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ABSTRACT  
The Friendship graphs F(nC3 * Sk), F(nC5 * Sk) and F(2nC3 * 

Sk) are all even vertex graceful where n is a positive integer. 
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1. INTRODUCTION  

A.Solairaju, and A.Sasikala [2008] got gracefulness of a 

spanning tree of the graph of product of Pm and Cn,  

A.Solairaju and K.Chitra  [2009] obtained edge-odd graceful 

labeling of some graphs related to paths. A.Solairaju, and C. 

Vimala [2008] gracefulness of a spanning tree of the graph of 

Cartesian product of Sm and Sn,   

A.Solairaju and P.Muruganantham [2009] proved that ladder 

P2 x Pn is even-edge graceful (even vertex graceful). They 

found [2010] the connected graphs Pn o nC3 and Pn o nC7 are 

both even vertex graceful, where n is any positive integer. 

They also obtained [2010] that the connected graph Pn Δ nC4

is even vertex graceful, where n is any even positive integer. 

Section I - Preliminaries and definitions: 

The following definitions are now given: 

Definition 1.1:  Let G = (V,E) be a simple graph with p 

vertices and q edges. A map                                            f 

:V(G)  {0,1,2,…,q} is called a graceful labeling if f is one – 

to – one; The edges receive all the labels (numbers) from 1 to 

q where the label of an edge is the absolute value of the 

difference between the vertex labels at its ends. A graph 

having a graceful labeling is called a graceful graph. 

Definition 1.2 
 A graph is odd-edge graceful if there exists an injective map                                                     

f : E (G)  {1,3,5, …, 2q} so that the induced map f+: V(G) 

 {0, 1, 2, 3 ,…, 2k-2} defined by f+ (x) =  f(xy)  (mod 2k)  

where  k = max { p, q } makes all distinct.  

Example 1.3 

 The following connected graph is edge-odd graceful. 
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Definition 1.4 
A friendship graph or a fan graph F(nC3 * Sk) is defined as 

the following connected graph containing n copies of circuits 

of each length 3 with some arbitrary labeling of edges in  
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Figure 1: Friendship graph F(nC3) with some arbitrary 

labelings for edges 

2. NEW CLASSES OF EDGE-ODD 

GRACEFUL GRAPHS 
The discussion is started with the following theorem: 

Theorem 2.1 
 The friendship graph F(nC3 * Sk) is edge-odd graceful where 

n ≡ 0 (mod 3)  

Proof 
 The graph F(nC3 * Sk) has vertex set {V0, V1, V2, V3, V4, 

…, V2n-1, V2n, V2n+1, V2n+2, …, V2n+k}. It has edge set 

{ei = V0Vi: i varies from 1 to n}   { e2n+k+i  = ViVi+1: i 

varies from 1, 3, 5, …, 2n-1}   {e2n+i = V0Vi: i varies from 

2n+1, 2n+2,…, 2n+k}. 

Define f: E(G) → {1,3,5,…2q-1} ,by f(ei) =2i-1  ( i =1 to 

3n+k ; I ≠2n+k, i ≠ 2n+k+1) 

f(e2n+k) = (4n + 2k – 1) ; f(e2n+k+1) = (4n + 2k + 1) (if k ≥
 n) 

f(e2n+k) = (4n + 2k + 1) ; f(e2n+k+1) = (4n + 2k – 1) (if k < 

n). 

Then the induced map f+ (u) = ∑ f(uv)   (mod 2q) where the 

sum runs over all edges uv through v. Now, f and f+ both 
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satisfy edge-odd graceful labeling. Thus the connected graph 

F(nC3 * Sk) is an edge-odd graceful. 

Example 2.2: The friendship graph F(6C3 * S2) is edge-

odd graceful.                                                     The graph has p 

= 15 vertices, q = 20 edges. The edge-odd graceful labelings 

are mentioned below in figure 2:  
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Figure 2: Edge-odd graceful of the friendship graph F(6C3 

* S2) 

Theorem 2.2 The friendship graph F(nC3 * Sk) is edge-

odd graceful where n≡1(mod 3)  

Proof: The graph F(nC3 * Sk) has vertex set {V0, V1, V2, 

V3, V4, …, V2n-1, V2n, V2n+1, V2n+2, …, V2n+k}.  It has 

edge set {ei = V0Vn+k+i: i varies from 1 to 2n}   { ei  = 

ViVi+1: i varies from 1, 3, 5, …, 2n-1}    {e2n+i = V0Vi: i 

varies from 2n+1, 2n+2,…, 2n + k}. The other arbitrary 

labelings od edges for the graph F(nC3 * Sk) are as follows: 
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Figure 3: Arbitrary labelings of the friendship graph 

F(nC3 * Sk) 

To get the required edge-odd graceful labelings,   define f: 

E(G)→{1,3,5,…2q-1} ,by f(ei) = (2i-1)  , i = 1 to (3n + k). 

Then the induced map f+ (u) = ∑ f(uv)   (mod 2q) where the 

sum runs over all edges uv through v. Now, f and f+ both 

satisfy edge-odd graceful labeling. Thus the connected graph 

F(nC3 * Sk) is an edge-odd graceful. 

Example 2.4: The friendship graph F(7C3 * S4) is edge-

odd graceful 

The graph has p = 19 vertices, q = 25 edges. The edge-odd 

graceful labelings are mentioned below:  

1

3

5

7

9

11

13

15

17

19
21

2325
27

29

31

33

35

37

39 41
43

45

47

49

 

Figure 4: Edge-odd graceful of the friendship graph F(7C3 

* S4) 

Theorem 2.5: The friendship graph F(nC3 * Sk) is edge-

odd graceful where n ≡ 2 (mod 3) Proof: The graph F(nC3 * 

Sk) has vertex set {V0, V1, V2, V3, V4, …, V2n-1, V2n, V2n+1, 

V2n+2, …, V2n+k}. It has edge set {e1+3(i-1)/2 = V0Vi: i varies 

from 1,3,5,…, to 2n-1}   {e3i / /2 = V0Vi: i varies from 

2,4,6,…, to 2n}  { e2+3(i-1)/2  = ViVi+1: i varies from 1, 3, 5, 

…, 2n-1}   {e2n+i = V0Vi: i varies from 2n + 1, 2n + 2,…, 2n 

+ k}. 

 

The third arbitrary labelings of the edges for the graph F(nC3 * 

Sk) are as follows: 
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Figure 5: An arbitrary labelings of the friendship graph 

F(nC3 * Sk) 

To get edge-odd graceful labelings in this cases,  Define f: 

E(G)→{1,3,5,…2q-1} ,by                   f(ei) = (2i-1),  i = 1 to 

3n+k , i ≠ 3n-2, i ≠ 3n-1;  f(e3n-2) = 6n-3 ,  f(e3n-1) = 6n-5 if k 

< n;                              f(e3n-2) = 6n-5 , f(e3n-1) = 6n-3 if k ≥ n.  

Then the induced map f+ (u) =  ∑ f(uv)   (mod 2q) where the 

sum runs over all edges uv through v. Now, f and f+ both 

satisfy edge-odd graceful labeling. Thus the connected graph 

F(nC3 * Sk) is an edge-odd graceful. 

Example 2.5: The friendship graph F(5C3 * S4) is edge-

odd graceful 

The graph has p = 14 vertices, q = 19 edges. The edge-odd 

graceful labelings are mentioned below:  
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Figure 6: Edge-odd graceful of the friendship graph F(5C3 

* S4) 

3. DIFFERENT TYPES OF 

FRIENDSHIP GRAPHS HAVING 

EDGE-ODD GRACEFUL 

LABELINGS 
The following is now to be verified: 

Theorem 3.1: The friendship graph F(nC5 * Sk) is edge-

odd graceful where n is any positive integer. 

Proof: The graph has vertex set {V0, V1, V2, V3, V4, V5, V6, 

V7, V8, …, V2n-3, V2n-2, V4n-1, V4n,…, V4n+1, V4n+2, …, V4n+K}. 

It has edge set {eI = ViVi+1: i varies from {1,2,3, 5,6,7, …, 4n-

3, 4n-2, 4n-1}   {V4V0, V8V0, V12V0, …, V4nV0}  { V0V1,  

V4Vo, V0V5,  V8V0, V0V9,  V12V0, …, V0V4n-3,  V4nV0}  { 

V0Vi : i varies from 1 to k}. The arbitrary labelings of the 

edges for the given graph FnC5 * Sk) are as follows: 
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Figure 7: An arbitrary labelings of the friendship graph 

F(nC5 * S4) 

Case (i) : n is odd  

Subcase (a):  k is even   Define f: E(G)→{1,3,5,…2q-1} , by f 

(ei) = (2i-1), i = 1 to 5n + k. 

Subcase (b):  k is odd   Define f: E(G)→{1,3,5,…2q-1} by                                                      

f (ei) =2i-1  , i = 1 to 5 
𝑛+1

2
  ; 5n+1,5n+2,…,5n+k. 

f (ei) = f(e
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4
 

+1,…, (5n). 

Case (ii) n is even  

Subcase (c): Either k is odd or k is even with k ≥ n: Define f 

(ei) = 2i-1 ,i = 1 to 5n+k. 

Subcase (d); k is even with k  < n.  Define f(ei) = 2i + 1; i = 1 

to 5n / 2;   

f(ei) =f(e5n/2) + 2 + 4 (i- 1 −
15𝑛

8
)  ; i = 

5𝑛

2
+ 1,…, 

15𝑛

8
;   f (ei) 

=f((e5𝑛/2) + 4) + 4 (i- 1 −
15𝑛

8
)  ; i = 

15𝑛

8
+ 1,…,5n;  f (ei) = 

2i-1 , i = 5n+1,…,5n(k-1).;             f (e5n+k) = 1.  

In all cases, the induced map f+ (u) = ∑ f(uv)   (mod 2q) 

where the sum runs over all edges uv through v. Now, f and f+ 

both satisfy edge-odd graceful labeling. Thus the connected 

graph F(nC5 * Sk) is an edge-odd graceful. 

Example 3.2: The friendship graph F(5C5 * S4) is edge-

odd graceful. 

The graph has p = 25 vertices, q = 29 edges. The edge-odd 

graceful labelings are mentioned below:  
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Figure 8: Edge-odd graceful of the friendship graph F(5C5 

* S4) 

Example 3.3: The friendship graph F(4C5 * S3) is edge-

odd graceful. 

The graph has p = 21 vertices, q = 24 edges. The edge-odd 

graceful labelings are mentioned below:  

1

3
5

7

9
11

13

15

17 19

21

23
25

27

29 31

33
35

37

41

45

39

43

47

 

Figure 9: Edge-odd graceful of the friendship graph F(4C5 

* S3) 

Theorem 3.5 The friendship graph F(2nC3 * Sk) is edge-

odd graceful where n is any positive integer. 

Proof:  The graph has vertex set {V0, V1, V2, V3, V4, V5, 

V6,…, V3n-2, V3n-1, V3n, V1, V2, .., Vk}. It has edge set {V0Vi: i 

varies from 1 to 3n+k }  {ViVi+1 :  i varies from 1 to 3n and i 
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is not a multiple of 3}.  The arbitrary labelings of the edges or 

the given graph F(2nC3 * Sk) are as follows: 
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Figure 10: An arbitrary labelings of the friendship graph 

F(2nC3 * Sk) 

Define f(ei)= 2i-1, where i =1 to 5n+k ;i ≠1,and i ≠ 4n+k 

Case (i):  n is odd ; k is even < n: Define f (e4n+k) = 1; f (e1) 

=8n+2k-1  

Case (ii): All other cases: Define f (e4n+k) = 8n+2k-1; f (e1) = 

1 

Then the induced map f+ (u) = ∑ f(uv)   (mod 2q) where the 

sum runs over all edges uv through v. Now, f and f+ both 

satisfy edge-odd graceful labeling. Thus the connected graph 

F(2nC3 * Sk) is an edge-odd graceful. 

Example 3.6: The friendship graph F(2.2C3 * S4) is edge-odd 

graceful. 

The graph has p = 17 vertices, and q = 24 edges. The edge-

odd graceful labelings are mentioned below:  
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Figure 11: Edge-odd graceful of the friendship graph 

F(2.2C3 * S4) 
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