
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

33

Accessing and Evaluating AspectJ based Mutation
Testing Tools

Mayank Singh
Research Sholar,

Uttarakhnd Technical
University,

CSED, JPIET, Meerut

Shailendra Mishra

CSED, Bipin Chandra
Tripathi Kumaou Engineering

College, Dwarahat,

Dstt. Almora, UK

Rajib Mall
Department of Computer
Sciecne & Engineering,

IIT, Kharagpur, WB

ABSTRACT
Software testing plays a crucial role in software development life

cycle. Without testing, quality of software product is questionable.

Mutation testing, widely accepted fault based testing technique.

Aspect Oriented Programming is a new methodology that introduces

the concept of modularization. AspectJ is an aspect oriented

programming language that provides the concept of pointcut and

advice. With new features, AOP introduces new faults that can be

easily handled by mutation testing. In this paper, we evaluate the

available AspectJ based mutation testing tools and identify the basic

requirements that must be satisfied by any developed tool.

Keyword
Mutation testing, Automated Mutation Testing tool, Fault based

mutation testing tool, Mutation testing tool for AspectJ, AOP based

Mutation testing tool.

1. INTRODUCTION
Software testing is the activity of establishing confidence that a

system does what it is supposed to do and does not what it is not

supposed to do. Since it is impossible to build an error-free system,

testing a system is an essential process in software development.

Thus, a great deal of research on software testing has been carried out

for many years [2,4].

Traditionally, software systems have been developed in a procedural

environment and then in object oriented environment. Recently, a new

approach to system decomposition has become popular called aspect-

oriented programming (AOP), which makes it possible to clearly

express programs involving such aspects, including appropriate

isolation, composition and reuse of the aspect code [5,12].

The advent of object-oriented methodologies pulled the state of the

system into individual objects, where it could be made private and

controlled through access methods and logic [31]. This leads to the

current situation: Developers are still having difficulty fully

expressing a problem into a completely modular and encapsulated

model. Although breaking a problem into objects makes sense, some

pieces of functionality must be made available across objects. Aspect-

oriented programming (AOP) is one of the most promising solutions

to the problem of creating clean, well-encapsulated objects without

extraneous functionality.

The purpose of this work is to attempt to evaluate advantages and

limitations of the current AspectJ based mutation testing tools. In this

paper, we will find out the basic requirements to develop a mutation

testing tool for AspectJ based systems. In this paper, we will compare

the available AspectJ based mutation testing tools on the basis of

requirements and identify the limitations. The structure of the paper is

as follows. Section 2 describes the mutation testing process. Section 3

describes the current aspect oriented mutation testing tools. Section 4

describes the basic requirements to develop a mutation testing tool.

Finally, section 5 makes a conclusion on the requirements on the basis

of current aspect oriented mutation testing tools and proposes future

research plans.

2. MUTATION TESTING
Fault-based testing strategies test software by generating test data that

will find specific, common types of faults. Mutation testing is a fault-

based testing technique, proposed by DeMillo, Lipton, and Sayward

[1] in 1978. Mutation testing is a software analysis method in which

faults are deliberately injected into a program, in order to determine

whether or not a set of test inputs can distinguish between the original

program and the programs with injected faults [3]. Mutation analysis

is based on the adequacy criterion that seeks to measure the quality of

test data used to exercise a given program (mutation adequacy) [4].

The quality of a test set is related to the ability of that test set to

differentiate the program being tested from a set of marginally

different, and presumably incorrect, alternate programs. Thus, the

goal of the tester during mutation analysis is to create test cases that

differentiate each mutant program from the original program by

causing the mutant to produce different output [32].

The two basic assumptions underlying the mutation technique are the

competent programmer hypothesis and the coupling effect [33, 34].

The competent programmer hypothesis states that the competent

programmer will produce programs, which, if not actually correct, are

close to being so. In other worlds, a program written by a competent

programmer may be incorrect, but it will differ from a correct version

by relatively simple faults. The coupling effect states that complex

faults are coupled to simple faults in such a way that a test data set

that detects all simple faults in a program will detect most complex

faults [35,36].

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

34

2.1 Mutation testing process
The processes of traditional mutation testing are as in the following

[37,38].

i. Construct the mutants of a test program.

ii. Add test cases to the mutation system (generated manually

or automatically).

iii. The test case is first executed against the original version of

the test program, then checks the output of the program on

each test case to see if it is correct.

iv. If the output is incorrect, a fault has been found and the

program should be corrected and the mutation process

restarted. If correct, that test case is executed against each

live mutant.

v. The output of mutant program is compared to the expected

output. If the output of a mutant differs from that of the

original program on the same test case, the mutant is killed.

vi. After all of the test cases have been executed against all of

the live mutants, each remaining mutant falls into one of

these two categories:

 Equivalent mutants: Once identified as an equivalent

mutant, there is no need for the mutant to remain in the

system for further consideration.

 The mutant is killable, but the test set of test cases is

insufficient to kill it. In this case, new test cases need

to be created to kill the remaining live mutants.

vii. The process of adding test cases, examining expected

output, and executing mutants continues until the tester is

satisfied with the number of dead mutants.

This testing process is graphically shown in Figure 2. The solid boxes

represent steps that are automated by traditionally, and the dashed

boxes represent steps that are done manually [37].

Figure 1: Traditional Mutation Testing Process [30]

3. CURRENT ASPECTJ BASED MUTATION

TESTING TOOLS

3.1 MuAspectJ
Jckson and Clarke proposed a mutation testing tool for aspect oriented

programming named, MuAspectJ [7] . MuAspectJ generates mutants

for AspectJ programs based on aspect oriented and non-aspect

oriented specific mutation operators. MuAspectJ evaluated in terms of

the quality of generated mutants. To evaluate the quality of mutants

benchmarking metrics is used against well known Java mutation

testing tool, MuJava [8]. The quality is in terms of location coverage

and mutation density. Location coverage is a measure of the

proportion of locations for which mutants are generated. Mutation

density is a measure of the number of mutants that are generated for a

location [8,9].

Mutation analysis is the way to measure testability and can be used in

testing experiments. Primary goal to develop MuAspectJ is to

measure the testability of AspectJ programs through experiments. To

generate and evaluate mutants, Health Watcher system is used

[10,11]. MuAspectJ uses pointcut, advice and declarations locations to

implement mutation operators for mutant generation [12].

MuAspectJ is implemented as an eclipse plug-in that operates on

AspectJ projects. Tool implementation uses some components like

Source File Finder component, which identifies all Java and AspectJ

source files in an AspectJ project under analysis, Parser, that creates a

Document Object Model (DOM) to represent the source, and AspectJ

Compiler, that is used to compile each candidate mutant.

3.2 AJMutator
Delemare presents a mutation testing tool for mutation analysis of

AspectJ Pointcut Descriptors named, AjMutator [13]. To generate a

set of mutants, AjMutator implements several mutation operators that

introduce faults in pointcut descriptors [14]. AjMutator classifies the

mutants according to the set of joinpoints they match compared to the

set of joinpoints matched by the initial PCD. An interesting result is

that this automatic classification can identify equivalent mutants for a

particular class of PCDs. AjMutator can also run a set of test cases on

the mutants to give a mutation score.

AOP introduces new kinds of fault types that should be addressed by

testing techniques. Faults can be located in the advice, in the PCD or

can arise from the composition of the aspects. The PCD is the place

that is the most fault-prone in an aspect, as observed by Ferrari et al.

[12].

AjMutator automatically classifies the mutants by comparing the sets

of joinpoints matched by the mutant and the initial PCD. They

automate this classification at compile time by leveraging the static

analysis performed by the compiler that computes the set of joinpoints

matched by the PCDs. This classification is benefit to conclude the

equivalent mutants if the mutants matches the same set of joinpoints.

If the set of joinpoint is different, the advice is not correctly woven,

and it can cause huge side effects.

AjMutator is separated in three distinct parts:

1. The generation of mutant source files from AspectJ source file

2. The compilation of the mutant source files

3. The execution of a test cases on the mutants to calculate the

mutation score of this set of test cases

The component, parser builds an abstract-syntax tree (AST) for each

PCD in the AspectJ source files. A pretty-printer then produces a

mutant AspectJ source file for each mutant AST. The parser has been

developed using SableCC [15], an open-source compiler generator.

The mutation operators are implemented using the visitor pattern.

After the mutants have been generated, they need to be compiled. It

relies on the abc compiler [16], which is an alternative compiler for

AspectJ. The information is then used by AjMutator to classify the

F

T
quit All mutants

dead?

T F

tests

Run test cases

on each live

mutant

Fix

program

Analyze and mark

equivalent mutants
Run test cases

on program

Input Test

Cases

Create

Mutant

s

Input Test

Program

Program

Program (test)

Correct?

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

35

mutants. The accuracy of the classification process depends on

whether the original PCD of the mutant is static or dynamic.

The goal of a mutation analysis is to evaluate a test suite with a

mutation score. AjMutator relies on JUnit for the test cases . A mutant

is killed if at least one test case has a different result on the mutant

system. So if all the test cases pass on the original system, a mutant is

killed if at least one test case fails. Two different systems are used to

evaluate AjMutator. The first system is an Auction system, and the

second is the Health-Watcher [17].

3.3 ProteumAj
The tool implements reference architecture for software testing tools

named RefTEST [20], from which the main functional modules were

derived. Proteum/AJ supports the four main steps of mutation testing,

as originally described by DeMillo et al. [1]:

(i) The original program is executed on the current test set and

test results are stored;

(ii) The mutants are created based on a mutation operator selection

that may evolve in new test cycle iterations;

(iii) The mutants can be executed all at once or individually, as

well as the test set can be augmented or reduced based on

specific strategies; and

(iv) The test results are evaluated so that mutants may be set as

dead or equivalent, or mutants may remain alive.

Main input of Proteum/AJ is the target application that must be a

compressed file. This file contains all modules (classes, aspects and

libraries) of the application under test. The Application Handler

module then runs a pre-processing step, whose outputs are the

decompressed original application and a list of target aspects. The

decompressed application is sent to the Test Runner module together

with the test case files. The Test Runner executes the application on

the available test set by invoking the JUnit Ant task. The results are

stored for further evaluation of mutants.

The Mutation Engine receives as input the list of target aspects

identified by the Application Handler and the set of mutation

operators selected by the tester. It produces the set of mutants that are

passed to the Mutant Compiler. This module invokes the ajc compiler

through the iajc Ant task provided with the AspectJ API [24]. The

Mutant Compiler detects non-compilable mutants which are classified

as anomalous. For compileable mutants, the weaving information

produced by the ajc compiler is collected at this stage and further used

by the Mutant Analyser module. Proteum/AJ runs JUnit test cases to

evaluate the mutants.

3.4 Advice Tracer
Delamare proposes a test-driven approach for the development and

validation of the PCD. They developed a tool, AdviceTracer [25],

which enriches the JUnit API with new types of assertions that can be

used to specify the expected joinpoints. AdviceTracer can determine

at runtime which advice (defined in a particular aspect) is executed

and at which place in the base program. This information can then be

used to build oracles that specifically target the presence or absence of

an advice, and do not just check if the advice executes correctly [12].

The AdviceTracer tool [25] allows a programmer to write test cases

that focus on checking whether or not a joinpoint has been matched

by the PCD [27]. More precisely, AdviceTracer is used to specify an

oracle that expects the presence or absence of an advice at a particular

point in the base program. Test cases can specify the PCD without

executing the behavior of the advice [26].

3.5 Angalabagan & Xie’ Tool
Angalabagan proposed a new framework that automatically identifies

the strength of each pointcut and generates pointcut mutants with

different strengths [6]. Developers can inspect the pointcut mutants

and their join points for pointcut correctness or choose the mutants for

conducting mutation testing. They conducted an empirical study on

applying our framework on pointcuts from existing AspectJ programs

[12]. The results show that the framework can provide valuable

assistance in generating effective mutants that are close to the original

pointcuts and are of appropriate strength.

The proposed framework serves the following purposes: generating

relevant mutants and detecting equivalent mutants. Finally the

framework reduces the total number of mutants from the large number

of initial generated mutants. The framework also classifies the

mutants and ranks them using a string similarity measure to help the

developer choose a mutant that resembles closely the original one.

The input to the framework is AspectJ source code and Java bytecode

of the base program. The output from framework is a ranked list of

pointcut mutants for each original pointcut in the AspectJ source code

and the differences of the join points matched by the original pointcut

and the pointcut mutants.

The main components of framework are: pointcut parser, which

identifies pointcuts in the given AspectJ source code, joint point

candidate identifier, which identifies the join point candidates from

the given Java bytecode for the base program, mutant generator,

which forms mutants for the pointcuts identified by the pointcut

parser, and pointcut tester, which verifies the join point candidates

identified by the candidate identifier against a pointcut identified by

the pointcut parser. In general, the pointcut tester, developed based on

an AspectJ unit testing framework [28], can be used to verify

pointcuts of an aspect class without weaving the aspect code to the

base program.

4. REQUIREMENTS TO DEVELOP A

MUTATION TESTING TOOL
From the evolution of these aspect oriented mutation testing tools, we

identifies some requirements that should be provided by mutation

based testing tool [18,28,29]. The identified requirements are as

follows:

1. Mutant generation level: It includes the generation of mutants

either byte code level or source code level.

2. Produce Non-Executable Mutants: It includes the generation of

non executable mutants. If mutants are not executable then the

mutants is anomalous that is not included in mutation analysis.

3. Mutants Format: It includes the format of generated mutants i.e.

Separate Class File, Separate Source File, In-Memory or

Grouped in Source Files.

4. JUnit Support: For test cases generation JUnit is used. This

requirement includes the use of JUnit.

5. Handling of Test Cases: It includes the execution of test cases,

activation or deactivation of test cases.

6. Handling of Mutants: It includes the generation of mutants,

selection of mutants, execution and analysis of mutants.

7. Adequacy Analysis: It includes the calculation of mutation

score on the basis of total used mutants, equivalent mutants

and dead mutants.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

36

8. Test Case Reduction: It includes the reduction of used test

cases by eliminating the redundant test cases.

9. Unrestricted Program Size: This requirement includes the used

size of program for testing.

10. Support for testing Strategies: It includes the order of mutation

operators to apply on the target application.

11. Independent Test Configuration: Test input and output should

not be restricted by the tool.

12. Test case generation: Automatically generation of test cases

should be included by the tool.

13. Test case editing: It includes the modification of existing test

cases or alteration of available test cases.

14. Interface: Which types of interface are including to test the

target programs i.e. menu or command line or code browser.

15. Automatic program execution: It includes the execution of

original programs as well as mutants to be executed or

compiles automatically.

16. Evolution of Equivalent mutants: This requirement includes

the generation of equivalent mutants and makes a procedure to

record the equivalent mutants.

17. Test phase supported: It includes the supporting test phases i.e.

unit, integration or system level.

The following table 1 shows the limitations and advantages of

AspectJ based mutation testing tools on the basis of identified

requirements.

Table 1: Basic Requirements to Develop AspectJ Based Mutation

Testing Tool

Req. MuAspectJ AjMutator
Proteum/

AJ

Advice

Tracer

Anbalagan

& Xie

Mutant

Generation

Level

Source Code
Source

Code

Source

Code

Source

Code
Source Code

Produce

Non-

Executable

Mutants

Partial Partial Partial Partial No

Mutant

Format

Grouped in

Source File

Separate

Source File

Separate

Source File

Grouped

in Source

File

Grouped in

Source File

JUnit

Support
Yes Yes Yes Yes No

Handling of

Test Cases
Partial Partial Partial Partial No

Handling of

Mutants
Partial Partial Yes No Partial

Adequacy

Analysis
Partial Partial Partial Partial Partial

Unrestricted

Program Size
No No Yes No No

Support for

Testing

Strategies

No No Partial No No

Independent

Test

Configuration

No Yes Yes No No

Test Case

Generation
Yes Automatic Automatic Yes Yes

Test Case

Editing
No No No No No

Interface
Browser Plug-

in

Command

Line

Command

Line

Command

Line

Command

Line

Automatic

Program

Execution

Yes Yes Yes No Yes

Evolution of

Equivalent

Mutants

Yes Yes Yes No No

Test Phase

Supported
Unit Unit Unit Unit Unit

5. CONCLUSION AND FUTURE SCOPE
Despite the weakness of these mutation testing tools, we find them

indispensable. These tools provide a different way of testing research.

Major weaknesses of these tools are performance, complexity and

user interfaces. Major disadvantages of available AspectJ based

mutation testing tool is that they support only specific technique. We

should develop a complete testing tool which includes at least

important testing techniques. Another drawback is that different tools

provide different interfaces which are difficult to remember as well as

complicated to handle`. Even for the same testing technique, features

of different tools are different which makes it complex to choose the

best tool. Use of different external tools to develop different testing

tool is another drawback of these tool. AspectJ based system level

mutation testing is completely missing. Our future scope is to develop

an AspectJ based system level mutation testing tool with use of only

one external tool named, JUnit. We will try to develop a complete

mutation testing tool for unit as well as system level to overcome the

drawbacks of currently available mutation testing tools.

7. REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test

Data Selection: Help for the Practicing Programmer,”

Computer, vol. 11, no. 4, pp. 34–41, April 1978.

[2] Beizer B., Software Testing Techniques, 1990.

[3] Michael C, Promoting Firm Mutation Testing to Strong

Mutation Testing with Stochastic Methods, TR 95-003-07, Nov.

1995.

[4] R. T. Alexander, J. M. Bieman, S. Ghosh, and B. Ji, “Mutation

of Java Objects,” in Proceedings of the 13th International

Symposium on Software Reliability Engineering (ISSRE’02).

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

37

Annapolis, Maryland: IEEE Computer Society, pp. 341–351,

12-15 November 2002.

[5] P. Anbalagan and T. Xie, “Efficient Mutant Generation for

Mutation Testing of Pointcuts in Aspect-Oriented Programs,” in

Proceedings of the 2nd Workshop on Mutation Analysis

(MUTATION’ 06). Raleigh, North Carolina: IEEE Computer

Society, p. 3, November 2006.

[6] P. Anbalagan and T. Xie, “Automated Generation of Pointcut

Mutants for Testing Pointcuts in AspectJ Programs,” in

Proceedings of the 19th International Symposium on Software

Reliability Engineering (ISSRE’08). Redmond, Washington:

IEEE Computer Society, pp. 239–248, 11-14 November 2008.

[7] Andrew Jackson and Siobhán Clarke, “MuAspectJ: Mutant

Generation to Support Measuring the Testability of AspectJ

Programs”, Technical report (TCD-CS-2009-38), ACM,

September 2009.

[8] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon, “MuJava: An

Automated Class Mutation System,” Software Testing,

Verification & Reliability, vol. 15, no. 2, pp. 97–133, June

2005.

[9] Jeff Offutt, Yu-SeungMa and Yong-Rae Kwon, “The Class-

LevelMutants of MuJava”, Workshop on Automation of

Software Test (AST 2006). pages 78-84, Shanghai, China, May

2006,

[10] T. Sugeta, J. C. Maldonado, and W. E. Wong, “Mutation

Testing Applied to Validate SDL Specifications,” in

Proceedings of the 16th IFIP International Conference on

Testing of Communicating Systems, ser. LNCS, vol. 2978,

Oxford, UK, p. 2741, 17-19 March 2004.

[11] Uira Kulesza, Claudio Sant'Anna, Alessandro Garcia, Roberta

Coelho, Arndt von Staa, and Carlos Lucena, ”Quantifying the

effects of aspect-oriented programming: A maintenance study”,

in ICSM '06: Proceedings of the 22nd IEEE International

Conference on Software Maintenance, IEEE Computer Society,

pages 223-233, Washington, DC, USA, 2006.

[12] Fabiano Cutigi Ferrari, Jose Carlos Maldonado, and Awais

Rashid, ”Mutation testing for aspect-oriented programs” in

ICST '08: Proceedings of the 2008 International Conference on

Software Testing, Verification, and Validation, IEEE Computer

Society, pages 52-61, Washington, DC, USA, 2008.

[13] R. Delamare, B. Baudry, and Y. Le Traon, “AjMutator: A Tool

For The Mutation Analysis Of AspectJ Pointcut Descriptors,” in

Proceedings of the 4th International Workshop on Mutation

Analysis (MUTATION’09), published with Proceedings of the

2nd International Conference on Software Testing, Verification,

and Validation Workshops. Denver, Colorado: IEEE Computer

Society, pp. 200–204, 1-4 April 2009.

[14] Roger T. Alexander, Stephan Herrmann, Dehla Sokenou,

“Testing aspect-oriented programming Pointcut Descriptors”, in

Proceedings of International conference AOSD, ACM, page no

33-38, 2006.

[15] E. M. Cagnon and L. J. Hendren. Sablecc, “An object oriented

compiler framework”, in TOOLS’98: Proceedings of the

Technology of Object-Oriented Languages and Systems, IEEE

Computer Society, pages 140–154, August 1998.

[16] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J.

Lhot´ak, O. Lhot´ak, O. de Moor, D. Sereni, G. Sittampalam,

and J. Tibble, “ abc: an extensible aspectj compiler”, in

AOSD’05: Proceedings of the 4th international conference on

Aspect-oriented software development, ACM, pages 87–98,

New York, NY, USA, 2005.

[17] Healthwatcher. http://www.comp.lancs.ac.uk/

[18] Fabiano Cutigi Ferrari, Elisa Yumi Nakagawa, José Carlos

Maldonado, Awais Rashid, “Proteum/AJ: a mutation system for

AspectJ programs”, in Proceedings of the tenth international

conference on Aspect-oriented software development

companion (AOSD’11), ACM New York, NY, USA , 2010.

[19] José Carlos Maldonado, Márcio Eduardo Delamaro, Sandra C.

P. F. Fabbri, Adenilso da Silva Simão, Tatiana Sugeta, Paulo

Cesar Masiero, Auri Marcelo Rizzo Vincenzi, ”Proteum: A

family of tools to support specification and program testing

based on mutation”, in Mutation 2000 Symposium (Tool

Session), pages 113–116. Kluwer, 2000.

[20] E. Y. Nakagawa, A. S. Sim˜ao, F. C. Ferrari, and J. C.

Maldonado, “Towards a reference architecture for software

testing tools”, in SEKE’07, pages 157–162, 2007.

[21] AspectJ-front. http://strategoxt.org/Stratego/Aspe ctJFront -

accessed on 01/09/2011.

[22] Ant. http://ant.apache.org/ - accessed on 01/09/2011.

[23] iBATIS data mapper. http://ibatis.apache.org/ - accessed on

01/09/2011

[24] AspectJ documentation, 2010. http://www.eclipse.org/

aspectj/docs.php - accessed on 01/09/2011.

[25] R. Delamare, B. Baudry, , S. Ghosh, and Y. Le Traon, “A Test-

Driven Approach to Developing Pointcut Descriptors in

AspectJ,” in Proceedings of the 2nd International Conference

on Software Testing Verification and Validation (ICST’09),

Davor Colorado, pp. 376–38, 01-04 April 2009.

[26] L. Ye and K. D. Volder, “Tool support for understanding and

diagnosing pointcut expressions”, in AOSD’08: Proceedings of

the 7th international conference on Aspect oriented software

development, New York, NY, USA, ACM, pages 144–155,

2008.

[27] C. Koppen and M. Storzer, “Pcdiff: Attacking the fragile

pointcut problem”, in European Interactive Workshop on

Aspects in Software (EIWAS), September 2004.

[28] J. Horgan and A. Mathur, “Assessing testing tools in research

and education”, IEEE Software, 9(3):61–69, 1992.

[29] L. Madeyski N. Radyk, ”Judy – a mutation testing tool for

Java”, Published in IET Softw., Vol. 4, Iss. 1, pp. 32–42, 2010.

[30] Scholivé, M., Beroulle, V., Robach, C., Flottes, M.L.,

Rouzeyre, B., “Mutation Sampling Technique for the

Generation of Structural Test Data”, published in proceedings

of Design, Automation and Test in Europe (DATE’05), 2005.

[31] Derezi´nska, “Object-oriented Mutation to Assess the Quality

of Tests,” in Proceedings of the 29th Euromicro Conference,

Belek, Turkey, pp. 417– 420, 1-6 September 2003.

[32] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E.

Delamaro, “Proteum/FSM: A Tool to Support Finite State

Machine Validation Based on Mutation Testing,” in

Proceedings of the 19th International Conference of the Chilean

Computer Science Society (SCCC’99), Talca, Chile, p. 96,

11-13 November 1999.

[33] R. J. Lipton and F. G. Sayward, “The Status of Research on

Program Mutation,” in Proceedings of the Workshop on

Software Testing and Test Documentation, pp. 355–373,

December 1978.

[34] J. Offutt, “The Coupling Effect: Fact or Fiction,” ACM

SIGSOFT Software Engineering Notes, vol. 14, no. 8, pp. 131–

140, December 1989.

[35] J. Offutt, “Investigations of the Software Testing Coupling

Effect”, ACM Transactions on Software Engineering and

Methodology, vol. 1, no. 1, pp. 5–20, January 1992.

http://dl.acm.org/author_page.cfm?id=81100502453&CFID=42136016&CFTOKEN=92543470
http://dl.acm.org/author_page.cfm?id=81100504738&CFID=42136016&CFTOKEN=92543470
http://dl.acm.org/author_page.cfm?id=81350592943&CFID=42136016&CFTOKEN=92543470
http://www.comp.lancs.ac.uk/
http://dl.acm.org/author_page.cfm?id=81315488593&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81350601948&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100169140&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100169140&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100169140&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100280083&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81100169140&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81409598041&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100024339&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100024339&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100024339&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100414796&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100327134&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100538482&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100538482&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100538482&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://dl.acm.org/author_page.cfm?id=81100064463&coll=DL&dl=ACM&trk=0&cfid=42136016&cftoken=92543470
http://strategoxt.org/Stratego/Aspe
http://www.eclipse.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9609

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.1, October 2011

38

[36] K. S. H. T. Wah, “An Analysis of the Coupling Effect I: Single

Test Data,” Science of Computer Programming, vol. 48, no. 2-

3, pp. 119– 161, August-September 2003.

[37] Offutt A., A Practical System for Mutation Testing: Help for

the Common Programmer, Twelfth International Conference

on Testing Computer Software, 99-109, Washington D.C. June

1995.

[38] DeMillo R., Constraint-Based Automatic Test Data

Generation, IEEE Transactions on Software Engineering,

17(9): 900-910, 1991.

