
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.9, July 2015

24

Load Balancing Approach in Cloud Computing using

Improvised Genetic Algorithm: A Soft Computing

Approach

Garima Joshi
CSE Dept. GBPEC,

Ghurdauri, U.K, India

S. K. Verma
CSE Dept. GBPEC,

Ghurdauri, U.K, India

ABSTRACT

The concept of Cloud computing has significantly changed

the field of parallel and distributed computing systems.

The major issues to the cloud are resource discovery, fault

tolerance, load balancing, safety measure, task scheduling,

dependability, data backup, and data portability. Load

balancing is one of the essential responsibilities of the

cloud computing. In current situation, the load balancing

algorithms built should be very efficient in allocating the

request. It also ensures the usage of the resources in an

intelligent way so that underutilization or overutilization of

the resources does not occur in the cloud environment. In

this paper, a soft computing based load balancing approach

has been proposed called Improvised Genetic Algorithm

(IGA), for allocation of incoming jobs to the servers or

virtual machines (VMs). The proposed algorithm considers

the cost value as a fitness function, of an individual node

while performing load balancing. The proposed strategy

has been simulated using MATLAB toolkit.

Keywords
Cloud Computing, Data Center, Genetic Algorithm, Load

Balancing, Response Time

1. INTRODUCTION
Typically, the Internet is depicted in network diagram as a

cloud [1]. The term “cloud” [2] grew up from the domain

of telecommunications when suppliers began utilizing

virtual private network (VPN) services for data

communications. Cloud computing merely intends as

Internet Computing, the Internet is seen as an

accumulation of clouds. Thus, the cloud computing is

outlined as employing the internet to render technology-

enabled services to the people and organizations [3]. The

general view of cloud in fig 1.

 The concept of cloud computing has significantly changed

the field of parallel and distributed computing systems [4].

It has emerged as a modern solution to provide cheap and

easy access to externalized IT resources [5]. Cloud

computing addresses with virtualization, scalability,

interoperability, caliber of service and the delivery models,

namely public, private and hybrid [2]. Thus in spite of

divine prospective of Cloud Computing, much vital

concern still needs to be examining for its complete

acceptance. One of these issues is Load balancing.

Figure1: Overview of Cloud

Load balancing, as the name depicts, is a proficiency that

allows workloads to be disseminated across numerous

resources, to make effectual resource employment. It also

enhance response time by dealing a situation in which

some of the nodes are extremely loaded while some others

are under loaded. The intention of load balancing is to

optimize usage and throughput while cutting down the

reaction time. As on-demand in service model, weight

comes arbitrarily or dynamically in cloud computing

surroundings, which induces some VM/servers to be

loaded largely, while others idle or gently loaded. This

successively contributes to pitiful performance and make

user unsatisfied.

Therefore, if we distribute the weight in a proper way, it

will improve system performance, throughput, response

time, etc. to cope up user expectation. The crucial matters

to conceive while formulating such algorithm are

approximation and equivalence of load, consistency, and

functioning of the different system, node selection and

many other ones. Load balancing mechanisms can be

categorized or static, and periodic or non-periodic.

The introduced algorithm is an improvement over existing

Genetic Algorithm (GA) based load balancing strategy for

cloud computing [6] called Improvised Genetic Algorithm

(IGA). It has considered the fitness function of each task

before scheduling it to a particular node for load balancing

in the cloud environment. So, that load is equally

distributed among various processing nodes.

The proposed algorithm (IGA) is a soft computing

approach, which uses a mechanism of natural selection

strategy. The remaining paper is prepared as follow:

Section 2 gives an overview of previous researchers in the

field of load balancing in the cloud environment. Section 3

discusses IGA algorithm for load balancing. Section 4

presents the simulation results, and its analysis with an

overview of MATLAB toolkit and section 5

concludes the paper.

2. RELATED WORK
Intensive explore has been carried on over the past decades

in cloud load balancing area to solve the problem of

distributing load among various nodes present in the cloud

so that every node is utilized correctly. It has been proved

that load balancing is an NP-complete problem. In this

section, we discuss existing load balancing techniques in

cloud computing. Here we classify load-balancing

algorithm in two main types that are Static load balancing

and Dynamic load balancing.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.9, July 2015

25

B. Sotomayor et al. [7] introduced a static well-known load

balancing technique called Round Robin (RR), in which all

processes are distributed among all applicable processors.

The allotment sequence of operations is preserved locally,

which is autonomous of the allocation of the distant

processor. In this approach, the demand is sent to the node

bearing minute connections, and as a consequences of this

at some point of stage, some node may be massively

burdened and other remain idle.

This complication was figure out by S.C. Wang [8] by

presenting a dynamic load-balancing algorithm called

Load Balancing Min-Min (LBMM) techniques that are

based on three- level frameworks. In this, each node is

given a proper opportunity that keeps each node busy in

the cloud without considering execution time of the node.

First layer request manager that is responsible for

receiving task and assigning it to one service manager to

the second level. On acquiring application, service

manager segregates it into subtasks. After that, the service

manager will assign subtask to the service nodes to execute

the task.

 Further, B. Radojevic in [9] proposed a static load-

balancing algorithm called CLBDM (Central Load

Balancing Decision Model). It is an enhancement of round

robin technique. RR is enhanced and in CLBDM, the

estimation of network point between the applicant and the

node is done and if the connection period rose above the

threshold then complication raises. If the problem appears,

then the relationship between the client and node is

adjourned, and the task is dispatched to another node using

RR law.

Lars Kolb in [10] proposed the Map Reduce Based Entity

Resolution Load Balancing technique that is based on

large datasets. Here two main tasks are done, Map function

and Reduce task. For mapping work, the first PART

method is executed where the request entity is partitioned

into segments, and entirely similar individuals are grouped

by GROUP method and by applying, REDUCE function.

Map task reads the objects in parallel and process them so

that overburden of the work is shrunk.

 Further, J. Hu in [11] introduces a static scheduling

strategy for load balancing in virtual machine resources.

This technique considers the historical data and current

state of the organization. Here, essential scheduler and

resource supervisor is used. The scheduling organizer

analyses the availability of resources to operate a task and

assign the same.

Al-Jaroodi in [12], proposed a dynamic load balancing

technique named DDFTP (Dual Direction Downloading

Algorithm from FTP server). Here files of size m are

divided into the m/2 partition. For example, if one server

starts from zero to incremental order then other will begin

from m to decremented order independently of each other.

As on downloading two consecutive blocks the task is

considered as finish and assign next task to the server.

Because of reduction in the network, communication to the
server between client and nodes network overhead is

reduced.

Nishant et al. in [13], further extend the work and
introduced Ant Colony Optimization (ACO) technique for

load balancing in the cloud environment. Here ant initiates

the movement as the request is initiated. This method uses

the ant action to gather knowledge of cloud node to

designate the task to the appropriate node. In this

performance, once the demand is admitted, the ant and

pheromone start the forward movement in the pathway

from the head node. The ants move in the forward

direction from the overloaded load looking for next node

to check whether it is overloaded node or not. Now if ant,

finds under-loaded node still it moves in the forward

direction in the path. In addition, if it finds the overloaded

load then it starts the backward movement to the last

under-loaded node it found previously. Here, if ant found

the target node ant will commit suicide, so that it will

prevent unnecessary movement.

M. Brototi et al. in [14], presented a Stochastic Hill

Climbing based approach on soft computing for solving

the optimization problem. It solves the problem with high

probability. It is a simple loop moving in a direction of

increasing values, which is uphill. Moreover, this makes

minor changes in the original assignment. According to

some criteria, designed One is candidate generator to

arrange feasible successor and the other is interpretation

principle, which ranks each logical solution. M. Randles et

al. [15], proposed a honeybee behavior inspired load

balancing (HBB-LB) technique that help to achieve even

load balancing across virtual machines to maximize

throughput. It considers the priority of the task is waiting

in the queue for execution in the virtual machine. After

that workload on VM calculated decides whether the

system is under-loaded, overloaded or balanced. In

addition, based on this VM are grouped.

The above analysis on various load balancing strategies

present some of their advantages and disadvantages and

may prompt others to work further on improving and

designing the scheduling strategies for load balancing in

the cloud environment. No load-balancing model discussed

above that takes into consideration of minimization cost

function and to improve the response time of the task. In

this paper, we consider fitness function of each task before

scheduling them to a particular processing node. The

proposed algorithm improves the overall response time of

task while scheduling them in different VM.

3. PROPOSED ALGORITHM
This section describes the proposed algorithm with a brief

introduction.

Genetic Algorithm

This technique requires a coding scheme that can represent

all legal solutions to the optimization problem. The general

scheme of the genetic algorithm is given in figure 2. The

algorithm starts with a set of solutions called population

and represented by chromosomes.

The progression generally drawn from a population of

randomly achieve individuals, and is a monotonous

process, with the people in each recurrence is called a

generation. In each generation, the fitness of each person

in the population is estimated; the fitness is usually the rate

of the objective function in the optimization issue being

determined.

Figure 2: General scheme of genetic algorithm

http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Objective_function

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.9, July 2015

26

The fit individuals are stochastically selected from the

current population, and particular person genome is altered

to form a recent generation. The new generation of

candidate solutions is used in the adjoining repletion of

the algorithm. More often, either the algorithm wraps up

when a maximal figure of generations is produced, or

adequate fitness level is attained for the population. The

Improvised Genetic Algorithm Load-Balancing issue can

be work out by allocating X number of jobs to Y number

of processing units in the cloud. Each of the processing

units will have a processing unit vector (𝑃𝑈𝑉) showing the

status of processing unit utilization. (𝑃𝑈𝑉) consists of

MIPS indicating how many million instructions that

machine per second, can execute, 𝐶𝑒𝑥 cost of execution of

information and delay cost, 𝐶𝑑 . It is an assessment of

penalty, which Cloud service holder needs to reward to the

customer in the situation of job accomplishing particular

time being higher than the limit displayed by the

maintenance provider.

𝑷𝑼𝑽= f (MIPS, 𝑪𝒆𝒙 ,𝑪𝒅) (1)

sSimilarly, a job unit vector (𝐽𝑈𝑉) represents each job

submitted by cloud user. Thus, the attribute of different

situation can be represented by 2.

 𝑱𝑼𝑽= f (𝑻𝒔, N, α,𝑾𝑪) (2)

Where,Ts , represents the nature of service needed by the

job, Software as a Service (SaaS),Infrastructure as a

Service (IaaS) and Platform-as-a-Service (PaaS) [10]. N

represents the number of instructions present in the job;

this is the count of instruction in the task determined by the

processor. Job arrival time (α) indicates wall clock time of

arrival of job in the system and worst-case completion time

(𝑊𝐶) is the least possible time recommended to complete

the job by a processing unit.

The Cloud business jobholder needs to designate these X

jobs among Y number of processors such that cost function

as recorded in equation 3 is lessened.

Ͼ= [𝑾𝟏*𝑪𝒆𝒙(N/ MIPS) + 𝑾𝟐*𝑪𝒅]/ 𝒊 (3)

Here, 𝑖 is the index of job present in a virtual machine

belonging to a single data center. Where, 𝑾𝟏 and are

predefined weights. The logic of choosing weight is

according to user preference. The weights here are

considered as 𝑾𝟏= 0.8 and 𝑾𝟐= 0.2 such that their

summation is 1. GA is

recognizing as one of the most extensively used artificial

intelligent techniques that uses an approach for adequate

search and optimization. It is a stochastic seeking

algorithm based on the tool of natural selection and

genetics. GAs has been determined sufficient and reliable

in seeking out overall optimum solutions, especially in the

compound and enormous research field. In this paper, IGA

has been designed to a load balancing procedure for the

cloud computing to discover a global optimum processor

for the task in a cloud. The arrival of job is treated

continuous, and rescheduling of appointment is not

considered.

Algorithm Used

A genetic algorithm (GA) is composed of three

procedures: selection, crossover, and mutation. The

influence of this approach is that it can grasp a boundless

search space, pertinent to compound objective function

and can escape being trapping into regional optimal

solution. The working principle of GA used for the load

balancing in Cloud computing is depicted in figure 2 and

details of GA are described as follows.

Initial population generation: GA works on the fixed bit

string representation of the individual solution. In this

phase, data from various sources is been sent to cloud

storage where the data is encoded into binary strings. From

the initial population, fixed amount of chromosomes is

chosen randomly.

Crossover: To generate the new string

(offspring) for the next generation crossover operation is

performed. In this, first two parent are selected, then a

random crossover point is chosen and finally crossover

operation with a given crossover probability to create the

new string is performed. The principle behind crossover is

“by mating two individuals with different but desirable

features, an offspring is produced which combines both of

those features”.

In this phase, we choose the best-fitted pair of individual

chromosomes. The fitness value of each chromosome is

calculated using the fitness function as given in 3. This

pool of chromosomes experiences an unplanned single

point crossover, where depending upon the crossover

point, the fragment lying on one side of crossover site is

exchanged with the other side. Thus, it brings out an

advanced pair of individuals.

Mutation: After the crossover, each of the individuals of

the chromosomes will be mutated to any one of the codes

with a given mutation probability. Here, (0.05) is picked

up as mutation probability. It is a local optimization

procedure and creates a new individual by applying a

random variation between arbitrarily selected individuals.

Depending on the difference in value, the bits of the

chromosomes are toggled from 1 to 0 or 0 to 1. The result

of this is a new mating pool ready for crossover. The

objective with robust probabilities of crossover and

mutation are to sustain the genetic dissimilarity in the

population and forbid the genetic algorithms to assemble

prematurely to local minima.

This GA process is replicated until the fittest chromosome

(optimal solution) is found, or the termination condition

(maximum number of iteration) is exceeded.

The proposed algorithm is as given below:

Step 1: [Start] generates the random population of n-

chromosome and encodes them into binary string.

Step 2: [Fitness] evaluate the fitness value of each

population using equation 3.

Step 3: [New Population] while either maximum number

of iteration is reached or optimum solution is found Do:

Step 3(a): [Selection] Consider chromosome with lowest

fitness twice and eliminate the chromosome with highest

fitness value to construct the mating pool

Step 3(b): [Crossover] Perform single point crossover by

randomly selecting the crossover point to form new

offspring.

Step 3(c): [Mutation] with a mutation probability of (0.05)

mutate new offspring at each locus (position on a

chromosome).

Step 3(d): [Accepting] place new offspring as new

population and use this community for next round of

iteration.

Step 4: [Reinitiate] Use new develop population for a fresh

run of the algorithm.

Step 5: [Test] if the end condition is satisfied, stop and

return the best solution in the current population.

Step 6: [Loop] Go to Step 2.

4. SIMULATION RESULTS AND

ANALYSIS
The proposed Improvised Genetic Algorithm (IGA) is

simulated in the MATLAB R 2010 toolkit. MATLAB is a

high-level language for numerical computation

visualization and application development. Math Works

http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.9, July 2015

27

developed it. Here, a hypothetical configuration has been

generated using MATLAB Toolkit. The data from six

different geographical locations is collected. Such user

bases used for experimentation are described in Table 1.

Table 1: Simulation configuration

S

No.

USER

BASE

REGIONS ONLINE

USERS

DURING

PEAKS

HOURS

ONLINE USERS

DURING OFF-

PEAKS HOURS

1. UB1 1. NORTH

AMERICA

6,000 600

2. UB2 2. SOUTH

AMERICA

2,000 200

3. UB3 3. EUROPE 5,000 500

4. UB4 4. ASIA 7,000 700

5. UB5 5. AFRICA 1,000 100

6. UB6 6.

OCEANIA

1,500 150

A particular time zone is examined for all the user bases,

and it is expected that

there are mixed numbers of customers during peak hours

and off-peak hours. Particular simulated “data center

hosts” has a specific bulk of virtual machines (VMs)

dedicated to the application. Each of the Machines has 4

GB of RAM and 100GB of storage, and each machine has

4 CPUs, having a capacity power of 258 MIPS for 400

MHz processor.

4.1 Simulation setup
The experimentation scenario starts with only a single

centralized cloud Data Center (DC), which consists of (25,

50, 75, 100, and 125); VMs and varying number of

processing nodes. Data from various social networking

sites like Facebook, Google+ etc., is collected.

Furthermore, each user makes a request every 5 minutes.

Cloud processes all user requests around the world

Configuration (CCs) and allocates them to particular

processing nodes. This simulation setup consisting of a

single data center as described in Table 2 with calculated

overall average Response Time (RT) in ms for IGA, and

the result are compared with existing technique of GA and

RR. A performance analysis graph of the same is depicted

in figure 3.

Table 2: Simulation scenario and calculated overall average response time (RT) in (ms)

S.

N

O

CLOUD

CONFIG

URATIO

N

DC

SPECIFICAT

ION

EACH WITH

RESPON

SE TIME

USING

ROUND

ROBIN

RESPON

SE TIME

USING

GENETI

C

ALGORI

THM

RESPONS

E TIME

USING

IMPROVI

SHED

GENETIC

ALGORIT

HM

1. CC1 25 VMs 97.63 85.12 29.22

2. CC2 50 VMs 83.11 71.11 27.45

3. CC3 75 VMs 61.09 53.23 24.33

4. CC4 100 VMs 58.18 45.15 20.29

5. CC5 125 VMs 38.11 25.16 18.26

Figure 3: Performance analysis of proposed GA with IGA

Table 1 and graph in figure 3 shows the average response

time of the load balancing techniques. The graph shows

the average response time obtained in a simulation setup

consisting of the single data center, which consist of (25,

50, 75, 100, and 125) VMs. The data from different source

node is collected and is then deployed to cloud storage

where data is encoded into binary format. Now, the fitness

value of each node present in the virtual machine is

calculated. Based upon the minimum fitness value of the

node crossover is performed, mutation value is set to

(0.05), and the process will continue until the end

condition is met or the best solution is obtained. Then

finally, a new matting pool is created from where the

nodes are disseminated to their processing nodes to

perform load balancing. It is clear from our graph that our

proposed algorithm when simulated in MATLAB toolkit

gives better response time than existing GA and RR when

simulated in Cloud analyst simulator.

5. CONCLUSION
In this paper, a load balancing strategies called Improvised

Genetic Algorithm in a cloud environment is proposed.

The proposed soft computing approach is simulated in

Matlab toolkit and the result are compared with existing

GA and RR which are simulated in cloud analyst

simulator. The experiment is been conducted by varying

the number of nodes in a VM present in a cloud

configuration of single data center. The results are quite

encouraging however use of other soft computing

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.9, July 2015

28

techniques are needed to be studied for further

improvement.

6. REFERENCES: -

[1] Velte, A.T., Veltey, T.J., and Elsenpeter, R., 2010,

“Cloud Computing: A Practical Approach,” Tata

McGraw-Hill Education Private Limited, New Delhi,

Edition.

[2] Jadeja, Y., and Modi, K., 2012, “Cloud Computing-

Concepts, Architecture and Challenges,” International

Conference on Computing, Electronics and Electrical

Technologies, pages 877-880.

[3] Shaikh, F.B., and Haider, S., 2011, “Security Threats

in Cloud Computing”, Internet Technology and

Secured Transactions, 214-219.

[4] Srinivas, J., Reddy, K.V.S., and Qyser, A.M., July

2012, “Cloud Computing Basics”, International

Journal of Advanced Research in Computer and

Communication Engineering, volume 1, issue 5.

[5] Ray, S., and Sarkar, A.D., October 2012, “Execution

Analysis of Load Balancing Algorithms in Cloud

Computing Environment,” International Journal of

Cloud Computing Services and Architecture, volume

2, issue 5.

[6] Dasgupta,K., Mandal, B., Dutta, P., Mondal, J.K.,

Dam, S., 2013, “A Genetic Algorithm (GA) based

Load Balancing Strategy for Cloud Computing,”

International Conference on Computational

Intelligence: Modeling Techniques and Applications

(CIMTA), volume 10, page 340-347.

[7] Sotomayor, B., Montero, R.S., Llorente, I.M., and

Foster, I., 2009, "Virtual infrastructure management

in private and hybrid clouds," in IEEE Internet

Computing, vol. 13, no. 5, pages 14- 22.

[8] Wang, S.C., Yan, K.Q., Liao, W.P., Wang, S. S.,

2010, “Towards a Load Balancing in a three level

cloud computing network,” in Proc. Third

International Conference Computer Science and

Information Technology (ICCSIT), IEEE, vol. 1,

pages 108—113.

[9] Radojevic, B., and Zagar, M., 2011, "Analysis of

issues with load balancing algorithms in hosted

(cloud) environments," In Proc. 34th International

Convention on MIPRO, IEEE.

[10] Lars, K., Andreas,T., Erhard,R., 2012, “Load

Balancing for Map Reduce-based Entity Resolution”,

in Proc. 28th International Conference on Data

Engineering (ICDE), IEEE, pages 618-629.

[11] Gu, J., Hu, J., Zhao, T., Sun, G., January 2012, “A

New Resource Scheduling Strategy Based on Genetic

Algorithm in Cloud Computing Environment,”

journal of computers, vol. 7, NO. 1.

[12] Jaroodi, Al., Mohamed, N., May 2011, "DDFTP:

Dual-Direction FTP," in Proc. 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), IEEE, pages 504-503.

[13] Nishant, Sharma, K. P., Krishna, V., Gupta, C.,

Singh, KP., Nitin, N., and Rastogi, R., March 2012,

"Load Balancing of Nodes in Cloud Using Ant

Colony Optimization," In Proc. 14th International

Conference on Computer Modeling and Simulation

(UKSim), IEEE, pages 3-8.

[14] Brototi, M., Dasgupta, K., Dutta, P., 2012, “Load

Balancing in Cloud Computing using Stochastic Hill

Climbing-A Soft Computing Approach”, in Proc. 2nd

International Conference on Computer,

Communication, Control and Information

Technology(C3IT).

[15] Randles, M., Lamb, D., and Taleb-Bendiab, A., April

2010, “A Comparative Study into Distributed Load

Balancing Algorithms for Cloud Computing”,

Proceedings of 24th IEEE International Conference

on Advanced Information Networking and

Applications Workshops, Perth, Australia, pages 551-

556.

IJCATM : www.ijcaonline.org

