Popescu, A., Etzioni, O., Kautz, H.: Towards a

Theory of Natural Language Interfaces to Databases.

In: Proc. IUI-2003, Miami, USA (2003).

[9] ELF Software, ELF Software Documentation Series

(2002), www.elfsoft.com/help/accelf/Overview.htm

[10] SQL-HAL,

www.csse.monash.edu.au/hons/projects/2000/

Supun.Ruwanpura/

[11] Androutsopoulus, I., Ritchie, G., Thanish, P.:

MASQUE/SQL, An Efficient and Portables Language

Query Interface for Relational Databases, Department

of Artificial Intelligence, University of Edinburgh

(1993)

[12] Minock, M.: A STEP Towards Realizing Codd’s

Vision of Rendezvous with the Casual User.In: Proc.

33rd International Conference on Very Large

Databases (VLDB-2007), Demonstration Session,

Vienna, Austria (2007)

[13] Minock, M.: Natural Language Access to Relational

Databases through STEP. Technical report,

Department of Computer Science, Umea University

(2004)

[14] Bagnasco, C., Bresciani, P., Magnini, B., Strapparava,

C.: Natural Language Interpretation for Public

Administrations Database Querying in the TAMIC

Demonstrator. In: The Proc. Second

InternationalWorkshop on Applications of Natural

Language to Information Systems (1996)

[15] Chu, W., Yang, H., Chiang, K., Minock, M., Chow,

G., Larson, C.: Cobase – A Scalable and Extensible

Cooperative Information System. Journal of Intelligent

Information System 6,253–259 (1996)

[16] Alshawi, H., Carter, D., Crouch, R., Pulman, S.:

CLARE: A Contextual Reasoning and Cooperative

Response Framework for the Core Language Engine.

Technical report CRC-028(1994)

[17] Binot, J., Debille, L., Sedlock, D., Vandecapelle, B.:

Natural Language Interfaces: A New Philosophy,

SunExpert, Magazine (1991)

[18] Boldasov, M., Sokolova, G.E.: QGen – Generation

Module for the Register Restricted In-BASE System.

In: Computational Linguistics and Intelligent Text

Processing, 4th International Conference, vol. 2588,

pp. 465–476 (2003)

[19] Microsoft English Query Tutorials available with

standard installation in SQL SERVER 7.0 or higher

http://www.islp.uni-koeln.de/aktuell/vilib/
http://www.islp.uni-koeln.de/aktuell/vilib/
http://www.microsoft.com/technet/prodtechnol/sql/2000/reskit/part9/c3261.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/sql/2000/reskit/part9/c3261.mspx?mfr=true
http://www.elfsoft.com/help/accelf/Overview.htm
http://www.csse.monash.edu.au/hons/projects/2000/%20Supun.Ruwanpura/
http://www.csse.monash.edu.au/hons/projects/2000/%20Supun.Ruwanpura/

