
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

1

Obfuscating Live Computer Forensic Investigative

Process on a Windows 7 Operating System: A Criminal’s

Perspective

Dinesh Mothi

British Computer Society, Affiliate Member
Independent Digital Forensic Researcher

Secunderabad, India

ABSTRACT

Live forensic investigation is conducted when the computer

system is turned on whilst the data is gathered in a

forensically sound manner, from the physical memory, in the

form of evidence. As time progressed, criminals have been

developing methodologies by which live analysis could be

defeated. One such method implemented by the criminals is

that of a rookit being installed on the victim’s machine. A

rookit can be dangerous, and very risky to deal with from an

investigator’s point of view, because it has the power to

subvert the kernel of an operating system. This paper presents,

how easy it is for a criminal to thwart the process of live

forensic investigation by downloading and installing free

software tools; needing, no prior knowledge of the windows 7

operating system’s kernel, and how frustrating it would be for

the investigator to examine the computer system and make a

valid forensic report. Thus, making live analysis a daunting

task for the forensic investigator on field. Finally, a

mathematical formula is derived for detecting the presence of

hidden processes in the memory.

General Terms

Live Forensic Analysis, Physical Memory, Rootkit, Windows

7 OS.

Keywords
Anti-Forensics, Digital Forensics, Computer Forensics,

Memory Forensics, Live Response.

1. INTRODUCTION
The windows operating system [20] is widely used than any

other Operating Systems in the world, reason being, the ease

and reduction in complexity by which a user can interact with

the system. But, with its advantages comes the drawbacks.

Due to its nature of operation, criminals take advantage of it

and misuse the windows machine. It is not surprising to see

new viruses or malware programs being created by the

hackers to exploit the windows operating system. Hackers or

Criminals develop malicious codes so as to hide their tools by

which they carry out an attack on a victims system. Rootkits

are toolsets used by an attacker to retain root-level access to a

system in a covert manner [5]. The programme which hides

the hacker tools that cause harm to the OS are known as

rootkits, and with the widespread use of rootkits, attackers can

conceal their activities [9]. In today’s era rootkits are famous

among the hacker community to thwart the process of live

response methodologies on a windows machine. The forensic

evidence is fragile to handle in the sense that it can be easily

be modified, duplicated, restored or destroyed [8]. The Live

Response Methodology, came into force when it was

discovered that the traditional forensic methodology i.e.,

pulling the plug off the system and then to image the hard

drive is no longer a viable option to acquire evidence from a

machine. It was noted that the hackers used sophisticated

software tools that would be installed in the volatile memory

of a system and this would not write any of its contents to the

hard drive. The idea behind this technique of running hacking

tools from the volatile memory is that the data in the volatile

memory vanishes when the power is taken away from the

system. The volatile memory does not have the capability to

retain or store any of its data once the power is turned off

from it. With this in mind, the forensic investigators adopt the

Live Response methodologies in order to collect data from the

volatile memory such as Random Access Memory (RAM)

from a system. The analysis of volatile memory data becomes

an important aspect in live incident response, and there are a

number of response toolkits being developed to address the

needs [14, 16].

Volatile data is information that would be irrevocably lost if

the machine suddenly lost power (e.g. the list of running

processes, network connections, Logon sessions, etc.). Non-

volatile data is persistent which is to say that we could acquire

it from a forensic duplication of the machine’s hard drive. The

difference is that the format in which the information is

conveyed is easier to read when requested from a running

machine. With regard to collecting evidence, the prototypical

forensic investigation normally proceeds according to the

basic order of volatility spelled out by RFC3227 [19]. This

sort of investigation begins with a live response process,

where both volatile and non-volatile data are gathered [15].

The live response strategies that have been implemented so

far are divided into, the data collection phase and data

analysis phase. In the data collection phase, various

information from the physical memory i.e., Random Access

Memory (RAM) is collected -- process, network connections,

clipboard contents etc. For forensic analysis, the collection of

volatile information is such as Hardware information,

Installed software packages or Process state is very important

[12]. In data analysis phase, the data collected is analysed to

determine if there is any unfamiliar activity taking place in the

process or if any unwanted network ports are opened. The

data analysis is done so as to know what kind of attack the

computer system has been subjected to.

There are two types of live response methodologies on a

windows system namely, local and remote. In a local live

response methodology a forensic investigator has direct

access to the computer system wherein by he can type

commands in the console via keyboard and acquire data on a

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

2

Compact Disk (CD), thumb drive, or to any removable media

which is local to the system. On the other hand, remote live

response methodology commands are serially executed on a

system across a network. This methodology is adopted when

there are many systems to investigate because the process of

logging into a system and running commands can easily be

done without much effort.

The inconsistencies present in the memory violate the

principles of digital forensics because data in the memory are

not consistently maintained during system operation. This

issue poses challenge for computer forensic investigator and

need to be addressed before presenting the evidence in the

court of law. [1, 2, 11]. The hackers and criminals nowadays

constantly keep themselves abreast of the latest developments

in the field of computer forensics. Blackhats have designed a

procedure wherein they can easily defeat the live response

methodologies. One of the strategies implemented by

blackhats is to hide their presence when attacking a computer

system. That is, the hacking tools are made to conceal

themselves when they are installed on a machine. This

strategy is implemented keeping in mind that the forensic

investigator scans the physical memory of a machine in order

to look for the presence of hacking tools.

2. LIVE ANALYSIS
Live analysis is one of the most important forensic

investigative methodologies, adopted by forensic

investigators, in order to acquire evidence from a computer

system when it is powered on. Unlike the traditional forensic

methodology, wherein the investigator pulls off the plug to

turn the power off from the computer system to acquire

evidence on the hard drive; the live analysis procedures are

carried out on the random access memory i.e., the volatile

memory of the computer system.

Digital forensics is divided into live analysis and dead

analysis. The traditional forensic methodology focuses on not

altering the time stamps on the computer system. In order to

make sure that the time stamps are not modified, the forensic

investigator photographs the compromised computer systems

and its contents on the screen, and makes notes of hardware

connections and their actions in their contemporaneous notes.

Now, when the power plug is pulled off the system, the time

stamps are preserved and are not changed. But, if observed

closely whenever the power is shutdown the data in the

volatile memory ceases to exist, and this is a vulnerability

which exists in the traditional forensic methodology.

Criminals or Hackers, have taken advantage of this loophole

and have designed their tools accordingly to attack their

victim’s machine. The hacking tools are designed in such a

way that they run in the physical memory (Random Access

Memory) of the system which is volatile in nature. These

specialised hacking tools do not write or get stored on non-

volatile storage media of the system such as a hard drive.

Therefore, with the advent of the hacking tools the method of

pulling the plug of the machine to acquire evidence from it is

not a viable option because the data in the physical memory is

irrecoverably lost. The only difference between live and dead

analysis is the reliability of the results. The same types of data

can be analysed using dead and live analysis techniques, but

the live analysis techniques rely on applications that could

have been modified to produce false data [3].

 The scenarios [18] where live analysis can be performed can

be that of a computer system that is a victim of an intrusion.

Since hacker tools frequently run only in system memory and

leave no trace on the hard disks, the investigator now has to

consider the fact that pulling the power plug may actually lose

more evidence than it preserves. In such a case, touching the

keyboard in order to extract and preserve evidence in the

memory may be worth the cost of altering some system time.

Memory Forensics is used by incident response handlers for

the purpose of malware detection [7].

Live analysis involves extracting evidence from random

access memory. The important steps to any live-analysis are

as follows:

 Personally make the trusted tools and then bring

them to the field.

 The interaction should be kept to a bare minimum

on the compromised system.

 The investigator should be cautious whilst taking

any actions on the live machine because the final

events are unchangeable.

 Hashing all evidence and

 Gathering data in order of volatility [13].

If the machine is still active when arrived at the crime scene,

we should collect the volatile information of victim of system

rapidly, for example, which TCP and UDP ports are opened,

user login history, what services are activated currently, etc.

[4].

Conducting a live forensic examination involves a more

complex approach than the traditional post-mortem

examination. Care must be taken by the examiner on a live

system to minimize the impact of any tools used. However,

there is no way to avoid making changes, since in order to

conduct a live examination it is necessary to deploy tools on

the live system to capture data, and such tools will make

changes to the running system [6].

Documentation is one of the most important steps in the live

computer investigative process because, if the system is left

on unattended, there will be changes made rapidly by the

operating system which will have an impact on the physical

memory. On the other hand, if the investigator begins his

investigation, and is in the midst of collecting evidence from

the physical memory, changes are still made to the volatile

memory in which the evidence is located. This is the reason

why the investigator has to maintain proper, accurate, and

detailed notes at all times during the live forensic

investigation[17].

3. RESEARCH WORK

3.1 Tools Used
 Operating System: Windows 7 Home Edition (32-

bit).

 Kingston USB (Universal Serial Bus) 4 Gigabytes

(GB).

 Advent Laptop (4GB RAM).

 ASMonitor.exe (keylogger).

3.2 Live Analysis on a Windows 7 Machine
To conduct a live analysis on a Windows 7 machine we need

Live Analysis tools such as Windows Live Analysis CD’s or

Windows Live Analysis USB Drive. These tools consist of

necessary software that is needed to recover evidence from the

physical memory from the windows machine. The tools

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

3

contain dynamic link libraries, trusted tools, and open source

tools in them.

3.2.1 Creating a Windows 7 Live Analysis USB

Drive

1. Firstly, we need a brand new USB Drive. A 4GB

Kingston USB Drive is used in this research work.

2. Now a genuine Windows 7 Operating System should be

installed on a clean Hard Drive. For this purpose a brand new

Laptop was used on which the Windows 7 Operating System

was installed.

3. Open the C Drive and navigate to the system 32 folder. For

this the following steps have to be followed:

 Open or Click on the My Computer icon. Then we

will come across a few Drives or partitions.

 The primary partition or the Drive on which the

Windows 7 is installed, by default it will be the C

Drive.

 Open the C Drive by clicking on it and then a

number of folders will be found on it.

 Click on the Windows Folder. Then, when the

Windows folder opens, click on the system 32

Folder.

 Now when the system 32 Folder is opened. The .dll

files should be copied from it onto the USB Drive.

We should make sure that we login as administrator

to perform this task. (The laptop is set to login as

administrator by default).

 Now, on the right hand side, top of the screen we

will find a search option. Type in *.dll in the search

box. This will show us all the .dll files present in the

system 32 folder which is needed to be copied onto

the USB Drive.
 In order to copy the .dll files. Press CTRL+A, this

selects all of the .dll files. Then press CTRL+C this

copies all the selected .dll files. To paste these files

onto the USB Drive, just open the USB Drive and

press CTRL+V.

 After the .dll files have been copied onto the USB

drive, the next step is to copy a few .exe files on to

the USB Drive. The .exe files such as

WHOAMI.exe, TASKLIST.exe, etc., should be

copied onto USB Drive because these tools will

help an investigator to find evidence in the physical

memory. For instance, the WHOAMI tool gives us

the name of the computer system and the user who

is logged on into it.

The TASKLIST can give you the number of processes

residing in the memory along with the Process Identifier

(PID) and how much memory that each process consume.

Also, open source tools which are freely available on the

internet can be used for the live analysis purposes. We can

add these tools on the Live Analysis USB Drive. The tools

that are downloaded from the internet must first be thoroughly

tested under real time conditions before taking them on the

trusted tool thumb drive for investigation purposes.

3.3 Defeating Live Forensic Investigation on

the Windows7 OS
The Software HideWizard.exe is used for this purpose.

Although, this free software tool’s main purpose is not

intended to defeat the live forensic investigation, but by taking

advantage of its features, it can be used to obfuscate the live

investigation being carried out on the field by the investigator.

This software tool can hide files, folders or even processes

that can go undetected if traditional live analysis methods are

followed. Now, let us use the Live Analysis USB Drive to

conduct a Live Analysis on the Windows 7 machine. The

steps are as follows:

 First insert the USB drive into USB slot of the

computer.

 Then, open My Computer. The USB drive is usually

the F Drive.

 Click on the F drive to open the USB Drive (Live

Analysis USB Drive.).

 Click on the #cmd.exe to open it (Trusted Tool

Command Prompt.).

The Live Analysis USB Drive consists of various .dll files and

other .exe files which will play a vital role when conducting

the live computer forensic investigation. Since, these files are

present on the computer forensic investigator’s USB drive;

they become a part of the trusted tool set. This means the

investigator will have a safe and a secured provision to

commands from his trusted USB drive rather than running

those same commands from the compromised system. This

has a few advantages because the evidence in the random

access memory will not be altered, whereas if the same

commands are run from the compromised computer system,

the evidence present in the physical memory will be changed.

Also, it would be a good practice if the investigator has a

trusted USB device with storage capacities twice of that of the

physical memory. The reason behind this is, that the

investigator has to copy back the evidence located in the

memory onto his trusted USB drive. In the trusted tool

command prompt type in “tasklist” to view the processes that

are residing in the physical memory. By using the HideWizard

software tool we can hide any number of the processes that is

in the physical memory. For example, say if we want to hide

chrome.exe which is a Google chrome web browser

application:

 Open HideWizard.

 Click on the settings button (Hide Wizard Settings)

 On the left, we can see a “File and Process” button,

which is present on the bottom left of the software

tool. Click on it.

Now, in order to hide a process, just enter the name of the

process it in the “hide these processes while Hide Wizard is

running” box. For instance, to hide Google chrome process,

enter “chrome.exe” in the box to hide.

Now, type in the “tasklist” command in the command prompt.

We will not be able to find chrome.exe process in it.

Let us hide another process ASMonitor.exe which is a

keylogger in the physical memory. A keylogger is a potential

hacking tool. Follow the above procedure to hide it. Instead of

chrome.exe just type ASMonitor.exe in the box in order to

hide the process. Now, again type the “tasklist” command in

the command prompt and the process ASMonitor.exe is

hidden.

This Software tool has the ability to hide itself. Just type

HideWizard.exe in the box and then when the command

“tasklist” is typed in the command prompt, the process

HideWizard.exe is hidden in the memory (Figure 1).

Live Analysis has been defeated with the help of free

Software Tool HackWizard.exe which acts like a rootkit. It

can hide itself and also can other processes in the memory.

This proves that an attacker need not comprehend the internal

kernel architecture of the windows 7 operating system in

order to design a rootkit from the scratch which would prove

to be quite tedious in implementation when compared to using

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

4

a free graphical user interface tool which is user friendly and

would be easy to use for a novice attacker who does not

understand the intricacies of windows 7 operating system.

Figure 1: HideWizard.exe hidden

4. DETECTION OF HIDDEN PROCESS
The traditional method to detect hidden processes in the

memory is carried out by examining the physical memory

dumps, but in this research work, the detection of hidden

process is shown by the Mathematical Analysis of various

processes running in the Random Access Memory.

Methodology: Derivation of the Mathematical Formula to find

out if a process is hidden in the physical memory: Windows 7

OS has an inbuilt tool Resource Monitor, Resmon.exe (Figure

2) that can show the processes active in the physical memory

along with the Process Identifier (PID), and with different

types of memories which is associated with the process.

To open the Resmon tool go to the start menu and type

Resmon.exe. When Resmon tool is opened we will find all the

process with their corresponding memory usage. The process

memory is divided into the commit and the working set

memory.

Commit charge is the total amount of pageable virtual address

space for which no backing store is assigned other than the

pagefile.

The working set of a program is a collection of those pages in

its virtual address space that have been recently referenced. It

includes both shared and private data. The shared data

includes pages that contain all instructions your application

executes, including those in your Dynamic Link Libraries

(DLLs) and the system DLLs. As the working set size

increases, memory demand increases. The Working Set is

further divided into Sharable Working Set and Private

Working Set.

Private Working Set: Resident pages which are private only to

this process.

Shared Working Set: Resident pages which are currently

being shared with other processes. This is a subset of the

Shareable Working Set.

Experiment 1: The factor by which the InUse Memory

increases when a process is added in the physical memory.

Here a process used by Google Chrome web browser

chrome.exe is used for the experiment. The results are

calculated before and after chrome.exe is run in the physical

memory.

Before Chrome.exe:

The InUse Memory varied from 695 MB to 705 MB.

After Chrome.exe:

The InUse Memory varied from 750 MB to 764 MB.

When Google Chrome is run it adds two chrome.exe

processes in the memory. The relation between InUse

Memory, and Commit Charge and Working Set is:

The Difference between the Low Values of InUse Memory

(i.e. the low values if InUse Memory before and after

chrome.exe) = 750-695 = 55 Megabytes (MB).

The Difference between the High Values of InUse Memory =

764-705=59 Megabytes (MB).

 Sum of the Values of Commit Charge and Working set for

chrome.exe (1) in Megabytes (MB) is (30880/1024) +

(35664/1024) =30.1 MB + 34.8 MB = 64.9 Megabytes (MB).

Sum of the Values of Commit Charge and Working Set for

chrome.exe (2) in MB is (19524/1024) + (35024/1024)

=19.0 MB + 34.2 MB = 53.2 Megabytes (MB).

Mean of Values of Chrome.exe (1) and Chrome.exe (2) =

(64.9 + 53.2)/2 = 59.05 Megabytes (MB).

This experiment was repeated with applications like Acrobat

reader, command prompt etc., and the following observations

were made:

 Whenever a new process is added to the physical

memory, the physical memory increases by a factor

which is equal to the mean of the values of the

commit and working set of that process.

 The mean of commit charge and working set of a

process varies between the difference of low and

high values of InUse Memory, before and after, that

particular process has been added.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

5

 The Values of Commit charge and Working set for

most of the processes are not constant, and keeps

varying. Hence, bringing variations in InUse

Memory and the processes in the physical memory.

Figure 2: Resmon.exe

4.1 Derivation of the formula for InUse

Memory
From the observations made from the experiment it is known

that the processes that reside in memory are variable in nature.

Therefore, mathematically the rate at which a process (Pr)

changes is given by dPr/dt. This is known as the rate of

change of a process (Pr) with respect to time (t).

In order to find the value of a process (Pr) at a particular

instant of time say ‘T’, let ‘Ip’ denote the instantaneous value

of the process:

Then, Ip =

 ------------------------- > Equation (1).

Therefore, the instantaneous value of a process is the definite

integral of the process (p) which is a function of time (t). The

time ‘st1’ and ‘t2’ denotes the time at which the process starts

and terminated. Also, T = t2-st1.

Let MInt denote the InUse Memory at a particular instant of

time. Therefore, if there are ‘n’ number of processes in the

memory then,

MInt = A + Ip1 + Ip2 + Ip3 ++ Ipn --------------------

---------------> Equation (2).

Where, A = constant.

Ip1, Ip2, Ip3 = Instantaneous value of the 1st process, 2nd process,

3rd process and so on.

Substituting Equation (1) in Equation (2), we get:

MInt = A+

 --

---> Equation (4).

Where,

A = constant.

Pr1, Pr2, Pr3,, Prn = 1st Process, 2nd Process, 3rd Process,

....., nth Process.

(str1, tr1m) = start and termination time for process1.

(str2, tr2m) = start and termination time for process2.

.

.

(strn, trnm) = start and termination time for process n.

Therefore,

MInt = A +

 ---------->Equation 5.

From Experiment 1 we have for any given process added to

the physical memory, the physical memory gets increased by

a factor which is the mean of the commit charge(C) and

working set (W) values, i.e. P = (C+W)/2.

Therefore, for

Process1, Pr1 = (C1+W1)/2

Process2, Pr2 = (C2+W2)/2

Process n, Prn = (Cn+Wn)/2

Now, substituting the values of Pr1, Pr2... Prn in Equation 5

we get,

MInt = A +

MInt = A +

 ---------------->

Equation 6.

Where,

A= Constant.

Ci = Commit of the ith process.

Wi = Working set of the ith process.

(stri, trim) = start and termination time for the ith process.

MInt = Instantaneous value of the InUse Memory.

Equation 6 can be used to verify or check whether if processes

(in Megabytes (MB)) are hidden in physical memory or not.

For this, two things should be understood clearly:

 When a process is terminated or deleted.

 When a process is hidden in the physical memory.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

6

When a process is terminated the Value of the InUse memory

is reduced by a factor of (C+W)/2. Whereas, when a process

is hidden it has no effect on the InUse Memory. So, when the

resmon tool is opened the value of the InUse Memory does

not change if a process is hidden in the memory. If a process

is hidden only its name just disappears from the process list.

But, it will not affect the value of the InUse Memory.

Therefore, when the value of InUse Memory is calculated by

using Equation 6 it should be equal to value of InUse Memory

in the Resmon tool, then no process is hidden in the Physical

memory.

Let MInr be the value of InUse Memory in the Resmon Tool.

And, MInt is the value of InUse Memory in Equation 6. Now

two Cases exist:

Case 1:

MInt = MInr. If these two values are equal then no process is

hidden in the physical memory.

Case 2:

MInt < MInr. If the value of MInt is less than MInr then a

process or processes are hidden in the physical memory.

Also if,

MInr − MInt = K. Where ‘K’ is a constant which shows the

memory of the hidden process in Megabytes (MB). This

means that a process of K MB of memory is hidden in the

physical memory.

If MInr − MInt = 0, then there is no process hidden in the

memory.

The mathematical analysis could form the basis for the

development of the software tools in order to detect any

hidden processes in the physical memory. A software

developer can take the help of the mathematical formula in

order to write algorithms, construct flowchart, write pseudo

codes and then implement the functionality with the help of a

programming language.

5. CONCLUSION
The live forensic investigation process is defeated on a

windows7 computer system by downloading and installing

Hide Wizard free software tool from the internet. These free

software tools are primarily intended to hide files on a

computer and not for the purpose of defeating live analysis.

But, by taking advantage of what these tools got to offer, a

criminal can easily defeat the live investigation process on a

windows7 machine. This would be the most preferred method

for criminals, especially those who are not tech savvy to

defeat live analysis rather than designing a malicious software

tool such as a rootkit; reason being that, development of a

rootkit requires lot of time, money and tedious labour to come

out with the final product, because this would involve various

steps ranging from understating the windows Kernel

thoroughly, choosing appropriate programming languages and

testing the tool to verify its functionality. Whereas, the free

software tools are user friendly due to the Graphical User

Interface features. Therefore, the hacker can get accustomed

and familiarize himself with these tools within a less period of

time. The mathematical formula which was derived to find if

a process is hidden in the Random Access Memory could

form the basis to develop a hidden process detection software

tool.

6. REFERENCES
[1] Thomas Sudkamp (1986), Inference propagation in

emitter, system hierarchies, Proceedings of the ACM

SIGART International Symposium on Methodologies for

Intelligent Systems, ACM Press New York, NY, USA,

pp 165-173

[2] Amihai Motro, Philipp Anokhin and Aybar C. Acar

(2004), ‘Utility-based Resolution of Data Inconsistencies

Information Quality in Informational Systems’,

Proceedings of the 2004 international workshop on

Information quality in information systems, ACM Press

New York, NY, USA, pp 35-43.

[3] Brian D. Carrier 2006, 'Risks of Live Digital Forensic

Analysis', Communications of the ACM, Vol. 49, No. 2,

pp.56-61.

[4] Pei-Hua Yen, Chung-Huang Yang, Tae-Nam Ahn

(2009), 'Design and Implementation of a Live-analysis

Digital Forensic System', International Conference on

Convergence and Hybrid Information Technology, Proc.

ACM, pp. 239-243.

[5] John G. Levine, Julian B. Grizzard and Henry L. Owen

(2006), 'Detecting and Categorizing Kernel-Level

Rootkits to Aid Future Detection’. In IEEE Security and

Privacy, Proc. ACM pp 24-25.

[6] Iain Sutherland , Jon Evans , Theodore Tryfonas ,

Andrew Blyth (2008), ‘Acquiring volatile operating

system data tools and techniques, ACM SIGOPS

Operating Systems Review, v.42 n.3, pp. 65-73.

[7] Luka Milkovic (2012) ‘Defeating Windows Memory

Forensics’, INFIGO Information Security, Available at:

http://www.youtube.com/watch?v=RPVmLhP7K6U

(Accessed 18th January 2013)

[8] S. Mocas (2003) ‘Building Theoretical Underpinnings

for Digital Forensics Research’, Portland State

University, Digital Investigations, pp. 1-10.

[9] D. Dittrich (2002) ‘Root Kits and Hiding

Files/Directories/ Processes after a Break-In’, Available

at:

http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq

. (Accessed 5th August 2011)

[10] B. Carrier (2009) ‘The Sleuth Kit and Autopsy’,

Available at: http://www.sleuthkit.org/autopsy/desc.php

(Accessed 18th August 2011)

[11] B. Westbrook and B. Zornado (2001), Proposal for

electronic records management task force, Available at:

http://www.uclibraries.net/sopag/erm/ERMTFReport.pdf

(Accessed 27th September 2011)

[12] C. Pogue, C. Altheide and T. Haverkos (2008), UNIX

and Linux Forensic Analysis DVD Toolkit, Syngress

Publishing.

[13] F. Adelstein (2006), Live forensics: diagnosing your

system without killing it first, Communications of the

ACM, Vol.49, No.2, pp. 63-66.

[14] Harlan Carvey (2005), ‘Windows Forensics and Incident

Recovery’, Addison Wesley, Burlington.

[15] Bill Blunden (2009), The Rootkit Arsenal: Escape and

Evasion, Jones and Bartlett Learning, Texas.

[16] Kevin Mandia, Chris Prosise, and Matt Pepe (2003),

‘Incident Response and Computer Forensics’, McGraw-

Hill Osborne Media, 2 edition.

[17] Information Security and Forensics Society (ISFS)

(2004), Computer Forensics, Part 2: Best Practices,

Available at:

http://www.isfs.org.hk/publications/ComputerForensics/

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.6, July 2015

7

ComputerForensics_part2.pdf (Accessed 21th August

2011)

[18] Steve Anson and Steve Bunting. 2007 Mastering

Windows Network Forensics and Investigation. Wiley

Publishing Inc.

[19] Internet Engineering Task Force, url:

https://www.ietf.org/rfc/rfc3227.txt

[20] Microsoft, url: http://www.microsoft.com/en-us/windows

IJCATM : www.ijcaonline.org

