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ABSTRACT 

Breast cancer, the second-leading cause of cancer deaths in 

American women, is the disease women fear most all over the 

world. Efficient technique for medical diagnosis is defined to 

provide better chance of a proper treatment. In this paper, we 

present a new parallel processing architecture to perform 

medical detection that uses multiple ultra-sono-graphic features 

and a diagnostic algorithm for identifying breast nodule 

malignancy. The algorithm has been implemented in the first 

phase without breaking them into macro-blocks, and in the next 

phase after breaking the frames into the respective macro-

blocks. MATLAB has been used for the simulation of the 

algorithm and the results obtained are presented in this paper. 

We have also done the simulation and FPGA based synthesis of 

the proposed architecture for the most commonly used target 

hardware to analyze the hardware cost. 

1. INTRODUCTION 
Different macro imaging like X-Ray, USG and Breast MRI play 

a major role in detection in which Sono-mammogram is   

promising one. Sono-mammogram is non-invasive imaging and 

cost effective for mass screening. 

Again using X-ray, calcification may be observed, but micro-

calcification in the early stages cannot be detected properly. 

Moreover it has limitations when the surrounding breast tissue is 

dense or if the lesion is diffuse; also it is not possible to 

differentiate between solid and cystic lesions. Ultrasound 

penetrates dense breast tissue very well and is an excellent 

supplement whereas X-ray mammography is prohibited in 

young or pregnant patients. Sono-mammogram performs well in 

distinguishing cystic from solid masses in which accuracy is 

almost 96% [11]. It can be used for imaging several types of 

breast conditions, including both benign and malignant lesions 

with significant freedom in obtaining images of the breast from 

almost any orientation.  

Ultrasound technique is used for differentiation of malignant and 

benign tumors in breast by evaluating several quantitative 

features like tumor size, shape, sharpness of margins, 

spiculation, calcifications, hypo-echogenicity, thick echo-genic 

halo, angular margins, lobulations, acoustic shadowing, duct 

extension, and branch pattern etc.  

This study includes seventy seven sono-mammograms of benign 

and malignant lesions, confirmed through biopsy by onco-

pathologists and radiologists.  

In this paper, we have simulated an efficient image processing 

technique which utilizes a parallel data memory. The parallel 

data memory provides a faster data access for processing the 

image data. The proposed parallel architecture ensures high-

speed operation and full utilization of the processing resources.  

Main Results: We have captured ultrasound images, collected 

and considered those frames which are suspected by 

radiologists. For processing of images we have used median 

filter to reduce the speckle noise, unsharp masking for contrast 

enhancement , binary thresholding and edge detection for mass 

segmentation and measured mass perimeter; calculated mass 

centroid, mass perimeter radial samples, FFT of the radial 

samples at higher frequencies for detection. We simulate the 

algorithm without breaking the image into macro-blocks (MB), 

and after breaking the image into the respective MB. We also 

analyze the results for different USG images in both the two   

cases. A parallel architecture based implementation of this 

algorithm is proposed. The parallel architecture features 

scalable, minimum processing elements, minimum clock cycles, 

low pin count so that it can achieve high performance, flexibility 

and low power consumption. Lastly the hardware requirement is 

estimated for various well known target architectures.  

The organization of the paper is as follows: Section 2 describes 

the Methodology. Section 3 and 4 cover Methods, and 

Simulation Results of the algorithm for Diagnosis. Section 5 

contains the Proposed Architecture of the algorithm. 

Performance analysis and comparison is described in Section 6 

and concluding remarks in Section 7. 

2. METHODOLOGY 

2.1 Ultrasonic image database  
The USG images, in this paper, were provided by the IPGMER 

& SSKM Hospital, Kolkata, India. The database contained 77 

digital ultrasonic images, composed of 46 benign and 31 

malignant images confirmed through biopsy by pathologists and 

radiologists. 

2.2 Feature extraction  
USG features that most reliably characterize masses as benign, 

are a round or oval shape, circumscribed margin [3][4]. Features 

that characterize masses as malignant include irregular shape, 

micro-lobulations. A few gently curving, circumscribed lobu-

lations (macro-lobulations) are considered as benign features, 

whereas many small lobulations of 1-2 mm (micro-lobulation) 

are considered malignant [3]. 
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2.3 Image processing  

2.3.1 Median Filtering  
The ultrasonic images suffer from speckle noise due to 

interference of back-scattered signal, and this noise significantly 

degrades the image quality and hinders to obscure the fine 

details [2]. The image is preprocessed with 3 × 3 median filter.  

To perform median filtering at a point in an image, we store the 

pixel and its neighboring pixel values in an array, sort the array 

in numerical order, determine their median and assign this value 

to the pixel. The algorithm of Median Filter is described below 

             Y(i,j) = median[sort{ x(i,j) ,(i,j) ∈w }]                   (1) 

Where w is a neighborhood centered around the location (i,j) in 

the image. 

2.3.2 Unsharp Masking 
Unsharp masking is a well-known technique to enhance the 

edges of the structures in an image [8]. To improve the 

perceptibility of edges of breast nodule, 5 × 5 unsharp masking 

has been used after median filtering. The elements with 

meaningful signal level have been emphasized and the contrast 

between nodule and background has been enhanced. 

Unsharp masking is used to sharpen image by subtracting a 

blurred version of an image from the image itself. The algorithm 

of Unsharp Masking filter is as below 

                Isharp( i,j )  = I( i,j ) + k.g( i,j )                    (2) 

where          g( i,j )        = I( i,j ) - Ismooth( i,j ); 

               I( i , j )       = original image; 

              Ismooth ( i,j ) = smoothened version of I( i,j ); 

             k                   = scaling constant; 0.2 to 0.7; 
Image is smoothened by convolving with a Gaussian filter with 

specified standard deviation , to reduce noise. Mathematically, 

we can write the 2-D convolution [6] as: 

Ismooth ( i,j )  = O( i,j ) = I( i,j )  K( k,l )               (2.1) 

Where    K( k, l )   =  convolution kernel 

            I( x , y )  =  original image 

           O( x , y ) =  filtered image 

           m × n     =  size of convolution kernel 

2.3.3 Segmentation 
After contrast enhancement, the image is converted to binary 

image using multi-value thresholding[12]. The threshold is 

determined by the histogram of the image. Thresholding 

produces a relatively large region together with many separated 

or inter-connected regions. Among the remaining objects, one 

closest to the center of region of interest (ROI) of the lesion area 

is then automatically selected as the nodule. 
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2.3.4 Edge Detection  
After segmentation, the object is smoothened by filling the holes 

inside the nodule by applying image opening and closing 

operation with a structuring element[8]. Finally, we get the 

boundary pixels of the nodule by removing interior pixels. 

Boundary pixels can be obtained by comparing the 4 

neighboring pixel coordinates. The whole image processing 

procedure is illustrated in Figure 1(a- h). We simulate the 

algorithm without breaking the image of size 240×240 into MB, 

and after breaking the image into 225 MB each of size 16 × 16 

matrix. 
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Fig 1: Image Processing Steps: (a) Original Image captured 

by USG device, (b) Median filtered Image, (c) Image after 

Unsharp Masking, (d)-(e)Images after Thresholding and   

(h) Detected Edge 

The basic morphological operators are erosion and dilation 

[2].Dilation and Erosion of an image A by structuring element B 

is given by:- 
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Opening is the erosion of an image followed by dilation. On the 

other hand closing is the dilation of an image followed by 

erosion. They are given by:- 

         O (A,B) = A ◦ B = (A Ө B)  B               (6) 

          C (A,B) = A  B = (A  B) Ө B               (7) 
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3. METHODS 

3.1 Radial distance signal 
The radial distance function is computed in two steps  - i) the 

centroid of the mass is computed,  and  ii) the acquired centroid 

of the mass is identified as the center of a polar coordinate 

system and the mass borderline is sampled to extract the radial 

distance sequence: 
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Where i = 1, 2, . . . ,N ; The point (X0, Y0) is the acquired 

centroid of the mass and N is the number of borderline samples. 

3.2 FFT Calculation 
The Fast Fourier Transform (FFT) F(i) is calculated by the 

following formula:  
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Where )(nr is the radial distance function. We use FFT to 

convert an image into its frequency domain to remove unwanted 

frequency information before analyzing and processing the 

image. We consider only those samples that are in high 

frequency range, between π/4 to π. 

4. SIMULATION RESULTS 
 

 

 

 

 

 

(a)                                                 (b) 

(c) 

Fig 2: Typical example of Benign nodule: (a) Original Image, 

(b) Detected Edge, (c) Amplitude of  FFT, R(ω) 
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Fig 2: Typical example of Benign nodule: (a) Original Image, 

(b) Detected Edge, (c) Amplitude of  FFT, R(ω) 

We simulate the algorithm, and after breaking the image into 

225 MB each of size 16 × 16 matrix. We calculate the centroid 

of the mass, radial distance and FFT at high frequency range, 

between π/4 to π in the 1st case. In the 2nd case the total number 

of borderline pixel (BP) is 1536. We divide it into 6 MBs of size 

16×16 and calculate the centroid of mass, radial distance and 

FFT at high frequency range, between π/4 to π. In both the two 

cases we analyze the results for seventy seven USG images and 

get the same results. 

 

                                                                  

 

 

 

 

 

                                                                                                                    

 

 

 

 

  (a)                                                       (b) 

(c) 

Fig 3: Typical example of malignant nodule with:                

(a) Original Image, (b) Detected Edge, (c) Amplitude of  

FFT, R(ω) 

Figure 2 and Figure 3 display the original image, segmented  

mass with its centroid,  and log amplitude of fast Fourier 

transform R(ω)[ at high frequency range(π/4 to π)] of benign and 

malignant nodule, respectively. The amplitude spectrum of FFT 

of the malignant nodule[Figure 3(c)] contains larger high-

frequency components (π/4 to π) and sharp peak than that of the 

benign nodule[Figure 2(c)]. 
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5. PROPOSED ARCHITECTURE FOR 

DIAGNOSIS 

5.1 Overview of the Architecture 

 

Fig 4: Architectural description of the controller 

To propose hardware architecture for this medical detection 

algorithm, we need a very high amount of hardware resources. 

Complexity can be reduced by parallelizing the operation 

needed for diagnosis.  

 

Fig 5: Architecture of each PE for macro-block of size 16×16 

The basic building blocks of the architecture of the Controller 

and Processing Elements (PE) are as shown in Fig.4 & Fig. 5 

This architecture is divided into 225 PEs. 

When architecture starts, controller activates PEs & memory 

manager (MM). According to the operation activated by the 

control unit, block selectors (BS0 to BS16) of each PEs generates 

the search area address (SAA1 to SAA16) and send it to the 

current block memory (CBM) and MM reads one line of the 

CBM. Data stored in the SAA of CBM are sent to the search 

area memory (SAM) and data read by MM from CBM are 

stored in the block line register (BLR0 to BLR16) of each 

Processing Elements (PE1, PE2, PE3,….PE225). Now Processing 

Units (PU1 to PU16) for each PEs get the data from SAM for 

processing. 

Each PE consists of a CU, memory manager (MM), Processing 

Units (PU1 to PU16), block selectors (BS1 to BS16), current block 

memory (CBM), search area memory (SAM), block line register 

(BLR1 to BLR16), ALU (ALU1 to ALU16), comparator and six 

sets of registers. These registers are function dependent constant 

registers (K11K55), input data registers (IDR1IDR16), 

temporary registers (TR1TR16), temporary registers 

(TR1
1TR1

16), accumulator registers (AR1AR16), buffer 

registers (BR1BR16), inter buffer registers (IBR11IBR1648) and 

output result registers (Result1…Result16) and 

(Result11…..Result116). The architecture allows parallel loading 

of data into all the six sets of registers, execution of ALU 

operations and storing the output results concurrently, providing 

an efficient configuration for implementing DSP functions like 

median filter, unsharp filter, edge detection, FFT,  etc. To 

exploit inherent parallelism exhibited by DSP functions, a 

number of such PEs are connected through an inter PE router for 

data communication. Registers may be used to preserve the 

values of intermediate results for any possible subsequent 

operation(s) when needed.  

The register sets along with the connections are built up to 

maintain maximum flexibility and performance at minimum 

control requirements for all DSP functions. Data memory (Fig. 

4) is divided into two parts, Constant Data Memory (CDM) and 

Input / Output Data Memory (IODM). The constant data are 

loaded into the registers (K11K55) via constant data bus and 

input data are loaded into Current Block Memory (CBM) of 

each PEs. The constant memory holds only the function 

dependent constants required by that particular PE. The IODM 

hold the incoming data from the external world and the output 

data from the „result buses‟. By separating constant data from 

the input/output data, the overall data bus bandwidth increases, 

thereby increasing the processor performance. 

5.2 Hardware Estimation 

5.2.1 Hardware Estimation of Median Filtering  

For 3x3 median filter, suppose that the search range [p, p] = 

[1, 1]. The search is restricted to a specific area in the frame 

which is called search area. Pixel coordinates of both search area 

and the reference blocks (Figure 6) are shown below. 

lx (x,y) = median(sort [in(x-1,y-1),  in(x-1,y), in(x-1,y+1), 

in(x,y-1), in(x,y),  in(x,y+1),  in(x+1,y-1), in(x+1,y), 

in(x+1,y+1)] ); 

in11 in12 in13 in14 in15 

in21 in22 in23 in24 in25 

in31 in32 in33 in34 in35 

in41 in42 in43 in44 in45 

in51 in52 in53 in54 in55 

in61 in62 in63 in64 in65 
 

Fig 6: The reference blocks and its search area 
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From calculation it seems that there is an overlapped search 

range between the search areas belonged to the reference block 

lx(2,2) and lx(2,3). So if the reference block lx(2,2) and lx(2,3) 

begin to conduct the process at the same time we need 

temporary buffers to store the sorted pixel values.         

Here we consider 225 Processing Elements (PE). At 1st clock 

16×3 bit value is loaded to the input data registers 

(IDR1IDR16), temporary registers (TR1TR16), and temporary 

registers (TR1
1TR1

16) at 3rd clock sorted value of the registers 

(IDR1IDR3), (TR1TR3), and (TR1
1TR1

3) are stored in the 

inter buffer registers (IBR11IBR19) (here we consider mesh 

network) and at 4th clock median value of the registers 

(IBR11IBR19) are stored in the output result registers (Result1). 

We get the 1st sampled result of the 1st column of the 16 × 16 bit 

value at 4th clock cycle. 

Time complexity in this case is = 4 + (16 1) = 19 clock cycles;  

Time complexity for image size 240×240 is =  T(240×240)   

               = 4 + (240 1) = 243 clock cycles;  

For general case, time complexity =  T(N×N)  = 4 + ( N  1) = N 

+ 3 ≈ N clock cycles; 

5.2.2 Hardware Estimation of Unsharp Masking  
From eq(2.1) putting i=j=1 we get, 


 


m

k

n

l

lkKlkIO
1 1

),(),()1,1(  

putting m = n = 5 the size of the convolution kernel we get, 

O(1,1) = I11K11 + I12K12 + I13K13 + I14K14 + I15K15 + I21K21 + 

I22K22 + I23K23 + I24K24 +I25K25 + I31K31 + I32K32 + I33K33  + 

I34K34 + I35K35 + I41K41+ I42K42 + I43K43 + I44K44  + I45K45+ 

I51K51 + I52K52 + I53K53 + I54K54 +  I55K55 

 = Y11+Y21+Y31+Y41+Y51 

  in11  in21 in31 in41 in51 in61 in71 in81   … in151 in161 

in12 in22   in32 in42 in52 in62 in72 in82   … in152 in162 

in13  in23   in33 in43 in53 in63 in73 in83   … in153 in163 

in14  in24   in34 in44 in54 in64 in74 in84   … in154 in164 

in15 in25   in35 in45  in55  in65 in75 in85    … in155 in165 

in16 in26   in36             in46  in56  in66  in76  in86   …   in156   in166 

 in17 in27   in37 in47  in57  in67     in77  in87   …   in157   in167 

in18 in28   in38 in48  in58 in68  in78  in88   … in158 in168 
 

Fig 7: The reference blocks and its search area 

Figure 7 shows that there is an overlapped search range between 

the search areas belonging to the reference blocks O(1,1), O(2,1) 

and O(1,2). Reference blocks O(1,1), O(2,1), O(3,1)… O(15,1) 

and O(16,1) begin to conduct the process at the same time; so 

we need temporary buffers to store the pixel values in-order to 

reuse the data of the overlapped range.  O(1,2) starts execution 

after delay of one clock cycle to the  block O(1,1). O(1,2) reuses 

the data of the overlapped range, so no additional input bus is 

needed. Here also we need 225 Processing Elements (PE).  

 
Fig 8: Operation performed in each PU for 5x5 Unmask 

Filter 

From eq (2) putting i=j=1 we get, Isharp( 1,1 ) = Is ( 1,1 ) = I( 1,1) 

+ G’( 1,1) = I(1,1) + k.G(1,1) = I(1,1) + k.[I( 1,1 ) - O( 1,1 )];  

Figure 8 shows the operation performed in each PUs (PU1 to 

PU16) for the Unsharp Filter for kernel size 5×5; it simply maps 

each arithmetic operator in the algorithm into a separate 

hardware element. The filter comprised of 5 x 4 = twenty delay 

operators (20 D FF), 5×5 +1 = twenty six multipliers, and 5 x 4 

+ 2 = 22 adder and one sub-tractor. 

The execution take (Tm+4Ta+Ta+Ts+Tm+Ta) = 2Tm+6Ta+Ts 

clock cycle, where Ta = addition time, Ts = subtraction time, 

and Tm = multiplication time, let Ts = Tm = Ta = 1 clock cycle; 

then 2Tm+6Ta +Ts = 2+6+1 = 9 clock cycle when the size of 

kernel is 5 by 5 matrix.  

At 1st clock 16×5 bit value is loaded to the input data registers 

(IDR1IDR16), temporary registers (TR1  TR16), (TR1
1TR1

16), 

accumulator registers (AR1AR16), buffer registers (BR1  

BR16). Calculated values are stored in the inter buffer registers 

(IBR11IBR1648). At 9th clock output result of the registers 

(IBR11IBR1648) are stored in the output result registers 

(Result1).We get the 1st sampled result of the 1st column of the 

16 × 16 bit value at 9th clock cycle. 

Time complexity for UF (16 ×16 MB ) is = 9 + (16  1) = 24 

clock cycles; 

Time complexity for image size 240×240 is =  T(240×240)   
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               = 9 + (240 1) = 248 clock cycles;  

For general case, time complexity =  T(N×N) = 9 + ( N  1)                

= N + 8 ≈ N clock cycles; 

5.2.3 Hardware Estimation of Edge Detection  
Figure 9 shows the operation performed in each PUs (PU1 to 

PU16) for the Dilation & Erosion operation for kernel size 5x5. 

The Dilation filter comprised of four delay operators (4 D FF), 

five adder, and four „or‟ operators and the Erosion filter 

comprised of four delay, five sub-tractor, four „and‟ operators.  

From figure we see that execution take , (Ta+4Tor+Tor+Ts+ 4Tand 

+Tand)  = Ta+5Tor+Ts+5Tand  clock cycle,  

where Ta = addition time, Ts = subtraction time, and Tand  , Tor = 

time needed by and, or gate; let  Ts = Ta = 1 clock cycles, Tand, 

Tor = 1 clock cycles ; then Ta+5Tor+Ts+5Tand  = 1+5+1+5 = 12 

clock cycles when the size of kernel is 5 by 5 matrix.  

 

(a) 

 

(b) 

Fig 9: Operation performed in each PU for kernel size 5x5                    

(a) Dilation & (b) Erosion 

Time complexity for opening and closing operation, i.e. for 

16×16 MB is = 2 × (12 + (16  1)) = 54 clock cycles; 

Time complexity for image size 240×240 is =  T(240×240) = 2 

× (12 + (240 1)) = 502 clock cycles;  

For general case, time complexity =  T(N×N)   

              = 2 × (12 + ( N  1)) = 2N + 22 ≈ N clock cycles; 

Boundary pixels can be obtained by comparing the 4 

neighboring pixel coordinates as:- 

  |   x , y + 1  | 
------------------------------------------- 

  x  1, y   |      x  ,  y       |   x + 1, y 

------------------------------------------- 

 |     x ,  y  1   | 

O(2,2)  = [in(1,2), in(2,2), in(3, 2), in(2, 1), in(2,3)]; 

It needs 5 comparisons to find the borderline pixel coordinates 

(BPC). At the same time we use five register to store the X & Y 

coordinates of the borderline pixels, the sum of the X & Y 

coordinates of the borderline pixel, and the rest is a counter to 

count the number of BPC. We calculate the Xp & Yp by dividing 

the 3rd & 4th register value by the 5th register value. The centroid 

(Xo, Yo) is calculated by taking the sum of  Xp & Yp of all the 

PEs. 

At 1st clock 16×5 bit value is loaded to the input data registers 

(IDR1IDR16), temporary registers (TR1TR16), (TR1
1TR1

16) 

accumulator registers (AR1AR16), buffer registers 

(BR1BR16). After comparison the 1st sample O(2,2) is 

generated and stored in the output result registers (Result1) at 6th 

clock cycle. We use inter buffer registers (IBR11-IBR162) to store 

the X & Y coordinates of the borderline pixels, (IBR13 & IBR14) 

the sum of the X & Y coordinates of the borderline pixel, IBR15 

the number of BPC. We calculate the Xp & Yp by dividing the 

(IBR13 & IBR14) value by the IBR15 value and store it in IBR16 

and IBR17. Now we add the IBR16 and IBR17 value for 225 PEs 

and store the value (centroid) in the output result registers 

(Result11, Result12). 

Time complexity for boundary and centroid calculation (image 

size N × N) = T(N × N)  =  ( 6 + (N  1) + 2) =  7 + N   N 

clock cycles; 

5.2.4 Hardware Estimation of Radial distance 

signal   
As the number of borderline pixel (BP) is much less than the 

number of image pixel we consider BP only. During the 

estimation of borderline pixels we also estimate the centroid of 

the mass and save them. Total number of BP is 1536 for 225 

PEs. We divide the BP into 6 MBs of size 16×16 and send the X 

& Y coordinates of the BP, centroid of mass to each PE. Here 

we need only 6 PEs instead of 225 PE. As a result the rest of the 
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PE can be used to do some other job. The acquired centroid of 

mass is identified as the center of polar coordinate system and 

the radial distance sequence and angle () at every point is 

calculated. 

 

Fig 10: Operation performed for Radial distance signal 

Figure 10 shows the detailed operation performed for radial 

distance signal. From figure we see that execution take ( Ts + Tsq 

+ Ta + Tsqrt ) clock cycle, where Ta = addition time, Ts = 

subtraction time,  and Tsq ,Tsqrt = square and square-root  time; 

let  Ts = Ta = Tsq ,Tsqrt = 1 clock cycles; then Ts + Tsq + Ta + Tsqrt  

= 1+1+1+1 = 4 clock cycles.  

Here we use input data registers (IDR1IDR16), temporary 

registers (TR1TR16), (TR1
1TR1

16) to store the value of 

centroid of mass and X & Y coordinates of each BP, at 4th clock 

the 1st sample of radial distance and angle() at every point are 

calculated and stored in the output result registers (Result1 , 

Result11). 

Time complexity in this case, i.e. for 16 ×16 MB is  

               = 4 + (16  1) = 19 clock cycles; 

Time complexity for image size 240×240 is   

=  T(240×240) = 4 + (240 1) = 243 clock cycles;  

For general case, time complexity =  T(N×N)   

               = 4 + ( N  1) = N + 3 ≈ N clock cycles; 

5.2.5 Hardware Estimation of FFT  
The computation is performed in 4 stages using 8 PU. Addition 

and multiplication after subtraction are performed using same 

data input in each stage. So ( Ts + Tm ) clock cycle is required in 

each stage, where Ta = addition time, Ts = subtraction time, and 

Tm = multiplication time; we get the first sample output after 4 × 

( Ts + Tm ) + 3Tr clock cycle, where Tr = routing time, let  Ts = 

Tm = Tr = 1 clock cycles, then 4 × ( Ts + Tm ) + 3Tr = 8+3 = 11 

clock cycles.  

Here we use input data registers (IDR1IDR16) to store radial 

distance at every point, at 11th clock the 1st sample of FFT 

amplitude is calculated and stored in the output result registers 

(Result1 , Result11). 

Time complexity for FFT, i.e. for 16 ×16 MB is T(16×16) 

               = 11 + (16  1) = 26 clock cycles; 

Time complexity for image size 240×240 is = T(240×240) = 11 

+ (240 1) = 250 clock cycles;  

For general case, time complexity =  T(N×N) = 11 + ( N  1)  

               = 10 + N ≈ N clock cycles; 

Total Time Complexity in parallel execution (PE) in this case is 

= (N + 3)+(N + 8)+( 2N + 22 ) + (N + 3)+ (N + 10) = 6N + 46 ≈ 

N clock cycles; 

6. SYNTHESIS RESULTS 
We simulate the architectural block of Median filter, Unsharp 

Masking, Edge Detection, Estimation using Xilinx-ISE6 and 

synthesize on different device family. The synthesis reports are 

shown in Table 1 and Table 2. The percentage value in the 

parenthesis shows utilization ratio of the amount of available 

resources. 

Table 1  

  Device utilization summary for 5x5 Unsharp Filter  

 Spartan-3 

S50 

Virtex - 

v50 

Virtex-II 

V2000 

Virtex-II 

Pro VP70 

Virtex-IV 

VFX60 

# Slices 372 (48%) 787(102%) 372 (3%) 372 (1%) 350 (1%) 

# Slice FFs 240 (15%) 240(15%) 240 (1%) 240 (0%) 200 (0%) 

# 4 input LUTs 498 (32%) 1283(83%) 498 (2%) 498 (0%) 498 (0%) 

# bonded IOBs 50 (40%) 50 (27%) 50 (8%) 50 (5%) 50 (12%) 

# GCLKs 25 (625%) 1 (25%) 25 (44%) 25 (7%) 1 (3%) 

Memory 

Usage 
76804 KB 78196 KB 113584KB 217284KB 238472KB 

 

Table 2  

  Device utilization summary 

 FFT USF MF EDF 

#Slices(33088) 409(1%) 395(1%) 390(1%) 1088(3.29%) 

#Slice FFs(66176) 390(0%) 272(0%) 288(0%) 840(1. 27%) 

 #4 I/P LUTs(66176) 600(0%) 538(0%) 768(1%) 1276(1.93%) 

#bonded IOBs(964) 49(5%) 50(5%) 130(13%) 200(20.7%) 

  #MULT18x18s(328) 8(2%) 25(7%) 0 0 

#GCLKs(16) 1(6%) 1(6%) 1(6%) 1(6%) 

Memory Usage  214680KB 215256KB  168088KB 65760KB 

CPU Time 72. 57MHz 83.29MHz 200.64MHz 182.43MHz 

 
The synthesis results of the proposed architecture are 

summarized in Table 2. The synthesis was targeted to Xilinx 

VirtexII Pro VP70 FPGA and the ISE synthesis tool was used 

[10]. The synthesis results indicated that the designed 

architecture used 2282 Slices (6.896% of total device resources), 

1790 Slice FFs(2.7% of total device resources), 3182 LUT 

(4.81% of total device resources), 429 IOB (44.50% of total 

device resources), 33 MULT18x18 (10.06% of total device 

resources).  

The synthesis results show that the designed architecture can 

reach the processing rate of PAL frames (640×480 pixels). 

Higher search range will allow better quality results when 

processing high resolution videos. The performance can be 
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better if the level of parallelism is increased or if a faster target 

device is used. The architecture is scalable, and as the mass is 

not fixed, we can implement filter of different order. 

7. CONCLUSION 
This paper presents FPGA based hardware architecture for 

medical diagnosis. The detection algorithm determines breast 

nodule malignancy using digital image processing and statistical 

calculation based on sonographic features.  

This architecture considers blocks with 16x16 samples and it 

uses a search area with 16x16 samples, a search range of [1, 

+1] or [4, +5] or [15, +16]. This solution was specifically 

designed to meet the requirements of PAL with 640x480 pixels 

per frame.  

Our future work is to develop a classifier system using Artificial 

Neural Network and estimate to the accuracy for classifying 

benign and malignant tumors on USG. 
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