
International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

1

CA-ESB: Context Aware Enterprise Service Bus

ABSTRACT
Enterprise Service Bus (ESB) is responsible for publishing

and discovery of services in such environments. Context-

aware systems offer entirely new opportunities for application

developers and for end users by gathering context data and

adapting systems’ behavior accordingly. In this paper, we

propose a Context Aware ESB (CA-ESB) that will publish

and discover services based on location context. The main

modules of the framework consist of Context Provider (senses

location context), Context Aware Logic Module (decides

which regional service to be selected based on location

context) and Service Choreographer (choreographs selected

services). We propose a graphical model named Context

Aware Graph (CA-Graph) that will help us to dynamically

choreograph the services. These modules along with other

modules of SOA reference architecture will help the ESB to

sense the location of users, to select the required services and

dynamically choreograph those services. We define a set of

metrics based on CA-graph and analyse of performance CA-

ESB. An algorithm is proposed that will dynamically

choreograph the selected services based on location context.

The results of the case study of an Insurance System are used

to illustrate our approach.

General Terms

Service Oriented Architecture

Keywords

Cloud Computing, Context-aware, Enterprise Service Bus,

SOA based global delivery model, dynamic service

choreography, CA-Graph

1. INTRODUCTION
Distributed Delivery Model[11] is a bi-directional sequence of

activities consisting of requirements specification, analysis,

design, development, integration, testing, and maintenance.

These activities may not always be performed in a linear fashion,

as there may be some overlap between and across certain

processes. The distributed delivery model has gained immense
importance as these days software is developed in a distributed

manner with a common core component and various regional

components interfacing with it.

Service-orientation requires loose coupling of services with

operating systems, and other technologies that underlie
applications. SOA separates functions into distinct units known
as services, which developers make accessible over a network in

order to allow users to combine and reuse them in the production

of applications. These services and their corresponding

consumers communicate with each other by passing data in a

well-defined, shared format, or by coordinating an activity

between two or more services.

Using the SOA approach, in the distributed delivery model the

services can be divided into core services and regional services.

The core services will remain same for all applications and

regional services will vary from one application to another

application. The regional services interface with the global

services to serve the overall business function requirements at

each location. Enterprise Service Bus (ESB) is responsible for

publication, registration and discovery of services in distributed

heterogeneous environments. In this paper, we propose a Context

Aware ESB (CA-ESB) that will publish and discover services

based on location context. This type of ESB framework is very

relevant for region specific global development scenario. A new

graphical model named Context Aware Graph (Ca-Graph) is

proposed that models the services/processes and their

interconnections for all the locations. The common/core services

and the location specific services are represented as nodes and

the edges are formed based on the interconnection of these

services to implement a requirement scenario. Discovery of

services becomes much simpler using CA-ESB as the CA-Graph

unveils the service choreography for each location dynamically.

Analysis of CA-Graph using a metrics proposed in this paper

clearly illustrates the performance of CA-ESB vis-à-vis a

traditional ESB.

2. REVIEW OF RELATED WORK
 Areas related to SOA have become prominent research domains.

Here we discuss about some of the relevant research works in the

field of Enterprise service bus (ESB).

A dependable ESB framework that enables automated recovery

from component failures is proposed in [1]. The authors in [2]

propose an ESB framework to enable the content-based

intelligent routing path construction and message routing. [3]

presents computation-independent models (CIMs) and platform

independent models (PIMs) for service oriented architectures.

Existing ESB-based system have difficulties to manage complex

events of real-world applications very well. A complex event-

processing model based on the relational algebra is proposed in

[4], and then it proposes a complex event processing oriented

enterprise service bus. [5] presents Omnipresent, which is a

service-oriented architecture for context-aware applications that

may be accessed from either mobile devices or Web browsers,

and it is based on Web services page layout.

Jayeeta Chanda
B.P.Poddar Institute of

Management &Technology
Kolkata, India

Sabnam Sengupta
B.P.Poddar Institute of

Management
&Technology
Kolkata, India

Ananya Kanjilal
B.P.Poddar Institute of

Management
&Technology
Kolkata, India

Swapan
Bhattacharya

Jadavpur University

Kolkata ,India

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

2

In [8], a design of a Dynamic Composition Handler on

Enterprise Service Bus (ESB) is presented which analyze

different types of service compositions to clarify what dynamic

composition really holds in SOC.

In [9], service composition and discovery are not treated

separately. Here a matching algorithm is developed that

combines several services which are not known and need to be

discovered. In [10], the flexible architecture of the discovery

engine Glue2 is proposed which comes with a powerful set of

discovery components (for functional matching, non-functional

matching, data fetching, etc.) that can be executed in different

order as required by specific execution workflows.

In our previous work in [7] a graph named D-SG is proposed to

model design models in distributed environment. The sequence

diagrams are interleaved such that the business process at a

location spans several sequence diagrams modeling the common

and regional use cases. This is modeled graphically using

Distributed Scenario Graph (D-SG). Our work in this paper

closely relates to this graph model.

In the domain of context aware software architectures, the

current work proposes to encompass the design of a context

aware ESB that will enable publishing and discovery of services

based on location context of the users. Our approach is to

incorporate context awareness to ESB unlike other existing

work. Incorporating context awareness to ESB will enable the

developer to control the algorithms related to context awareness

centrally in the ESB(which act as a middleware) where as in the

existing works in Context Aware SOA the context awareness is

achieved through end devices. This kind of ESB framework will

be of immense importance in global software development

scenario where services can be region specific of the users.

3. SCOPE OF WORK
In this paper, we propose a model to publish and discover

services in a distributed delivery model. In a geographically

distributed development scenario, there are some services that

are region specific. These services may include language specific

user interfaces, region specific business policies, different

currencies etc. The region specific services will have multiple

location dependent copies for a single service. The no. of copies

will be equal to the no. of location. If these services are

maintained in the registry of a traditional ESB, the discovery of

services will be very cumbersome because in an application for

specific services of a particular location, the discovery of

services will be very complex. The CA-ESB framework is

proposed such that it can sense the location context from the

URL or IP address of the service consumer (Context Provider)

chose the region specific services along with core services using

context aware logic and perform service choreography

dynamically with the selected regional services as well as core

services by traditional ESB..

Figure 1: Roadmap to our approach

Dynamic Choreography, Context Aware Logic and Context

Provider add the essence of context awareness to the Enterprise

Service Bus While developing the application, the publishing of

services can also be location context aware. The service registry

will display services that are specific for that particular region

(for which the application is developed).

The scope of this paper is depicted in Figure 1. Here, Context

Aware Graph (Ca-Graph) is proposed that models the

services/processes and their interconnections for all the locations.

In this framework, the traditional ESB with the help of CA-graph

and location information functions in such a manner that it gets

the essence of CA-ESB that performs dynamic service

choreography. An Algorithm is proposed which will perform the

dynamic choreography of services based on location context.

Some metrics are also proposed to analyse the performance of

this CA-ESB framework.

4. SOME COMMON TERMINOLOGY

USED

In this work we have used some terms to describe our work.

Before the description of our proposed work , in this section we

will define those jargons/terminology that are frequently used

throughout this paper for better understanding of our work

• Service Vs Process

The term Process is used when we describe a specific task

in the Analysis Phase of SOA software development.

Different processes are arranged together (choreographed)

to render a specific functionality. Services on the other hand

are loosely coupled entities spread over a distributed

system. Once the processes are choreographed for a

particular application, they will be mapped with the loosely

coupled services. So, processes are tightly coupled logical

entities and services are loosely coupled physical entities. In

this work , we will use process in parallel with service

Once the processes are choreographed , the same process

will be mapped with the services and that service will be

either constructed or discovered in ESB.

• Regional Processes Vs Common Processes

In a global development scenario, the s/w development is

done for requirements that cross regional boundaries. In an

application, there will be multiple region specific processes

for the same functionality. For example, GUI interface will

be different for different location (language specific). Also,

different regions have different business policies leading to

multiple processes of the same function.

5. PROPOSED CA-ESB FRAMEWORK

The CA-ESB (Context Aware Enterprise Service Bus)

framework is shown in Figure 2.

The modules of CA-ESB are:

5.1 Service Consumer

They are the users of the application. In our context aware

scenario, they are spread over multiple regions. Their request

will be served based on the location context provided by the

Context Provider.

Location

Information

Context

Provider

Context

Aware Logic

ESB

CA-Graph Dynamic

Choreography

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

3

5.2 Context Provider
Context Provider will provide location context of the users. The

enterprise service bus will be provided with location context of

the users. Based on this location context, the regional services

will be chosen by the ESB. The location context can be the URL

or IP address of the users. The output of this module (URL or IP

address) will be forwarded to Context Aware Logic Module

(CAL) for selecting region specific services.

Internet Application

Consumers

 Enterprise Service Bus

Context

Provider

Context Aware

Logic

Service Choreography

RS

1

RS

2RS

3

RS

4

RS

5

RS ->Regional Services

CS->Core Services

CS

Figure 2: The CA-ESB Framework

5.3 Context Aware Logic Module (CAL)

Using the context data (i.e. The IP address or URL) of the user,

this module will choose region specific services that are different

for different users. Different regions have different business

policies, different GUIs etc. So, the services will be different for

different users of different location. This module will store the

information regarding region specific services and select those

services based on the location context of particular user. These

selected services will be used for choreography by the next

module.

5.4 Service Choreographer
This module choreographs the services chosen by CAL

dynamically in run time. Services are regional services as well as

core services. Dynamic choreography is required as the regional

services are different for different applications (or users).

The fifth module is the traditional enterprise service buses that

will work along with the other four modules give the flavor of

CA-ESB.

6. DYNAMIC SERVICE CHREOGRAPHY

AND EFFICIENCY OF CA-ESB
The Context aware logic (CAL) module of the CA-ESB

framework stores the region specific process/ services

information and select services accordingly when location

information is acquired and sent by the context provider. To

model the process/service information in CAL module, we

propose a Context Aware Graph and calculate the efficiency of

CA-ESB compared to traditional ESB using the proposed graph.

CA-Graph is used to model the processes of an application and

their interconnections for different locations of users.

6.1 CA-Graph: Graphical representation

of processes
We propose a graph called Context Aware Graph (CA-Graph)

that will help us to categorize the processes of the application

according to the location of the users. The processes represent

the business processes of the SOA reference Architecture [6].

TABLE 1: CA-GRAPH CONSTRUCTS

Grap_

Const

r_ID.

Graph

Construct

Meaning

1 1.L1 Naming syntax for regional

process means

Process 1 for location 1

2 2.C Naming syntax for common

processes which means

process 2 for all location

3 Flow of events(or processes)

4

a

Process ‘a’

5
a

b c

Exclusive-OR flow which mean

from process ‘a’ the flow will

move to either ‘b’ or ‘c’

depending on some condition

6

Parallel flow which means from

event(process)’b’ and ‘c’ will

occur in parallel after ‘a’

The processes will be mapped with the services in the service

choreography module. The CA-Graph = (V, E) is a graph

comprising of nodes/vertices and directed edges. The vertices

represent processes and edges are drawn to connect the vertices

based on the interconnection of the processes. Different graph

construct for CA-graph is tabulated in table 1.

The key points of the graph are:

• Regional processes are labelled as <process name>.

<location name> Eg. 1. L1, 2.L2 etc where L1,

L2.etc stands for different location.

• Common processes will have extension C.

• Solid Arrow is used for flow of events

• Circle indicates events/ process.

 6.2 CA-ESB and CA-graph
The process information in a tabular form will be stored in the

Context Aware Logic (CAL) part of our proposed CA-ESB

framework. This process represents a collective main process

that consists of sub processes. This tabular information is

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

4

named as Process Table .The Process Table has the following

fields

• Sub process name: The name of sub processes that

constitutes the main process.

• Pre process: This is the set of probable processes

preceding the process.

• Post process This is the set of probable processes

succeeding the process.

• Type of Process: This field indicates whether the

processes are regional (R) or common (C).

• Process Flow Type: This field indicates the flow of

the process with its post process (es). This can be

normal flow (N), parallel flow (P) or exclusive-OR

flow (E)

• Total Processes: This field consists of list of all

possible location based processes for a particular sub

process.

Table II in appendix represents a process table for the case

study of insurance system that is explained in Section VI.

When the context provider provides the information regarding

the location, the CAL module chooses the processes for that

particular location from the process table along with common

processes. These processes will be mapped with the services.

The next section briefly discusses the process of dynamic

choreography.

6.2 Dynamic Service Choreography
The service choreographer does the dynamic choreography of

services with the selected processes at runtime based on the

process connections as modelled in CA-Graph.

As an example, if the context provider senses the location as

location1 (L1), it will send the information to the CAL

module. CAL module has the information regarding which sub

processes are required for location L1 and Service

Choreographer will do dynamic service choreography at

runtime with the selected processes (or services). Once the

services required for a particular location are determined, the

ESB will publish only those services in the registry. This will

reduce the time associated with the discovery of services.

The following algorithm will identify services based on

location context from the process table and identify the

scenario path composed of services in a particular order.

Algorithm:

a) Input: Location context as LocationName

b) Data Structure to be used:

� Graph construct schema table (TABLE I)

 Schema: GraphID, GrConstruct)

� Process table (TABLE II of appendix)

Schema: ProcessId, ProcesssName, PreProcess,

PostProcess, ProcessType, ProcessID,

 ProcessFlowType

� ProcessFlow

 Schema: Source, Destination

c) Steps to be followed:

 1 .L: = GetLocationInput;

 # ProcessIDLoc is used to store instantaneous ProcessId

locally

 2. Set ProcessIDLoc: = 1;

 3. LOOP

T = GetTuple from Process Table

where (ProcessId = ProcessIDLoc);

 4. If (ProcessFlowType = ‘N’) then

 ProcessFlow = (Select GrConstruct when GraphId = 3

from Graph construct table)

 5. Else If (ProcessFlowType = ‘E’) then

 ProcessFlow = (Select GrConstruct when GraphId = 5

from Graph construct table)

 6. Else If (ProcessFlowType = ‘P’) then

 ProcessFlow = (Select GrConstruct when GraphId = 6

from Graph construct table)

 7. Set ProcessFlow. Source: = T. ProcessId and

ProcessFlow. Destination = T. PostProcess

 8. If T.ProcessType == ‘C’

Then ProcessIDLoc = T. PostProcess

 9. Else If T.ProcessType == ‘R’ then

 T = GetTuple from Process table

 where (LocationName = L AND ProcessID=ProcessIDLoc)

 Set

 ProcessIDLoc: = ProcessID. LocationName;

 Else continue;

END LOOP

d) Output:

Choreographed process based on the particular location

context (As Figure 5 and Figure 6 of the Appendix)

6.3 Notation Used for Performance

Analysis
The notations used to evaluate different performance

metrics of CA-ESB is given in table II.

TABLE II: Notations

Notation Meaning

Cmx Complexity metrics of CA-Graph for

traditional ESB

Cmx((CA) Complexity metrics of CA-Graph for CA-

ESB

Tmx Search metrics of CA-Graph for traditional

ESB

Tmx((CA) Search metrics of CA-Graph for CA-ESB

 6.4 Complexity Metrics
In this section, we calculate the complexity metrics for the

CA-ESB. This metrics will give the measure of no. of

processes and interconnections giving us an idea of the

complexity of the application.

If we suppose a Global development scenario that consists of

No. of common processes=m

No. of regional processes for a particular main process=n

No of location = L

Total no. of regional process

 = (No of location) x (No. of regional processes for a particular

main process)

= n*L

 So, total no. of processes

 = (No. of common processes) x

 (No. of regional processes)

 = Lnm *+

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

5

In a CA-Graph, the processes (common as well as regional)

are represented as the vertices of a graph and the

communication between processes are represented as the

edges of the graph.

Total no. of vertices of the CA-graph = m + n*L

Then, the maximum complexity of the graph (when all the

m+n*L processes communicate with all other processes)

()()1** −++= LnmLnmCmx ----------------------(1)

When CA-ESB using Context Aware Logic discovers the

services, only the services pertaining to a particular location

along with common services become visible in the CA-ESB

for discovery. As a result the graph effectively reduces to

Subgraph for a particular region having m+n processes.

The maximum complexity of the graph (when all the m+n

processes communicate with all other processes)

()()1)(−++= nmnmCACmx -------------------------(2)

Figure 3: Comparison of CA-ESB vis-à-vis traditional

ESB

Based on equations (1) and (2) we chose different values of L=1,

3 and 5 and plotted the Cmx and Cmx (CA) values corresponding

to normal ESB and CA-ESB respectively. As evident from the

graph in figure 3 that the Cmx (CA) values are lower than the Cmx

values indication that the use of CA-ESB significantly reduces

complexity.

6.5 Search Metrics
This section uses a metrics to mathematically compare the time

complexity involved in searching and discovering services in a

CA-ESB as against a normal ESB

If CA-ESB is not used, all the processes/services will be visible,

the total vertices (processes/ services) to be discovered is

 LnmTmx *+= --------------------------------------- (3)

When CA-ESB is used, the total vertices (processes/ services) to

be discovered only pertains to a particular location,

 nmCATmx +=)(--------------------------------------- (4)

So, Search complexity without using CA-ESB

 ()LnOTmx *=

Search Complexity when CA-ESB is used

 ()nOCATmx =)(

From (3) and (4), the time complexity of searching of services in

the ESB is reduced by L times if the CA-ESB is used.

7. CASE STUDY
We consider an application for an Insurance company who plans

to start its business operations in several countries across the

globe. The application consists of different processes, which are

being used by different users located in different places. Some

processes are common which are being used by all users who are

accessing the application irrespective of where they are located.

While some processes are specific to a country. Let us consider

that the application consist the following main processes

• Policy Creation

• Policy Maintenance

• Policy Claim

• Policy Termination
The flow of events (or sub processes) of the first processes

“Policy Creation” is given in a tabular form as Table III of

appendix. The processes are categorized as common processes

(marked as ‘C’) and regional processes (marked as ‘R’). Here,

the processes are considered for two locations namely L1 and

L2.

The main process (“Policy Creation”) consists of 10 sub

processes that are labelled according to the rule defined in

section V.A .CA-Graph is generated for process “Policy

Creation” as in Figure 5 of appendix. Details are given below

• It consists of 2 common processes i.e. m=2

• It consists of 9 regional processes i.e. n = 9

• The common processes are 2.C and 10.C labelled in

the graph as vertices.

• The regional processes are (1.L1, 1.L2), (3.L1,

3.L2)………….(9.L1, 9.L2) and (11.L1, 11.L2)

• CA-graph is generated for location L1 and L2, where

common processes are shared by both the locations.

• There is an Exclusive-OR flow from process 2 to the

process 3 or 5

• The complexity metrics for the graph

 (m = 2, n=9 and L =2)

• Total processes = m + nL = 2 + 9x2 = 20

Cmx = (m+nL) x (m+nL -1)

 = 20x19 = 380,

• Using CA-ESB,

 Total processes = m + n = 2 + 9 = 11

 Cmx (CA) = (m+n) x (m+n -1)

= 11x10

= 110 (Using equation (1) and (2))

• The search metrics for the graph

 (m=2, n =9 and L =2)

 Tmx = 20 and Tmx (CA) = 11

(Using equation (3) and (4))

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

6

0

50

100

150

200

250

300

350

400

Cmx Tmx

ESB

CA-ESB

Figure 4: Performance metrics comparison for Policy

Creation

Process table for “Policy Maintenance” process is given in table

IV of appendix. CA-Graph is generated for process “Policy

maintenance” as in Figure 6 of appendix.

Details are given below

• It consists of 2 common processes i.e. m=2

• It consists of 9 regional processes i.e. n = 9

• The common processes are 14.C and 21.C labelled in

the graph as vertices.

• The regional processes are (12.L1, 12.L2), (13.L1,

13.L2), (15.L1, 15.L2)………….(20.L1, 20.L2) and

 (22.L1, 22.L2)

• CA-graph is generated for location L1 and L2 where

common processes are shared by both the location.

• There is a parallel-flow from process 12 to the process

13 ,16 and 20

• The complexity metrics for the graph (m = 2 , n=9 and

L =2)

 Cmx = 380

 Cmx (CA) = 110 (Using equation (1) and (2))

• The search metrics for the graph

 (m=2, n =9 and L =2)

 Tmx = 20

 Tmx (CA) = 11 (Using equation (3) and (4)

Figure 4 shows a performance metrics chart that depicts the fact

that the performance of CA-ESB is improved both in terms of

complexity metrics(Cmx) and search metrics(Tmx) as compare to

traditional ESB for the process Policy Creation which is

distributed in two location(L=2). With the increase of the value

of L, we will get more increase in performance of CA-ESB as

compare to a traditional ESB. Performance metrics chart for the

process Policy Maintenance will be same as that of Policy

Creation because the no. of regional processes (n) and no. of

common processes (m) are same in both the cases.

8. CONCLUSION
In the present day scenario global delivery model is gaining

significance where applications are being developed in an

integrated manner for different users spread over geographically

different locations forming a cloud. The core processes remain

same, with several region specific processes catering to different

because of variations of languages, currency, business policies,

etc. In SOA architecture, ESB is responsible for publishing and

discovery of all services. We propose a new variation of ESB

named Context Aware ESB (CA-ESB) that will be very useful

for publishing and discovery of services in a global development

scenario. CA-ESB is able to sense location context, selectively

discover relevant services for a region and finally dynamically

choreograph them with the core services such that the whole

application behaves uniquely for each different location context.

We demonstrate using an algorithm and a set of metrics that the

efficiency of a global software development scenario improves

to a significant extent by using CA-ESB. This framework

attempts to provide solution for the problem of efficient

dynamic coordination of geographically distributed services.

9. REFERENCES
[1] Jianwei Yin, Hanwei Chen,Shuiguang Deng,and Zhaohui

Wu ,A Dependable ESB Framework for Service

Integration, IEEE transaction, March/April 2009 (vol. 13

no. 2), pp. 26-34,

http://www2.computer.org/portal/web/csdl/doi/10.1109/

MIC.2009.26

[2] Gulnoza Ziyaeva, Eunmi Choi and Dugki Min , Content
Based Intelligent Routing and Message Processing in

Enterprise Service Bus , International Conference on

Convergence and Hybrid Information Technology

2008(ICCIT08) , Nov 11-13 ,2008 ,Busan , Korea ,

[3] Gerald Weber, Technology-Independent Modeling of
Service Interaction, IEEE Proceedings of the 2008 12th

Enterprise Distributed Object Computing Conference

Workshops (EDOC08) , Pages 35-42 , 15-19 September

2008, Munchen, Germany

[4] Deng Bo Ding Kun Zhang Xiaoyi , A High Performance
Enterprise Service Bus Platform for Complex Event

Processing , IEEE 2008 Seventh International Conference

on Grid and Cooperative Computing(GCC 2008),October

24–26,2008. Shenzhen, China

[5] de Almeida , D.R. de Souza Baptista , C. da Silva,
E.R. Campelo , C.E.C. de Figueiredo , H.F. Lacerda ,.

A context-aware system based on service-oriented

architecture, 20th International Conference on Advanced

Information Networking and Applications(AINA 2006),

April 18 - 20 , 2006 ,Vienna, Austria.

[6] Design a SOA solution using Reference Architecture
www.ibm.com/developerworks/library/ar-archtemp/ -

[7] Ananya Kanjilal, Goutam Kanjilal, Swapan

Bhattacharya, “Integration of Design in Distributed

Development using D-Scenario Graph”, Proceedings of

IEEE International Conference on Global Software

Engineering, page 141-150, Bangalore, India, Aug 17-20,

2008.

[8] S.H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, S. D. Kim,
“Design of a Dynamic Composition Handler for ESB-

based Services” Proceedings of ICEBE 2007, page 287-

294 ,Hong Kong , 24-26 Oct ,2007

[9] Vaculin, R.; Neruda, R.; Sycara, K., “Towards
Extending Service Discovery with Automated

Composition Capabilities” Proceedings of ECOWS 2008

, page 3-12 ,Dublin, December 12 ,2008

[10] Carenini, A.; Cerizza, D.; Comerio, M.; Della Valle,
E.; De Paoli, F.; Maurino, A.; Palmonari, M.; Turati,

A.; “GLUE2: A Web Service Discovery Engine with

Non-Functional Properties” Proceedings of ECOWS

2008 , page 21-30 ,Dublin, December 12 ,2008

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

7

Appendix

TABLE III: PROCESS TABLE FOR THE POLICY CREATION

Sub

Process

No

Sub Process Name for

Policy Creation

Pre-

Process

Post

Process

Type of Process

(R/C)

Process

Flow

Type

Total Process

1. Application Entry - 2 R N 1.L1 1.L2

2. Underwriting 1 3 or 5 C E 2.C

3. Underwriting 1 2 4 R N 3.L1, 3.L2

4. Process Error 3,6 7 R N 4.L1 , 4.L24

5. Accept More Details 2 6 R N 5.L1 5.L2

6. Underwriting 2 5 4 R N 6.L1 6.L2

7 Process Error 3,6 7 R N 7.L1 7.L2

8 Premium Calculation 4 8 R N 8.L1 8.L2

9 Premium Payment 7 9 R N 9.L1 9.L2

10 Policy Issuance 8 10 C N 10.C

11 Certificate Generation 9 - R N 11.L1 11.L2

TABLE IV: PROCESS TABLE FOR THE POLICY MAINTENANCE

Sub

Process

No

Sub Process Name

for Policy Creation

Pre-

Process

Post

Process

Type of

Process (R/C)

Process

Flow

Type

Total Process

12 Policy Maintenance -------

-

13and16and

20

R P 12.L1 , 12.L2

13 Policy Upgradation 12 14 or 16 R E 13. L1 13.L2

14 Non-Financial update 13 16 R N 14.L1 14.L2

15 Financial update 13 16 C N 15.C

16 Policy Value

Calculation

12 17 R N 16. L1 16.L2

17 Add new premium 16 18 R N 17. L1 17.L2

18 Calculate interest 17 19 R N 18.L1 18.L2

19 Deductions 18 ---- R N 19.L1 19.L2

20 Loan Processing 12 21 R N 20. L1 20.L2

21 Accept Loan request 20 22 C N 21.C

22 Verify/recalculate

Loan amount

21 ----- R N 22. L1 22.L2

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.3, September 2011

8

1 . L 1 1 . L 2

2 . C

3 . L 1

6 . L 14 . L 1

5 . L 23 . L 25 . L 1

4 . L 2 6 . L 2

7 . L 1 7 . L 2

8 . L 1 8 . L 2

9 . L 29 . L 1

1 0 . C

1 1 . L 21 1 . L 1

L o c a t i o n 1

L 1

L o c a t i o n 2

L 2
P o l i c y C r e a t i o n

Figure 5: The CA-Graph for “Policy creation”

14

12.L!

13.L1
20.L1

16.L1

12.L2

13.L2
20.L2

16.L2

15.L1

15.L2

17.l1

18.L1

19.L1

17.l2

18.L2

19.L2

21

22.L2

22.L1

Location 1 Location 2

Policy Maintenence

Figure 6: The CA-Graph for “Policy maintenance”

