
International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

6 

Aurangzeb Khan 
DCE, College of E & ME 

National University of Science 
and Technology (NUST), 

Pakistan 

Farooque Azam 
DCE, College of E & ME 

National University of Science 
and Technology (NUST), 

Pakistan 

Jahanzaib Khan 
DCE, College of E & ME 

National University of Science 
and Technology (NUST), 

Pakistan 

 

ABSTRACT 

Architecture centric development approach is reliable and cost 

effective in software development process in the software 

product lines. Traditionally used approaches in software 

development are very costly and unreliable in term of quality 

attribute and time to market products. If we are working in the 

same domain then architecture centric software development is 

very beneficial. In this technique we will reuse already 

developed applications components for developing new software 

instead of developing these software from scratch that are very 

time consuming and unreliable. To minimize the development 

time we will reuse components from each phase of development 

to minimize of development time and provide better quality. 

Already developed, verified and compatible components will be 

reused for development of new software. In this paper we will 

study the architecture centric software development and 

evaluation which focus on quality attributes of software and 

provide much more quality than traditional approaches used. 

Keywords: SDLC (Software Development Life Cycle), 

ATAM (Architecture Tradeoff Analysis Method), COTS 

(Commercial off-the-shelf Software), SRS (Software 

Requirement Specification) 

 

1. INTRODUCTION 
Market demands are changing day by day very fast that are 

changed ever before in terms of customers’ needs and demands 

and faster delivery of software. Software complexity is also 

growing very fast in term of inter-networked and enterprise 

systems. Software industry is also evolving with the day to day 

business demands. The most effective technique to face these 

emerging problems in software industry is Architectural centric 

approach in software development. Traditionally software are 

developed starting from requirement gathering phase, analysis, 

design and development. This approach is very time consuming 

if we are working in same domain and doing same work time 

and again. In the architecture centric approach already 

developed architectures are used for the new software belonging 

to same domain. Set of proven software components are more 

reliable than newly developed components which improve 

software quality. Evaluation of business case tells the story of 

success and failure of the applications that are developed and 

deployed [1].The reason for reusing software architecture is 

variation in requirements. Reusing one architecture for every 

application is as unfavorable as building every application from 

scratch. So there must be a way that there should be a specific 

way for developing a specific application from variety of 

appreciate architectures. As a prerequisite, set of techniques are 

required for classifying software architecture. For this purpose 

set of design spaces presented by Lanes is a very good approach 

[2].There are many quality attributes in the software that we are 

not sure while developing software from scratch are met but in 

case of developing software using architecture centric approach 

we can use set of already proven components in software 

development that covers all the nonfunctional requirements 

according to user expectations. In this approach, we will use the 

set of proven components in every phase regardless of starting 

from scratch; we will use proven set of requirements, design, 

and piece of code for software constructions. Reuse activities 

increase system effectiveness, traceability and repeatability of 

reuse. The basic idea of our architecture reuse is to refine and 

implement traditional approaches using already existing 

skeleton. Some components matched partially [3] Application 

development is performed using already existing architecture 

framework that focus on domain specific abstractions identified 

by particular architecture. In this technique, bottom up approach 

is used on each stage of development model. Certain set of 

component are reused to boost up development process. The 

prerequisite for this approach is that all the reusable components 

must be compatible and there should be minimum mismatch. 

Component reuse involves both "development with reuse" and 

"development for reuse [4] 
 

2. PROBLEM DESCRIPTION  
Software industry is growing very fast and researchers are 

thinking about new techniques and approaches to boost up 

software development process to develop quality software with 

low cost. Traditional approaches to develop software are very 

lengthy and rigid process if software development is carried out 

in the same domain repeating same activities for every 

application is the wastage of time. So there should be set of 

components and artifacts that can fit to the same domain 

software to minimize development efforts. To minimize this we 

are going to present a new technique that will be used to 

minimize development efforts and cost in developing new 

software, in this technique we will use the knowledge of already 

developed application in developing new application belonging 

to same domain. This will minimize the development time and 

provide high quality application in low cost.  

 

3. PROPOSED MODEL SURVEY 
Software industry is growing and adopting new techniques in 

software development to increase software quality, speed and 

effectiveness. Traditional software processes are used in SDLC 

is requirement gathering, analysis, design, implementation, 

verification and maintenance. The impact of requirement change 

minimizing the impact of volatility [5]. 

Architecture Centric Development in Software 

Product Lines 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

7 

 

 

 

 

 

 
 

Fig 1: Traditional software development approach 

 
Requirement gathering phase is very time consuming phase and 

a lot of efforts are required while gathering requirements 

because requirements are the backbone of any software. If the 

requirements are not gathered properly this will lead the system 

towards failure and there will be no use of software if the 

requirements are gathered poorly.  Following phases are 

involved in requirement gathering  

 

 Requirement elicitation 

 Requirement analysis  

 Requirement verification  

 

Requirement gathering phase involve the following strategies. 

 

3.1 INTERVIEWS 
In this technique interviews are conducted by key stakeholders 

who have domain knowledge of the application that has to 

develop. Interviews are conducted by requirement engineers. 

Interviews conducting activity depend upon the availability of 

stakeholder in case of global software development process. 

These interviews are conducted by video conferencing, call 

conferencing or by using requirements workshop. 

 

3.2 BRAINSTORMING 
In this technique different ideas are identified which are 

priorities by high and low value. Ideas are combined to make a 

high valued idea. In this type of technique each team member is 

involved in getting ideas as possible. 

 

3.3 REQUIREMENTS WORKSHOPS 
This technique is very useful in requirement gathering phase. 

Development team’s representatives and clients are gathered and 

encourage sharing requirements and expectations with each 

other. This technique is time and cost consuming technique. 

These workshops involves user and cut across organizational 

boundaries. 

 

3.4 USE CASE 
This is the picture of actions that system performs when user 

(actor) interact with it. It involves the sequence of user actions in 

descriptive way. It converts client requirements into technical 

way so that it will help developers to understand the 

requirements and these facilitate developers while developing 

software application and it is very effective in distributed 

environment. 

 

3.5 PROTOTYPE 
Prototype technique is used for gathering requirements. 

Prototype is constructed on well understood requirements and 

shows to client to elicit further requirements. Then 

improvements are made in the prototype that is suggested by 

client. Prototyping technique can be used with other available 

techniques [6]. 

Besides above mentioned techniques there are many other 

techniques that are used for gathering requirements in global 

software development. 

 
 User interface 

 Transactions process diagrams 

 Data flow diagrams 

 
Once requirement are gathered and analysis then system design 

is constructed from analysis requirements, this involve the 

following activities  

 Conceptual design 

 Logical design 

 Physical design  

 Detail design 

After designing the system, implementation of the system is 

started on the basis of SRS document. Testing phase follows 

system implementation and finally the system is deployed in the 

user atmosphere.  

Above mention activities are very effective if organization is 

developing the software system of different domain. But 

working in the same domain and construction of software in the 

same domain it is time consuming to perform these software 

activities time and again for the same set of software. To avoid 

this we are going to adopt architecture centric software 

development which minimize the software development efforts 

and use the concepts and knowledge of already develop software 

in the same domain and reuse components of already verified 

software. In the traditional model if we change requirements at 

later stages of the project then the cost of change is increased 

that is another disadvantage of the traditional approach graph 

below shows the impact of cost of change at different level of 

SDLC. 

 

 

 

 

 

Maintenance 

Requirements 

 
Analysis 

Implementation Verification 

Design 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

8 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Cost change over SDLC [16] 

 

4. EVALUATIONS AND RESULTS 
 

 Table 1.Comparisons of Traditional and Architecture centric approach 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Approach Phase Time(days) Cost 
Human 

Resources 

Time to 

Market 
Quality 

Traditional 

Approach 

Requirement 

Gathering 
30 500000 3 

Late 

High 

Design 10 100000 2 Normal 

Coding 40 1000000 5 Normal 

Testing 20 200000 2 High 

Architecture 

Centric 

Approach 

Requirement 

Gathering 
10 100000 1 

Early 

V. High 

Design 2 20000 1 V. High 

Coding 20 500000 5 V. High 

Testing 8 100000 2 V. High 

C
o
st o

f C
h

a
n

g
e  

Time 

R
eq

u
irem

en
ts G

ath
erin

g
 

A
n
aly

sis &
 D

esig
n

 

D
ev

elo
p
m

en
t 

T
estin

g
 

     D
ep

lo
y
m

en
t 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

9 

 
 

Fig 3: Graphical comparison of both approaches 

 

5. APPLICATION AREA 
Architecture centric development in software product line 

focuses on the software product line. Product lines are those 

systems which covers a common, managed set of particular 

features satisfying the specific customer needs of a particular 

market and that are developed from a common set of 

architectures in a prescribed way. Software product lines are 

developed using emerging technology. This type of development 

approach allow developing companies to realize improvements 

of magnitude in time to market, productivity, cost, quality, and 

many other business drivers. Software product line development 

can also enable applications in rapid market entry and very 

flexible response, and these applications provide a capability for 

customization. This will provide the organization capability to 

overcome the resource shortage problems. Product line mainly 

focus on the COTS that are available at very low price and can 

be tailored in the application. The source of the magnitude of 

improvements by using product line techniques is  software 

architecture reuse  commonality throughout the software product 

line, strategically manage all software product line variation, and 

it is aggressively eliminate all duplication of developing effort. 

The model being used its expressiveness’ is sufficient the fact 

that level of improvements are surprising insights in the level of 

inefficiency that we have to accept as part of software 

development. 

 

6. EXISTING SYSTEMS 
There are numerous approaches in architectural based software 

development, what components are reused in architectural 

centric software development and what process are used, these 

approaches are used as common ground and source of 

information in developing new techniques. IEEE has introduce 

approach Recommended Practice for the architectural 

description of software-intensive systems this standard is used as 

framework that facilitate adoption of architectural practices and 

principals to industry and research community. The 

development of new system in the same domain is take place 

using plethora of available architectural reuse choices. 

Architectural reuse development is just like the design decision 

reuse and structural building blocks like design pattern [7] or 

whole architectural system. The  concept of  extended design 

specification is use that provide the semiformal requirement 

specification and detail of some components that are reused in 

new application that are suitable starting for pointing the 

problems in artifacts that are reused. The problem that most of 

the researchers faced in the component reuse technique is that it 

is very difficult to find out the components in advance before 

software development to guess that which component will work. 

There should be specific domain knowledge of the software 

architecture that is going to be developed and often a real 

problem that is going to be catered and practical experience in 

using architecture reuse.  

Architectural design starts when important system requirements 

are known. These requirements are called set of architectural 

drivers and these include the functional requirements and quality 

attributes. The functionality of the system is the ability of the 

system to perform the certain task. Estimation efforts made prior 

to development are very inaccurate [8]. Quality is the 

nonfunctional requirement in the context of desired 

functionality. Designing software architecture is moving from 

software requirements to architectural design decisions; this 

requires the knowledge and experience from architects. Once 

decisions about architecture have been placed then constraints 

on quality attributes are placed [9]. Achieving system quality 

attributes depends upon the architectural design decisions and 

these are called tactics and it is the proven quality approach that 

is very useful for achieving the quality. Quality comes in the 

requirement due to adoptability of the architecture. To realize 

one and more quality tactics an architect choose the appropriated 

architectural style. Architectural style is the repetitive quality 

approach shows particular quality. Following architectural styles 

are used in the market 

 

 Pipe and Filter 

 Layer Style 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

10 

 Rule base  

 Black board Style 

 Object oriented style  

 
Reference architecture is one step ahead from these approaches 

that reuse the best practices in the architectural reuse. It has the 

proven best practices in certain product domain [10]. Reference 

architecture is the blue print for software architecture in 

developing family software. The reference architecture is very 

similar to the application framework used in object oriented 

style and product line. Development of the components from the 

driven vision of product lines [11]. Project development based 

on the vision management software [12]. 

Architectural style is the specialization of view type and shows 

the repetitive architectural approach that covers the quality 

attribute independent to any system. This is based on the 

experience of the architect how well components are reused [13] 

Software architecture is the foundation of any software system it 

represents the set of design decisions that are most difficult to 

set correct and hard to change at later stages. 

Different architectural evaluating techniques are available like 

ATAM which is the most value able technique that is used to 

evaluate architecture of software. In this technique stakeholders 

are people who are most interested in evaluating software 

architecture to meet quality attributes. Following methods are 

used to evaluate the architecture  

 

 Prioritize the quality attribute requirement in the form 

of tree  

 Mapping quality attribute with the architectural 

approaches 

 Differentiate between risk and non-risk 

 Tradeoff and sensitivity points  

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig 4: ATAM Work Flow [14]

  

In the above mentioned techniques, no one is specific to 

component reuse, some focus on design reuse and some are 

focusing on architecture reuse and software architecture 

evaluation in the center point of concern. We are proposing the 

technique that will focus on the component reuse in each and 

every phase of SDLC and focus on the quality attributes of the 

software. 

 

7. POTENTIAL RESEARCH AREAS  
After brief analysis of traditional software development method 

and architecture reuse strategies we are proposing an 

architecture centric reuse strategy in development of software 

product line in specific domain. The problems that most of the 

researchers faced in the component reuse technique are that it is 

very difficult to find out the components before software 

development in advance to guess that which component will 

work. There should be specific domain knowledge of the 

software architecture that is going to be developed and often a 

real problem that is going to be catered and practical experience 

in using architecture reuse. We have considered two projects as 

a case study in the software product lines. Both have the total 

duration of 90 working days, the project in which we use the 

traditional approach for the requirement gathering and 

documenting each and every requirement and requirement 

change impact on the software and priorities requirements and 

analysis of requirement that what requirements are feasible to 

implement and what requirements are not feasible to implement 

requirement gathering and requirement analysis procedure takes 

30 working days and 3 full time resources work on this activity 

after completing SRS document then this document is forwarded 

to designing department and designing the software from scratch 

took 10 full working days and 2 full time resource finish this 

activity in the specified time when the designing and 

architecture activity has done then development team start 

developing project from the scratch and 5 developer complete 

this job in the 40 working days and convert all the functional 

requirements in the working application as application was 

develop first time and appears as a working software in the 

world this software was not mature enough and it takes a long to 

test the application with in specified time actual time schedule 

for testing was 10 days but this activity took 20 days for testing 

and fixing bugs in software. In this way project slipped its 

schedule and marketed late due to unexpected bugs that appears 

in the software that was not supposed to appear in the software. 

Bug fixing activity that took some extra time than planned also 

Risk Sensitivity 

Tradeoff 

Analysis 

Architectural 

Approaches 
Architectural 

Plan 

Architectural 

Decisions 

Business 

Driver 
Key Quality 

Attributes 

Utility Tree 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

11 

effect the budget of the software and due to hurry in marketing 

marketed project could not meet the quality attribute that was 

planned in the starting of the project. In case of second project 

for same domain that was developed using architecture centric 

approach and components were reused in it and tailored from the 

already develop and tested application. Some extra features 

requirements are gathered but most of the requirements of the 

existing systems are modified and tailored in the SRS document 

this modification activity of the requirement benefits in two 

areas one is less number of human resources worked on the 

requirement gathering and analysis and also it took less time 

than traditional approach. Requirement gathering and analysis 

took 10 working days and one expert is worked on this activity. 

In the design and architecting process phase took 2 days of one 

architect because we modify the design of the existing project. 

Most of the code was reuse of the existing products in the 

market of the same family so 5 developers work on coding 

activity and they finished this job in the 20 days because they 

use existing chunks of code and some extra coding required for 

connecting components. After the coding activity testing and 

bug fixing activity remain for 8 days and 2 quality experts work 

on that because they were experienced in testing application in 

the same domain and they were very much familiar with the 

software functionality and most of the modules were tested by 

them for similar projects so they took less time. If we compare 

both approaches we comes to the decisions that architecture 

centric approach was very effective approach in software 

product lines and this saves lot of money, time and deliver 

quality product. Quality attributes are addressed very well in the 

architecture centric approach because software developing team 

had already idea of quality attributes and these attributes are met 

very well. 

 

 

   

 

 

 

 

 

 

 

Fig 5: Component Reuse in Product lines 

 

8. CONCLUSION  
Architecture centric development is used for the software 

product lines. It is very smart approach for the component reuse 

in the software products where working in the same domain, 

component reuse in the every phase of software development 

life cycle accelerate the development of the software, it reduces 

the cost and time for developing the software in the same 

domain. It provides the acceptable level of  quality because 

software in the same domain are very mature products and these 

software are working in live environment that’s why these are 

more reliable than the software that are develop from scratch. 

Products using the software architecture centric approach can 

deploy early in the market than the products that are using 

traditional developing approach. Future work can be done in this 

domain for using architecture centric development approach for 

the projects other than the software project lines, process centric 

development and frame work centric development. 

9. REFERENCES 
[1] Luiz Fernando Capretz “COTS Based Software Product         

line development” International Journal of Web 

Information Systems, Volume 4, Number 2, pp. 165-180, 

Emerald Group Publishing, 2008 

[2] Capretz L. F. (2005), "Y: a new component-based    

software life cycle model",  Journal of Computer Science, 

Vol 1, No1, pp. 76-82. 

[3] Lane, T.G.:  Studying Software Architecture Through 

Design Spaces and Rules, Technical Report CMU/SEI-90-

TR-18, Carnegie Mellon Univ., 1990 

[4] Hofmeister, C., Nord, R. and Soni, D., Applied Software 

Architecture, Addison-Wesley,1999. 

[5] Mary Shaw and Paul Clements. The golden age of software 

architecture. IEEE Softw., 23(2):31-39, (2006). 

 

 

 

 

Requirement 

reuse 

Design reuse 

Code reuse 

D
o
m

ain
 S

p
ecific R

eu
se 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.2, September 2011 

12 

[6] Nary Subramanian and Lawrence Chung. 

“Relationship between the whole of software 

architecture and its parts: An NFR perspective. In 

SNPD-SAWN '05: Proceedings of the Sixth 

International Conference on Software Engineering, 

Artificial Intelligence, Net-working and 

Parallel/Distributed Computing and First ACIS 

International Workshop on Self-Assembling Wireless 

Networks (SNPD/SAWN'05), pages 164{169, 

Washington, DC, USA, 2005. IEEE Computer Society  

[7] Ramya Ravichandar, James D. Arthur, and Shawn A.  

Bohner. Capabilities engineering: Constructing 

change-tolerant systems. hicss, 0:278b, 2007.  

[8] Lothar Baum “Architecture-Centric Software 

Development Based On Extended Design Spaces” 

University of Kaiserslautern 

[9] Len Bass. Principles for designing software 

architecture to achieve quality attribute requirements. 

In SERA '06: Proceedings of the Fourth International 

Conference on Software Engineering Research, 

Management and Applications, page 2, Washington, 

DC, USA, 2006. IEEE Computer Society 

[10] Troy S. Henry “Architecture-Centric Project 

Estimation” May 14, 2007 Blacksburg, Virginia 

[11] D. Weyns, K. Schelfthout, and T. Holvoet. 

“Architectural design of a distributed application with 

autonomic quality requirements. In ICSE Workshop 

on design and evolution of autonomic application 

software”, St. Louis,Missouri, New York, NY, USA, 

2005. ACM Press. 

[12] Cristena Gacek “Successful Product Lines 

Development in Small Organizations” 

[13] Luiz Fernando Capretz “COTS Based Software 

Product line development” International Journal of 

Web Information Systems, Volume 4, Number 2, pp. 

165-180, Emerald Group Publishing, 2008 

[14] “Architecture Tradeoff of Analysis Method “Software 

Engineering Institute  

 

 

 

 

 

 

 

 

 

 

 

 


