
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

33

Kohonen’s Self-Organizing Feature Maps and Linear

Vector Quantization: A Comparison

Kiran Bhowmick
Assistant Professor

Department of Computer Engineering,
D. J. Sanghvi College of Engineering,

Mumbai, India

Mansi Shah
Student

Department of Computer Engineering,
D. J. Sanghvi College of Engineering,

Mumbai, India

ABSTRACT

Machine learning has evolved over the past years to become

one of the major research fields in Computer Science. In

simple words, Machine Learning can be described as the

process of training a machine to learn from its outputs and

improvise itself in order to optimize its outputs. One of the

major branch of machine learning is Unsupervised Learning

where in the machine is not given any kind of feedback but is

expected to learn on its own (“without Supervision”). This

paper aims at describing in detail and thus comparing two

such neural networks: Kohonen’s Self Organizing Feature

Maps (KSOFM) and Linear Vector Quantization (LVQ).

General Terms

KSOFM, LVQ, Unsupervised Learning, Pattern Recognition

Keywords

KSOFM, LVQ, Machine Learning, Unsupervised Learning,

Pattern Recognition, Comparison

1. INTRODUCTION
Unsupervised Machine Learning, as the name suggests, is a

machine learning technique in which no form of feedback is

provided to the machine and instead it is expected to give

accurate outputs by learning on its own. Unsupervised

machine learning can be easily understood by understanding

its major application: Clustering. It groups the given inputs

based on their similarity and differences among themselves,

without any external help (feedback). Such learning networks

are also called Self Organizing networks. In order to ensure

that we get one and only one output, the neurons in the net

are said to compete among themselves so that eventually one

neuron emerges as a winner. Thus, such networks are also

called competitive nets.

There are several neural networks that come in this category,

such as Maxnet, Mexican Hat, Hamming net, Kohonen’s self

organizing feature map, Learning vector quantization etc.

The learning algorithm used in most of these nets is known as

Kohonen learning. In this learning, the units update their

weights by forming a new weight vector, which is a linear

combination of the old weight vector and the new input

vector. Also, the learning continues for the unit whose weight

vector is closest to the input vector. The weight updating

formula for output cluster unit j is given as: [1]

wj (new) = wj (old) + α [x - wj(old)]

where x is the input vector, wj is the weight vector for unit j

and α is the learning rate, which decreases (often

exponentially) as training progresses. As the learning rate

decreases with time, the amount of significant change in the

weight also reduces. Thus, a net learns faster initially as

compared to gradual and slow learning towards the end.

Having seen the basics, we will now discuss two such

networks in detail and compare their performance for an

application: Pattern Recognition.

2. KOHONEN’S SELF-ORGANIZING

FEATURE MAP
Feature Mapping is the process, which converts the patterns

of arbitrary dimensionality into a response of one- or two-

dimensional arrays of neurons, i.e., it converts a wide pattern

space into a typical feature space. [1] The network performing

such a mapping is called a feature map. The weight vector of

the output unit serves as an exemplar vector.

Simple working of this algorithm can be explained in

following logical steps:

 Suppose there are n inputs, which need to be

clustered into m different clusters. Firstly we will

initialize m different weight vectors to random

values. The learning rate of the network is also

initialized to a predefined value. Also another

parameter, which is initialized, is the Radius of

topological neighborhood.

 One by one, each input is compared with each of

the weight vectors. The vector closest to the current

input is chosen for updating by the Kohonen’s

Learning Rule formula. In case of multiple vectors

having equal distance from the input, the first one

is chosen for simplicity.

 Along with the “winning” weight vector, those

vectors, which lie in the nearby neighborhood

defined by the Radius of topological neighborhood,

are also updated with the same formula.

 Above two steps are performed for each of the n

inputs.

 The learning rate is decreased by a certain amount

dependent on time since training started. The radius

 of topological neighborhood is also reduced. If the

learning rate has decreased considerably such that

the network won’t be able to learn significantly any

more, then the training is stopped. Else the same

process is repeated with the new learning rate.

For testing purposes, the weights obtained in the training

phase are used. By simply finding out the unit whose weights

are most ‘similar’ to that of the input, we can identify the

cluster to which that particular input belongs.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

34

3. LINEAR VECTOR QUANTIZATION
Learning Vector Quantization though belongs to the category

of competitive networks, it has a touch of supervised learning

to it. Both KSOFM and LVQ use Kohonen’s weight updating

formula, but both differ in their approach to train the network.

And hence their performance varies. As stated earlier, LVQ

has a touch of supervised learning to it. Thus, prior knowledge

should be known about the input vectors. Unlike KSOFM,

LVQ weight vectors are not randomly initialized. For LVQ,

each input vector should be associated with a predefined fixed

class to which it belongs.

LVQ training can be explained with the following steps:

 Suppose there are n inputs to be classified into m

different output classes. Each input for training is

associated with one of the output classes. The

weight vectors are initialized with the first m input

vectors, which belong to different classes.

 For training weights, Euclidean distance is

calculated between the input and weight vectors.

The node J with minimum distance is chosen as the

winning node.

 Next, before updating weights, the output class of

the input T is compared with the winning output

class Cj

IF T = Cj THEN

 wj (new) = wj (old) + α [x - wj (old)]

i.e. the weight vector is moved closer to the input

vector

IF T ≠ Cj THEN

 wj (new) = wj (old) - α [x - wj(old)]

i.e. the weight vector is moved away from the input

vector

 The above two steps are repeated for every input

vector

 After one such iteration, the learning rate is

decreased using the formula

α (t)= α (t-1)*0.5

 The training is stopped when the stopping criteria is

met. The stopping criteria could be any fixed

number iterations or a sufficiently small value of α.

As compared to KSOFM, LVQ at least theoretically proves to

be giving a corrective measure to the network if and when it is

found to be performing wrongly. In the next section we shall

see, how these two algorithms performed practically.

4. IMPLEMENTATION
In order to compare the two algorithms closely, we chose a

simple yet effective application whose results could easily be

understood and interpreted: Pattern Recognition.

For each of the algorithm, a simple MATLAB code was

written to train and test vectors belonging to one of the
following patterns:

• Star (*)

• Cross (+)

• X (x)

• Square

• Diamond

Moreover, to purely compare their performance, both set of

weight vectors were initialized to the same values. Each

Pattern was represented by a 5*5 binary matrix, which is

represented as a single row vector.

Both algorithms were trained using 10 vectors for 19

iterations. The results obtained thereafter on different test

cases are tabulated and discussed in the next section.

5. RESULTS AND DISCUSSIONS
Out of all the test cases tabulated in the table, the first three

are of most interest to study the performance of both the

networks, as remaining inputs give the same output in both

the networks.

On close observation, following points are inferred from the

experiment:

 In the first 4 inputs, KSOFM gives the result as Star,

whereas LVQ doesn’t, but subsequently, both give

Star as an output for other inputs. In the star pattern

representation, if we consider the outermost border

of the 5*5 matrix, then there are 8 bits set to ‘1’. In

the first 4 inputs, out of these 8 bits, at most only 4

bits are set to ‘1’, and LVQ doesn’t classify it as

Star. Whereas in inputs 5-8, at least 5 bits or more

are set to ‘1’, and LVQ successfully labels those

patterns as a Star.

 Moreover, in the first input, if we see the pattern, as

shown below, it closely resembles a Star and

KSOFM rightly labels it so. But LVQ labels it as a

Cross (+). This again proves that LVQ gives more

importance to the border pixels. For a cross, only 4

border pixels are missing, whereas for a star 8

border pixels are missing. Thus, even though there

are 4 extra pixels as compared to an ideal cross (+),

LVQ still labels it as a cross.

Table 1: Results of Pattern Recognition

Sr.

No.

Input

Pattern:

Classified as:

Using KSOFM Using LVQ

1

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

2

0 0 1 0 0

0 1 1 1 0

1 1 0 1 1

0 1 1 1 0

0 0 1 0 0

3

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

35

0 0 1 0 0

4

1 0 0 0 1

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

1 0 0 0 1

5

1 0 1 0 1

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

1 0 0 0 1

6

1 0 0 0 1

0 1 1 1 0

1 1 1 1 0

0 1 1 1 0

1 0 0 0 1

7

1 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

8

1 0 1 0 1

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 0 0 0

9

0 0 1 0 0

0 0 1 0 0

1 0 0 0 1

0 0 1 0 0

0 0 1 0 0

10

1 0 1 0 1

0 0 0 0 1

1 0 0 0 0

0 0 0 0 1

1 0 1 0 1

11

1 0 1 0 1

0 1 0 1 1

1 0 0 0 0

0 1 0 1 1

1 0 1 0 1

12

0 0 1 0 0

 0 1 0 1 1

 1 0 0 1 0

 0 1 0 1 1

 1 0 1 0 0

13
0 0 1 0 1

 0 0 0 0 0

 1 1 1 1 0

 0 1 0 0 1

 0 0 1 0 0

14

1 0 0 0 1

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

1 0 0 0 1

15

1 0 0 0 1

0 1 1 1 0

0 0 1 0 0

0 1 1 1 0

1 0 0 0 1

 In the second, third and fourth pattern, LVQ labels

them as a diamond, cross and X respectively

because whole of those patterns are resembled along

with some extra pixels. LVQ, because of the border

pixel weightage as mentioned above, again doesn’t

consider the possibility of those patterns being an

incomplete star, which KSOFM does.

 Furthermore, one may also question that the third

input pattern, has both patterns, a cross and a

diamond complete in it then why does LVQ label it

as a cross. This is because, for a cross, it just has 4

more extra pixels enabled, whereas for a diamond,

the pattern has 5 extra pixels. Thus, cross can be

termed as a “closer” label than diamond.

 In the remaining inputs, there isn’t much ambiguity

and both the networks give the same output as

expected.

It can, thus be concluded that, while LVQ appears to be “safe”

in predicting labels and needs some threshold beyond which it

can consider the pattern to be an incomplete one, on the other

hand KSOFM considers all the possibilities and gives much

satisfying results even though it being unsupervised in nature.

Thus, if not possible to give training data with expected

output, KSOFM works out as a much better choice. However,

it also depends on the need of the application and whether the

inputs will always be in distorted form or not. If there isn’t

much variance between the trained and testing input, LVQ

could also be an option.

6. REFERENCES
[1] Principles of Soft Computing, Wiley, S. N. Sivanandan

& S. N. Deepa.

IJCATM : www.ijcaonline.org

