
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.12, September 2011

36

Waves of Faults in Embedded System and Way out
through Fault Tolerance

Jigna B. Prajapati
Asst.prof, Acharya Motibhai Patel

Institute of Computer Studies,
Ganpat University, Kherva, Gujarat,

India

Dr.N.K.Modi
Prof. & Head,

S.V.Institute of Computer Studies
Kadi, Gujarat, India

Savan K.Patel
Asst.prof, Acharya Motibhai Patel

Institute of Computer Studies,
Ganpat University, Kherva, Gujarat,

India

ABSTRACT

Software has rapidly become an important and indispensable

element in many aspects of our daily lives. If such element is not

running as on our need, we have to go through the problems

about it. In initially, the paper focus on the different types of

faults, their impact and fault classification. Faults are subdivided

into different activities such as fault prediction, fault detection,

fault prevention, fault correction etc. Here we study the faults in

context boiler system. The concern thing is Faults classification

as external, location, duration, and effect, permanent, temporary

and may more. Any fault arise within system can be avoid,

prevent or removed. Then we propose the different fault

tolerance techniques to deal with different faults.

General Terms
Software Faults tolerance

Keywords

Software Faults, Faults Comparison, Faults tolerance, Design

diversity

1. INTRODUCTION
In recent years, the production of reliable software for control

systems in real time has become a major industry interest. We

hope that these systems function reliably, even under extremely

harsh conditions. However, no matter how well you test, debug

and verify modularize, design errors still plague our software.

 The term error often is used in addition to the terms fault and

failure. Often, errors are defined to be the result of faults, leading

to failures [1]. Informally, errors seem to be a passive concept

associated with incorrect values in the system state. However, it

is extremely difficult to develop unambiguous criteria for

differentiating between faults and errors. Many researchers refer

to value faults, which are also clearly erroneous values. The

connection between error and failure is even more difficult to

describe.

We substitute the term fault for the common uses of the term

error. Generally, references to the term "error" in the literature

can be fitted to the context of this document by substituting the

term "fault."

Fault can be of different types as system boundaries, dormant,

phenomenological, Permanent - Temporary, physical faults,

Intentional, Accidental, Interaction faults [2] and many more.

When such faults arise within our system, that should be

avoided, prevented or removed which can performed with the

use of fault tolerance.

Fault-tolerance is the property that enables a system to continue

operating properly in the event of the failure of (or one or more

faults within) some of its components. If its operating quality

decreases at all, the decrease is proportional to the severity of the

failure, as compared to a naively-designed system in which even

a small failure can cause total breakdown [3]. Fault-tolerance is

particularly sought-after in high-availability or life-critical

systems [3, 4]. In any applications, operational reliability is of

paramount importance. Therefore, to achieve ultra-reliability in

industrial computing, it is necessary to adopt the strategy of

defensive programming based on redundancy. This is referred to

as fault-tolerant software.

2. FAULT CLASSIFICATION & IT’S

IMPACT

Faults may be classified based on Locality:-atomic component,

composite component, system, operator, and environment where

faults reside in some specific location, the combination of more

than one component, faults arise from any environmental causes,

or any user-operators [2] Cause:- design, damage where

problems arise by problematic designing of system, application

or software. Duration:-transient, persistent where faults occurred

either temporary or permanently. Effect: - on System State crash,

amnesia, partial amnesia, etc. [5,6]

Faults can be classified according to their phase of specification

fault, creation(design fault), implementation fault or occurrence,

system boundaries:-internal, external where functionalities

provided up to minimum and maximum, domain hardware or

software, phenomenological cause, intent, and persistence. The

discussion below is focused on software fault classification

based on their recovery strategies [2, 5].

Physical faults: Permanent, internal, physical faults. This class

concerns those faults that have their origin within hardware

components and are continuously active Temporary, internal,

physical faults (intermittent faults) [2, 6].

The impact of any faults is to take system in non working state.

The fault can lead the either system failure or component failure.

If occurred fault within system is not breaking down the working

state but it may lead another fault. Locality faults may be within

one component which cause failure to another component and

become composite component failure. Cause failure as design

faults are remain forever in system where we don’t have chance

to prevent or correct such faults later on. Faults on duration are

sometime permanent and sometime temporary. Permanents

faults need to redesign or another design of the same piece of

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/High-availability
http://en.wikipedia.org/wiki/Life-critical_system
http://en.wikipedia.org/wiki/Life-critical_system

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.12, September 2011

37

software. Temporary fault cause temporary failure of temporary

improper outcome which can be working property on usual state.

User faults, operator faults, documentation faults are accidental

faults which may arise or may not. If such faults not arise then

system will work properly.

 3. FAULTS IN EMBEDDED SYSTEM
To help understand these definitions, consider the example of

Traffic system. Sometime after developing such system, we can

point out that a precedent for using this as an example exists here

comparing practices in traffic system design with practices in

software design.

When designing the Software to control boiler the designer must

consider details regarding requirements, and the environment in

which the Boiler System would be operated. Suppose system

allowed 180 f. How the fault that led to the failure? There are

lots of possible answers to this:

To help understand these definitions, consider the example of

Traffic system. Sometime after developing such system, we can

point out that a precedent for using this as an example exists here

comparing practices in traffic system design with practices in
software design.

When designing the Software to control boiler the designer must

consider details regarding requirements, and the environment in

which the Boiler System would be operated. Suppose system

allowed 180 f. How the fault that led to the failure? There are
lots of possible answers to this:

A. The designer of the System did not allow for

appropriate temperature setting. This could be:

a) A specification fault if the XYZ

department did not anticipate that more

than 180 f would required need to use

the boiler, or

b) A design fault if the specification called

for it being able to keep 180 f .

c) An implementation fault if we didn't

correctly follow the design.

B. The boiler user ignored a "Temperature Limit" sign.

This would be a user fault.

C. A worker for the XYZ department posted an

erroneous "Temperature Limit" sign. This would be

an operator fault.

D. The people preparing the documentation for the

boiler system mistakenly indicated that the boiler

would support 280 f, when in fact it was only

designed to support 180 f. The XYZ department

erected a 180f "Temperature Limit" sign. This

would be a documentation fault, followed by an

operator fault.

E. By any natural effect, if system would damage or
crashed that would be environmental faults.

As same, consider the same boiler with a improper temperature.

There is no failure involved if the boiler continues to carry the

temperature requested of it in spite of this fault. It may be the

result of normal wear and tear. However, a thorough analyzing of

the boiler system might discover that the temperature in the

system a faulty strut, From the point of view of the boiler system

analyzer, the strut would have failed. This component failure is

an internal fault.

Scenarios like this can be generated ad infinitum. Note that a fault

does not lead to a failure unless the result is observable by the

user, and leads to the boiler system becoming unable to deliver its

specified service. This means that one person's fault is another

person's failure. For instance, in example 4 above, from the point

of view of the department the erroneous documentation was a

fault that led to an operator failure. From the point of view of the

user of the boiler system the erroneous documentation was a

documentation fault that led to an operator fault which led to a

boiler system failure. Consider a computer system running a

program to control the temperature of a boiler by calculating the

firing rate of the burner for the boiler. If a bit in memory becomes

stuck at one that is a fault. If the memory fault effects the

operation of the program in such a way that the computer system

outputs cause the boiler temperature to rise out of the normal

zone, that is a computer system failure and a fault in the overall

boiler system. If there is a gauge showing the temperature of the

boiler, and its needle moves into the "yellow" zone (abnormal,

but acceptable), that is a symptom of the system fault. On the

other hand, if the boiler explodes because of the faulty firing

calculation, that is a (catastrophic) system failure.

4. FAULT TOLERANCE TECHNIQUES

Fault prevention aims at preventing the occurrence or

introduction of faults. Techniques in this category include, e.g.,

quality assurance and design methodologies; Fault removal aim

to remove faults after the development stage is completed. This is

done by exhaustive and rigorous testing of the final product [7].

Fig: 1 Fault classification on Boiler System

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.12, September 2011

38

Fault avoidance/prevention includes design methodologies which

avoid the faults which may not have fault solution [7, 8].

Fault tolerance makes the assumption that the system has

unavoidable and undetectable faults and aims to make provisions

for the system to operate correctly even in the presence of faults

[7, 8, 9].

These techniques are divided into two groups as Single version

and multi-version software techniques [10]. Single version

techniques focus on improving the fault tolerance of a single

piece of software by adding mechanisms into the design targeting

the detection, containment, and handling of errors caused by the

activation of design faults. Single version techniques are Error

detection, Exception handling, Data diversity, Process pair, etc.

Multi-version fault tolerance techniques use multiple versions (or

variants) of a piece of software in a structured way to ensure that

design faults in one version do not cause system

failures[10,11,12]. A characteristic of the software fault tolerance

techniques is that they can, in principle, be applied at any level in

a software system: procedure, process, full application program,

or the whole system including the operating system Also, the

techniques can be applied selectively to those components

deemed most like to have design faults due to their complexity.

Multi-version fault tolerance techniques are as Recover block, N-

version programming [11, 13].

5. DISCUSSION
A system fails because of incorrect specification, incorrect

design, design flaws, poor testing, undetected fault, environment,

substandard implementation, aging component, operator errors or

combination of these causes. Though programming bugs is

considered to be an important reason of the most system failures

at present but the recent studies suggest that soft errors are

increasingly responsible for system downtime [2]. Computing

system is becoming more complex and is getting optimized for

performance and price but not for availability. This makes soft

errors an even more common case. Using denser, smaller and

lower voltage transistors has the potential threats to be more

susceptible to such increased transient errors. Soft errors are the

errors, which occur because of the unintended transitions of logic

state in a circuit typically caused by external source of ionizing

radiations.

To deal with errors in fault tolerance system classified as roll-

forward and roll-back. Roll forward means to take the system to

some specified location to resume the errors. Rollback means to

take system to some earlier version [2, 5, and 6]. Here, we

analyzed different faults in the mentioned embedded system

which can be managed by the fault tolerance techniques.

We start with specification faults, (A.a) which can be managed by

the rechecking design specification. Design faults (A.b) can be

managed by Design diversy (NVP or RcB). NVP use multiple

versions of the same requirements, where we can divert to

another version on chosen design. In NVP if one of the design

fail, at least one alternate version will work [14]. Implementation

faults (A.c) which need to check properly before getting in use.

We can use Verification, error detection and check point

techniques. User faults (B) are of different types but generally it

will wrong range of data which can be solved by input limit

checking, exception handling. If user gives improper input so it

would be handled by exception or checking the limit. Operator

faults (C) which may work n improper instructions which can be

managed by n-self checking or data diversy[12,14]. If any

hardware or part of hardware would fail because of any reason we

can apply hardware fault tolerance. Hardware fault tolerance
gives alternate component for failed component [12].

6. CONCLUSION
As we discussed faults reside and arise from requirements of the

system to implementation of an embedded system. Different

types of Faults found during the process of system usage.

Analysts would think and act on that which will consider as

design fault later on. Such faults will recover by another design of

that part of the system known as recovery block or N-version

programming. Any wrong data will feed up (user faults) in

system will handle by exceptional handling. If more resources are

required and any faults occurred due to such reasons then we can

apply Processor pair. So, in this way we can handle different

faults for embedded System with the use of above mentioned

fault tolerance techniques. Thus we can improve software

reliability. Software fault tolerance techniques provide protection

against errors in translating the requirements and algorithms into

a programming language, but do not provide explicit protection

against errors in specifying the requirements. Software fault

tolerance techniques have been used in the aerospace, nuclear

power, healthcare, telecommunications and ground transportation

industries, among others.

7. REFERENCES

[1] Software faults prediction using multiple classifiers,

Computer Research and Development (ICCRD), 2011 3rd

International Conference on, 11-13 March 2011,504-510p

[2] Jean-Claude Laprie. Dependability: Basic Concepts and

Terminology in English, French, German, Italian and

Japanese, volume 5 of Dependable Computing and Fault

Tolerance. Springer Verlag, Wien, 1992,16-17p.

[3] Randell B. ―System Structure for Software Fault Tolerance‖

 IEEE Transactions on Software Engineering 1975 SE-1(2)

220–232p.

[4] Laprie J. C. et al. Hardware and software fault tolerance:

 definition and analysis of architectural solutions in

Proceedings of 17th International Symposium on Fault-

Tolerant Computing, Pittsburgh. 1987. 116-121p.

[5] Jean-Claude Laprie, Dependability—its attributes,

impairments and means. In B. Randell, J.-C. Laprie, H.

Kopetz, and B. Littlewood, editors, Predictably Dependable

Computing Systems, ESPRIT Basic Research Series, pages

3–18.Springer Verlag, Berlin, 1995.

[6] Jean-Claude Laprie. Dependability of computer systems:

from concepts to limits.

 In Proc. of the IFIP International Workshop on Dependable

Computing and Its Applications (DCIA98), Johannesburg,

South Africa, 1998.

[7] Malicious- and Accidental-Fault Tolerance for Internet

Applications Conceptual Model and Architecture David

Powell and Robert Stroud, 23-24p. Available:

http://www.Joomla.org/core-features.html

[8] CSE 598D: Software Fault Tolerance Instructor: Mahmut

 Kandemir, 23-24p

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5756602
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5756602

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.12, September 2011

39

[9] Intrusion-Tolerant Architectures:Concepts and Design

byPaulo Esteves Vessimo, Nuno Ferreira Neves, Miguel

Pupo Correia

[10] P. A. Lee and T. Anderson. Fault Tolerance: Principles

and Practice Second Edition, Springer-Verlag. 1990.

[11] A SURVEY OF SOFTWARE FAULT TOLERANCE

TECHNIQUES byZaipeng Xie, Hongyu Sun and Kewal at

0.

[12] Software Fault Tolerance: An Evaluation by Anderson, T.,

Barrett, P.A., Halliwell, D.N. Moulding, M.R. In Software

Engineering, IEEE Transactions on,2006,1502 – 1510p

[13] Software Fault Tolerance Techniques & Implementation by

Laura L Pullan, pages 68,72-76

[14] Avizienis A. ―The N-Version Approach to Fault-Tolerant

Software‖ IEEE Transactions on Software Engineering

1985. SE-11(12) 1491-1501p.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Anderson,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Barrett,%20P.A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Halliwell,%20D.N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Moulding,%20M.R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

