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ABSTRACT 

Machine learning has evolved over the past years to become 

one of the major research fields in Computer Science. In 

simple words, Machine Learning can be described as the 

process of training a machine to learn from its outputs and 

improvise itself in order to optimize its outputs. One of the 

major branch of machine learning is Unsupervised Learning 

where in the machine is not given any kind of feedback but is 

expected to learn on its own (“without Supervision”). This 

paper aims at describing in detail and thus comparing two 

such neural networks: Kohonen’s Self Organizing Feature 

Maps (KSOFM) and Linear Vector Quantization (LVQ). 
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1. INTRODUCTION 
Unsupervised Machine Learning, as the name suggests, is a 

machine learning technique in which no form of feedback is 

provided to the machine and instead it is expected to give 

accurate outputs by learning on its own. Unsupervised 

machine learning can be easily understood by understanding 

its major application: Clustering. It groups the given inputs 

based on their similarity and differences among themselves, 

without any external help (feedback). Such learning networks 

are also called Self Organizing networks. In order to ensure 

that we get one and only one output, the neurons in the net 

are said to compete among themselves so that eventually one 

neuron emerges as a winner. Thus, such networks are also 

called competitive nets.  

 

There are several neural networks that come in this category, 

such as Maxnet, Mexican Hat, Hamming net, Kohonen’s self 

organizing feature map, Learning vector quantization etc. 

The learning algorithm used in most of these nets is known as 

Kohonen learning. In this learning, the units update their 

weights by forming a new weight vector, which is a linear 

combination of the old weight vector and the new input 

vector. Also, the learning continues for the unit whose weight 

vector is closest to the input vector. The weight updating 

formula for output cluster unit j is given as: [1] 

 

wj (new) = wj (old) + α [x - wj(old)]  

 

where x is the input vector, wj is the weight vector for unit j 

and α is the learning rate, which decreases (often 

exponentially) as training progresses. As the learning rate 

decreases with time, the amount of significant change in the 

weight also reduces. Thus, a net learns faster initially as 

compared to gradual and slow learning towards the end.  

Having seen the basics, we will now discuss two such 

networks in detail and compare their performance for an 

application: Pattern Recognition. 

2. KOHONEN’S SELF-ORGANIZING 

FEATURE MAP 
Feature Mapping is the process, which converts the patterns 

of arbitrary dimensionality into a response of one- or two-

dimensional arrays of neurons, i.e., it converts a wide pattern 

space into a typical feature space. [1] The network performing 

such a mapping is called a feature map. The weight vector of 

the output unit serves as an exemplar vector.  

 

Simple working of this algorithm can be explained in 

following logical steps:  

 Suppose there are n inputs, which need to be 

clustered into m different clusters. Firstly we will 

initialize m different weight vectors to random 

values. The learning rate of the network is also 

initialized to a predefined value. Also another 

parameter, which is initialized, is the Radius of 

topological neighborhood. 

 One by one, each input is compared with each of 

the weight vectors. The vector closest to the current 

input is chosen for updating by the Kohonen’s 

Learning Rule formula. In case of multiple vectors 

having equal distance from the input, the first one 

is chosen for simplicity.  

 Along with the “winning” weight vector, those 

vectors, which lie in the nearby neighborhood 

defined by the Radius of topological neighborhood, 

are also updated with the same formula. 

 Above two steps are performed for each of the n 

inputs. 

 The learning rate is decreased by a certain amount 

dependent on time since training started. The radius 

 of topological neighborhood is also reduced. If the 

learning rate has decreased considerably such that 

the network won’t be able to learn significantly any 

more, then the training is stopped. Else the same 

process is repeated with the new learning rate.  

For testing purposes, the weights obtained in the training 

phase are used. By simply finding out the unit whose weights 

are most ‘similar’ to that of the input, we can identify the 

cluster to which that particular input belongs. 
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3.  LINEAR VECTOR QUANTIZATION 
Learning Vector Quantization though belongs to the category 

of competitive networks, it has a touch of supervised learning 

to it. Both KSOFM and LVQ use Kohonen’s weight updating 

formula, but both differ in their approach to train the network. 

And hence their performance varies. As stated earlier, LVQ 

has a touch of supervised learning to it. Thus, prior knowledge 

should be known about the input vectors. Unlike KSOFM, 

LVQ weight vectors are not randomly initialized. For LVQ, 

each input vector should be associated with a predefined fixed 

class to which it belongs. 

LVQ training can be explained with the following steps:  

 Suppose there are n inputs to be classified into m 

different output classes. Each input for training is 

associated with one of the output classes. The 

weight vectors are initialized with the first m input 

vectors, which belong to different classes. 

 For training weights, Euclidean distance is 

calculated between the input and weight vectors. 

The node J with minimum distance is chosen as the 

winning node. 

 Next, before updating weights, the output class of 

the input T is compared with the winning output 

class Cj  

IF T = Cj THEN 

  wj (new) = wj (old) + α [x - wj (old)] 

i.e. the weight vector is moved closer to the input 

vector 

IF T ≠ Cj THEN 

   wj (new) = wj (old) - α [x - wj(old)] 

i.e. the weight vector is moved away from the input 

vector 

 The above two steps are repeated for every input 

vector  

 After one such iteration, the learning rate is 

decreased using the formula 

α (t)= α (t-1)*0.5 

 The training is stopped when the stopping criteria is 

met. The stopping criteria could be any fixed 

number iterations or a sufficiently small value of α. 

As compared to KSOFM, LVQ at least theoretically proves to 

be giving a corrective measure to the network if and when it is 

found to be performing wrongly. In the next section we shall 

see, how these two algorithms performed practically. 

4. IMPLEMENTATION 
In order to compare the two algorithms closely, we chose a 

simple yet effective application whose results could easily be 

understood and interpreted:  Pattern Recognition. 

For each of the algorithm, a simple MATLAB code was 

written to train and test vectors belonging to one of the 
following patterns: 

 

• Star (*) 

• Cross (+) 

• X (x) 

• Square  

• Diamond 

 
Moreover, to purely compare their performance, both set of 

weight vectors were initialized to the same values. Each 

Pattern was represented by a 5*5 binary matrix, which is 

represented as a single row vector. 

Both algorithms were trained using 10 vectors for 19 

iterations. The results obtained thereafter on different test 

cases are tabulated and discussed in the next section. 

5. RESULTS AND DISCUSSIONS 
Out of all the test cases tabulated in the table, the first three 

are of most interest to study the performance of both the 

networks, as remaining inputs give the same output in both 

the networks.  

On close observation, following points are inferred from the 

experiment: 

 In the first 4 inputs, KSOFM gives the result as Star, 

whereas LVQ doesn’t, but subsequently, both give 

Star as an output for other inputs. In the star pattern 

representation, if we consider the outermost border 

of the 5*5 matrix, then there are 8 bits set to ‘1’. In 

the first 4 inputs, out of these 8 bits, at most only 4 

bits are set to ‘1’, and LVQ doesn’t classify it as 

Star. Whereas in inputs 5-8, at least 5 bits or more 

are set to ‘1’, and LVQ successfully labels those 

patterns as a Star.  

 Moreover, in the first input, if we see the pattern, as 

shown below, it closely resembles a Star and 

KSOFM rightly labels it so. But LVQ labels it as a 

Cross (+). This again proves that LVQ gives more 

importance to the border pixels. For a cross, only 4 

border pixels are missing, whereas for a star 8 

border pixels are missing. Thus, even though there 

are 4 extra pixels as compared to an ideal cross (+), 

LVQ still labels it as a cross. 

Table 1: Results of Pattern Recognition 

Sr. 

No. 

Input 

Pattern: 

Classified as: 

Using KSOFM Using LVQ 

1 

0 0 0 0 0 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0 

0 0 0 0 0 

  

2 

0 0 1 0 0 

0 1 1 1 0 

1 1 0 1 1  

0 1 1 1 0 

0 0 1 0 0 

 

 

 

 

3 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 
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0 0 1 0 0 

4 

1 0 0 0 1 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0 

1 0 0 0 1 

  

5 

1 0 1 0 1 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0                   

1 0 0 0 1 

  

6 

1 0 0 0 1 

0 1 1 1 0 

1 1 1 1 0 

0 1 1 1 0         

1 0 0 0 1 

  

7 

1 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 1 0 0 

  

8 

1 0 1 0 1 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 0 0 0 

  

9 

0 0 1 0 0 

0 0 1 0 0 

1 0 0 0 1 

0 0 1 0 0 

0 0 1 0 0 

  

10 

1 0 1 0 1 

0 0 0 0 1 

1 0 0 0 0 

0 0 0 0 1 

1 0 1 0 1 

  

11 

1 0 1 0 1 

0 1 0 1 1 

1 0 0 0 0 

0 1 0 1 1 

1 0 1 0 1 

  

12 

0 0 1 0 0 

 0 1 0 1 1 

 1 0 0 1 0 

  0 1 0 1 1 

  1 0 1 0 0 

  

13 
0 0 1 0 1 

 0 0 0 0 0 

 1 1 1 1 0 

  

 0 1 0 0 1 

 0 0 1 0 0 

14 

1 0 0 0 1 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0 

1 0 0 0 1 

  

15 

1 0 0 0 1 

0 1 1 1 0 

0 0 1 0 0 

0 1 1 1 0 

1 0 0 0 1 

  

 In the second, third and fourth pattern, LVQ labels 

them as a diamond, cross and X respectively 

because whole of those patterns are resembled along 

with some extra pixels. LVQ, because of the border 

pixel weightage as mentioned above, again doesn’t 

consider the possibility of those patterns being an 

incomplete star, which KSOFM does.  

 Furthermore, one may also question that the third 

input pattern, has both patterns, a cross and a 

diamond complete in it then why does LVQ label it 

as a cross. This is because, for a cross, it just has 4 

more extra pixels enabled, whereas for a diamond, 

the pattern has 5 extra pixels. Thus, cross can be 

termed as a “closer” label than diamond.  

 In the remaining inputs, there isn’t much ambiguity 

and both the networks give the same output as 

expected. 

It can, thus be concluded that, while LVQ appears to be “safe” 

in predicting labels and needs some threshold beyond which it 

can consider the pattern to be an incomplete one, on the other 

hand KSOFM considers all the possibilities and gives much 

satisfying results even though it being unsupervised in nature. 

Thus, if not possible to give training data with expected 

output, KSOFM works out as a much better choice. However, 

it also depends on the need of the application and whether the 

inputs will always be in distorted form or not. If there isn’t 

much variance between the trained and testing input, LVQ 

could also be an option. 
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