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ABSTRACT 

Texture is an important perceptual property of images based on 

which image content can be characterized and searched for in a 

Content Based Search and Retrieval (CBSR) system. This paper 

investigates techniques for improving texture recognition 

accuracy by using a set of Wavelet Decomposition Matrices 

(WDM) in conjunction with Grey Level Co-occurrence Matrices 

(GLCM). The texture image is decomposed at 3 levels using a 

2D Haar Wavelet and a coefficient computed from the 

decomposition matrices is combined with features derived from 

a set of normalized symmetrical GLCMs computed along four 

directions, to provide improved accuracy. The proposed scheme 

is tested on a set of 13 textures derived from the Brodatz 

database and is seen to provide accuracies of the order of 90%.   
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1. INTRODUCTION 
In recent years the number of digital media repositories have 

grown exponentially, especially over the Web. Retrieving 

images from these repositories has, therefore, become an 

important research issue. With this ever expanding multimedia 

repository a fast and efficient search and retrieval system has 

become a necessity; because, without it an image repository 

becomes like a library of books without a catalogue - even 

though the information is present it is practically inaccessible to 

someone with specific search criteria. Texture is one of the 

important perceptual characteristics based on which image 

content can be characterized and searched. A popular texture 

recognition technique relates to Grey Level Co-occurrence 

Matrix (GLCM), proposed by Haralick (1979) and subsequently 

used in a number of research works. The present work 

investigates techniques for improving the texture recognition 

accuracy by using a set of Wavelet Decomposition Matrices 

(WDM); it also demonstrates further improvement when GLCM 

is used in conjunction with WDM. 

 

The organization of the paper is as follows: section 2 provides 

an overview of related work, section 3 outlines the proposed 

approach with discussions on overview, feature computation and 

classification schemes, section 4 provides details of the dataset 

and experimental results obtained and section 5 provides the 

overall conclusion and the scope for future research. 

2. PREVIOUS WORK 
Texture refers to visual patterns or spatial arrangement of pixels 

that regional intensity or color alone cannot sufficiently 

describe. It is difficult to obtain a general mathematical model 

for various textures because of the large variation in their 

properties. A first example of the derivation of features using 

operators is the set of texture energy measures formulated by 

Laws in [1]. In [2] the authors derive texture operators from co-

occurrence matrices. A simple operator for fast discrimination 

between textures and uniform regions has been proposed in [3]. 

Another method similar to Laws is described in [4]. Here a set 

of simple masks (vertical, horizontal, diagonal and anti-

diagonal) are applied. Authors like Tamura [5] made an attempt 

at defining a set of visually relevant texture features. This 

includes coarseness, contrast, directionality, line-likeness, 

regularity, roughness. Fractal functions have received a great 

deal of attention in recent years. Pentland [6] reports a high 

degree of correlation between fractal dimensions and human 

estimates of roughness. Because of this correlation and the 

natural appearance of fractal generated textures, Pentland has 

proposed fractal functions as texture models. In [7] the authors 

describe a parallel algorithm for segmentation using 

simultaneous auto-regressive (SAR) random field models and 

multi-dimensional cluster analysis. In [8] the author proposes a 

two state Markov model to detect texture edges characterized by 

changes in first order statistics. Gabor filters have been used in 

several image analysis applications including texture 

classification and segmentation [9, 10]. Bovik et al [9] suggest 

the restriction of the choice of Gabor filters to those with 

isometric gaussians (aspect ratio one). In [11] the authors have 

used the one sided linear prediction (OSP) model, popularly 

known as auto-regressive (AR) model, to derive texture 

descriptors in terms of the prediction coefficients. 

3. PROPOSED APPROACH 

3.1 GLCM : An Overview 
GLCM (Grey Level Co-occurrence Matrix) introduced by 

Haralick [12] provides one of the most popular statistical 

methods in analysis of grey tones in an image. The matrix 

defines the probability that grey level i occurs at a distance d in 

direction θ from grey level j in the texture image. These 

probabilities create the co-occurrence matrix ( , | , )M i j d  . The 

symmetrical GLCM is formed by taking the transpose of the 

GLCM and adding it to the original GLCM. The normalized 
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symmetrical GLCM is formed by dividing each element of the 

GLCM with the sum of all elements. As an example, if A be a 

section of an image with corresponding data matrix then the 

GLCM computed along 0 (horizontal) with distance offset d=1 

is given by G, and 
0G  represents the normalized symmetrical 

version of G. 
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Directional GLCMs might be computed along three other 

directions : vertical ( = 90º and 270º), right diagonal ( = 45º 

and 225º), left diagonal ( = 135º and 315º). 
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3.2 GLCM based Features 
Four of the most popular features derived from a set of four 

directional normalized symmetrical GLCMs have been 

considered here viz. GLCM contrast (
CG ), GLCM homogeneity 

(
HG ), GLCM mean (

MG ) and GLCM variance (
VG ), as 

defined below. If 
,i jG  represents the element ( , )i j of a 

normalized symmetrical GLCM, and N  the number of grey 

levels, then  
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3.3 GLCM based Classification 
A texture class consists of a set of member images : 

1 2{ , ,..., }i n iT t t t .For each member image, four directional 

GLCMs are computed : 

 

0 45 90 135 0 45 90 1351{( , , , ) ,..., ( , , , ) }G G G G G G G G

i n iT t t t t t t t t  (5) 

 

For each member image average values of contrast, 

homogeneity, mean and variance are computed over the four 

directional GLCMs 

 

1, ,[( , , , ) ,...,( , , , ) ]G G G G G G G G
C H M V C H M Vi i n iT t t t t t t t t

 
(6) 

The texture class is then mapped with the boundary values (min 

/ max) of its features for its member images 

 

,min ,max( , ) ,    { , , , }G G
X Xi iT t t X C H M V    (7) 

 

A test image 
js  is assigned a weight of 1 for 

iT  for each of the 

following conditions i.e. its average GLCM feature value lies 

within the boundary values of the training set 
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A cumulative weight is calculated over all the four features for 

all texture classes being satisfied, 
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The test sample is assigned the class with the maximum weight, 

if present, otherwise a  (not determinable). 
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3.4 WDM : An Overview 
WDM (Wavelet Decomposition Matrix) is derived from a 

Wavelet decomposition of the images. A Wavelet [13] is a 

mathematical function used to analyze a time dependent signal 

at different resolutions. The Discrete Wavelet Transform (DWT) 

analyses the signal at different resolutions by decomposing it 

into an approximation coefficient and a set of detail coefficients. 

The Haar Wavelet, proposed by Alfred Haar, transforms a 1-D 

signal into a set of averages and differences : 

 

1 2 1 1/ 2 / 2( , ,..., ) ( ,..., | ,..., )N N Nx x x s s d d x  (11) 
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where, 

2 1 2 2 1 2,   ,   1,..., / 2
2 2
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As an example the Haar Wavelet transform for a 4-element 1-D 

signal is given by  
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For a 2-D signal matrix A (N×N) the corresponding Haar 

Wavelet transform is defined as : 
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where, B is the blur or approximation coefficient and 

, ,n n nH V D  are the horizontal, vertical and diagonal detailed 

coefficients at level n . The B matrix of a specific level is used 

as the data matrix for the next level. The above four matrices are 

referred to as Wavelet Decomposition Matrices (WDM). 

3.5 WDM based Features 
The texture image is decomposed using a Haar Wavelet with 3-

level decomposition producing following coefficients 

1 1 1 2 2 2 3 3 3, , , , , , , , ,B H V D H V D H V D , where, B is the blur or 

approximation coefficient and , ,n n nH V D  are the horizontal, 

vertical and diagonal detailed coefficients at level n .The data 

matrix is partitioned into cells each 2 ×2, 
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Each coefficient matrix at level 1 is computed as shown below, 
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For the second level decomposition 
1B  is considered the data 

matrix and 
2 2 2 2, , ,B H V D  are similarly calculated. For the third 

level, 
2B  is considered the data matrix and 

3 3 3 3, , ,B H V D  are 

likewise computed. 
3B  is represented as B , the final blur 

component. A set of covariance matrices are computed from the 

detail coefficients and represented as, 
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For an m × n data matrix, A the covariance matrix is defined as, 

 

, , , ,

1

1
{( )( )}

1

m

i j j i k i i k j j

k

C C a a
m

 


   

  (15) 

where, 1, 2, ,...i i m i

i

a a a

m


  
 ,  m being the number of rows 

in A. 

 

A set of correlation matrices 
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from the covariance matrices where, 
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The Wavelet combined feature coefficient is computed as 

follows, 

 

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

{ ( ), ( ),

( ), ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ), ( )}

W

H V D

H V D

H V D

B B

H V D

H V D

H V D

 

     

     

     



  

  

  

t

 
(17) 

 

where 1 2
1 2

...
( , ,..., ) n

n

x x x
x x x

n


  
  and 

2

1 2

1

1
( , ,..., ) ( )

1

n

n i

i

x x x x
n

 


 

 . 

 

3.6 WDM based Classification 
A texture class consists of a set of member images : 

1 2{ , ,..., }i n iT t t t . For each member image, a Wavelet combined 

feature coefficient is computed  

 

1 2{ , ,..., }W W W
ni iT t t t  (18) 

 

The texture class is mapped to the boundary values of its feature 

for its member images 

 

max min{ , }W W

i iT t t  (19) 

 

A test image js  is assigned a weight of 3 for texture class iT  if 

the its Wavelet coefficient satisfies the following condition, 

 

max, min, ;W W W
i j it s t   (20) 

 

The test image is then mapped to all the corresponding texture 

classes, if present, otherwise assigned a class ×, 
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4. EXPERIMENTATIONS 
Texture samples, used from the texture database of the Signal 

and Image Processing Institute, Electrical Engineering 

Department, University of Southern California, available at : 

http://sipi.usc.edu/database  which in turn have been derived 

from the Brodatz texture database [14], are divided into 13 

categories : bark (D12), brick wall (D94), plastic bubbles 

(D112), grass (D9), pressed calf leather (D24), pigskin (D92), 

raffia (D84), beach sand (D29), straw (D15), water (D38), 

herringbone weave (D16), wood grain (D68), woolen cloth 

(D19). Each image is 512 by 512 pixels, 8 bits/pixel grayscale 

mode. (Fig. 1) 

 

       
 

     
 

   
 

Fig 1 : Texture samples: bark, brick, bubbles, grass, leather, 

pigskin, raffia, sand, straw, water, weave, wood, wool 

 

For each category four member images have been used with 

rotated at angles 0, 60, 120 and 200 angles, making a total of 

52 images in the training data set. The rotated images for the 

“brick” texture class are shown in Fig. 2.  

 

       
 

Fig 2 :Images of “brick” texture rotated at 0, 60, 120, 200 

 
For GLCM based classification, four directional GLCMs are 

computed for each member image and for each GLCM four 

features i.e. GLCM Contrast, GLCM Homogeneity, GLCM 

Mean and GLCM Variance are computed, which are then 

averaged over the four directional GLCMs (Table 1). For WDM 

based classification, the WDM coefficient values are computed 

for each member image and the boundary values tabulated 

(Table 2). 

 

Table 1. GLCM boundary values for training set 

 

Features GLCM Contrast GLCM Homogeneity 

Textures Min Max Min Max 

Bark 339.0615 360.4260 0.0849 0.0857 

Brick 171.4014 179.7685 0.1229 0.1308 

Bubbles 293.0699 324.1034 0.1145 0.1267 

Grass 915.6591  1095.811 0.0723 0.1064 

Leather 606.2629 688.7820 0.0576 0.0598 

Pigskin 153.2743 159.1169 0.1095 0.1108 

Raffia 159.8644 170.4513 0.1244 0.1305 

Sand 199.5545 210.7270 0.1158 0.1175 

Straw 468.5335 601.9059 0.0726 0.0823 

Water 90.8227 106.4616 0.1308 0.1414 

Weave 236.5369 242.4293 0.0939 0.0959 

Wood 139.8697 170.6442 0.1705 0.1967 

Wool 151.1335 177.1072 0.0991 0.1053 

Features GLCM Mean GLCM Variance 

Textures Min Max Min Max 

Bark 114.6904 116.3093 1921.023 2003.068 

Brick 130.8294 135.8444 894.7406 971.2114 

Bubbles 75.9412 83.1068 1731.717 1848.452 

Grass 89.9808 97.4626 2203.103 2568.942 

Leather 86.7322 90.2151 1530.442 1688.228 

Pigskin 124.7919 127.1529 567.6617 583.0772 

Raffia 142.9006 146.2553 665.4577 724.4272 

Sand 127.5578 129.5074 707.7082 754.5747 

Straw 106.0127 109.9994 1873.337 2061.593 

Water 117.4929 120.4955 298.0885 322.4701 

Weave 161.3729 164.0402 681.5290 697.8408 

Wood 169.8766 173.9048 474.4028 530.6977 

Wool 131.4930 139.0376 665.0775 718.7822 

 

Table 2. WDM coefficient values for training set 

 

Class Min Max 

Bark 910.2786 923.5560 

Brick 1039.1673 1080.2051 

Bubbles 600.4989 657.8325 

Grass 712.4310 772.4053 

Leather 686.2770 714.3604 

Pigskin 990.4948 1009.4092 

Raffia 1135.3279 1162.2421 

Sand 1012.7492 1028.3194 

Straw 840.9003 873.4186 

Water 932.2509 956.1594 

Weave 1283.0278 1304.3172 

Wood 1351.1059 1383.5352 

Wool 1044.2499 1104.3967 

 

The test data set consist of 3 images from each category but now 

rotated by angles of 30º, 90º and 150º, making a total of 39 

images. Samples for the “brick” class are shown in Fig. 3. 

 

     
 

Fig 3 : Images of “brick” texture rotated at 30, 90 and 150 
 

The test images are numbered T1 to T39 as detailed below : T1-

T3: Bark (Ba), T4-T6: Brick (Br), T7-T9: Bubbles (Bu), T10-

T12: Grass (Gr), T13-T15: Leather (Le), T16-T18: Pigskin (Pi), 

T19-T21: Raffia (Ra), T22-T24: Sand (Sa), T25-T27: Straw 

(St), T28-T30: Water (Wa), T31-T33: Weave (We), T34-T36: 

Wood (Wd), T37-T39: Wool (Wl).  

 

For GLCM based classification, average feature values are 

computed over the directional GLCMs for each test image. 

Based on the range of values observed during the training phase, 

confidence grids are constructed for classifying the test samples 
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into respective categories (Table 3). A test image is assigned a 

weight of 1 for a texture class if its average GLCM feature value 

lies within the boundary values of the training set for that class, 

otherwise denoted by a „ ‟ (cannot be determined). The last 

column denotes the probable class of the test sample with the 

maximum weight shown in parenthesis. The samples correctly 

classified are shown in bold. The classification accuracy is 27 

out of 39 i.e. 69.23%. 

 

Table 3 : GLCM based Classification 

 

# C H M V P. Class 

T1  Ba Ba,Gr Ba Ba,St Ba (4) 

T2  Ba Gr  Ba St Ba (2) 

T3  Ba Gr Ba Ba,St Ba (3) 

T4  Br, Wd Br, Ra Br,Wd × Br (3) 

T5  × Br,Bu,Ra Br,Wd Br Br (3) 

T6  Br,Wd Br,Ra Br,Wd Br Br (4) 

T7  × × × Le Le (1) 

T8  Ba × × Ba,St Ba (2) 

T9  Bu × Bu × Bu (2) 

T10  Gr Gr,Wd Gr Gr Gr (4) 

T11  × × × × × 

T12  × Gr,St Gr × Gr (2) 

T13  Le Le Le Le Le (4) 

T14  × Le Le X Le (2) 

T15  Le Le Le Le Le (4)  

T16  Ra,Wd,Wl × × × × 

T17  Wd,Wl × Pi × × 

T18  Ra,Wd,Wl × Pi × × 

T19  Wd,Wl Br,Ra × × × 

T20  Pi,Wd,Wl Wa Ra Ra,We,Wl × 

T21  Wl Br,Bu Ra Sa × 

T22  Sa Bu,Sa Sa Sa Sa (4) 

T23  × Bu Sa × × 

T24  × Bu Pi Sa × 

T25  St Gr,St St Ba,St St (4) 

T26  St Gr,St × St St (3) 

T27  St Gr,St St Ba,St St (4) 

T28  Wa Wa × Wa Wa (3) 

T29  × Wa Wa Wa Wa (3) 

T30  Wa Wa × Wa Wa (3) 

T31  × Gr,We X Ra,Wl × 

T32  × Gr,We We Ra,We,Wl We (3) 

T33  We Gr,We We Ra,We,Wl We (3) 

T34  Wd Wd Wd Wd Wd (4) 

T35  Br,Wl Wd Wd Wd Wd (3) 

T36  Pi,Wd,Wl Wd Wd Wd Wd (4) 

T37  Pi,Wd,Wl Gr,Wl Wl Ra,Wl Wl (4) 

T38  Br,Wl Gr,Wl Wl Ra,We,Wl Wl (4) 

T39  Ra,Wd,Wl Gr,Wl Br,Wl Ra,Wl Wl (4) 

 

For WDM based classification, Wavelet coefficient values are 

computed for each test image. A test image is assigned a weight 

of 3 for a texture class if its Wavelet coefficient value lies within 

the boundary values of the training set for that class, otherwise 

denoted by a „ ‟ (Table 4). 34 out of 39 test samples are 

correctly classified (indicated by bold), providing an accuracy of 

87.17%  

 

Table 4 : WDM based Classification 

 

# P. Class # P. Class # P. Class 

T1  Ba (3) T14  Le (3) T27  St (3) 

T2  Ba (3) T15  Le (3) T28  Wa (3) 

T3  Ba (3) T16  Pi (3) T29  Wa (3) 

T4  Br (3) T17  Pi (3) T30  Wa (3) 

T5  Br (3) T18  Pi (3) T31  We (3) 

T6  Br (3) T19  Ra (3) T32  We (3) 

T7  Le (3) T20  Ra (3) T33  We (3) 

T8  Bu (3) T21  Ra (3) T34  Wd (3) 

T9  Bu (3) T22  Sa (3) T35  Wd (3) 

T10  Le (3) T23  Sa (3) T36  Wd (3) 

T11  Gr (3) T24  Pi (3) T37  Wl (3) 

T12  Gr (3) T25  St (3) T38  Br (3) 

T13  Le (3) T26  St (3) T39  Br (3) 

 

For a combined GLCM + WDM classification, a sample is 

assigned a texture class with a higher weightage, if the class 

estimate based on the GLCM and WDM classifications are 

different, or assigned a class „×‟  if weights for different classes 

are equal. 
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(22) 

The “C” column denotes the probable class of the test sample 

taking into account both the GLCM (G) and WDM (W) 

classifications and assigning the texture class with the higher 

weight to the test sample. The samples correctly classified are 

indicated in bold. The classification accuracy is 37 out of 39 i.e. 

94.87% 

Table 5 : Combined Classification 

 

# G W C # G W C 

T1 Ba (4) Ba (3) Ba  T21   Ra (3) Ra  

T2 Ba (2) Ba (3) Ba  T22 Sa (4) Sa (3) Sa  

T3 Ba (3) Ba (3) Ba  T23   Sa (3) Sa  

T4 Br (3) Br (3) Br  T24   Pi (3) Pi  

T5 Br (3) Br (3) Br  T25 St (4) St (3) St  

T6 Br (4) Br (3) Br  T26 St (3) St (3) St  

T7 Le (1) Le (3) Le  T27 St (4) St (3) St  

T8 Ba (2) Bu (3) Bu  T28 Wa (3) Wa (3) Wa  

T9 Bu (2) Bu (3) Bu  T29 Wa (3) Wa (3) Wa  

T10 Gr (4) Le (3) Gr  T30 Wa (3) Wa (3) Wa  

T11   Gr (3) Gr  T31   We (3) We  

T12 Gr (2) Gr (3) Gr  T32 We (3) We (3) We  

T13 Le (4) Le (3) Le  T33 We (3) We (3) We  

T14 Le (2) Le (3) Le  T34 Wd (4) Wd(3) Wd  

T15 Le (4) Le (3) Le  T35 Wd (3) Wd(3) Wd  

T16   Pi (3) Pi  T36 Wd (4) Wd(3) Wd  

T17   Pi (3) Pi  T37 Wl (4) Wl (3) Wl  

T18   Pi (3) Pi  T38 Wl (4) Br (3) Wl  

T19   Ra (3) Ra  T39 Wl (4) Br (3) Wl  

T20   Ra (3) Ra      
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5. CONCLUSIONS 
This paper outlines a scheme for image texture recognition 

based on a three level decomposition using Haar Wavelets. 

Firstly the scheme has been shown to be robust to rotational 

variation of texture images. Secondly, it demonstrates an 

improvement in recognition accuracy over another popular 

scheme using Grey Level Co-occurrence Matrix (GLCM). 

Further, it has been shown that the recognition accuracy can be 

further improved by combining GLCMs with Wavelet 

Decomposition Matrices. However, additional measures are 

required to address the problems related to variations in 

brightness, contrast and tonal range of the images. One way to 

tackle this problem is via histogram normalization; another 

methodology providing scope for further research is to combine 

color and texture, e.g. wood textures combined with its various 

hues.  
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