
International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

41 

Numerical Solution of Seventh Order Boundary Value 

Problems by Petrov-Galerkin Method with Quintic B-

splines as Basis Functions and Septic B-splines as 

Weight Functions 

 
K.N.S.Kasi Viswanadham 

Department of Mathematics 
National Institute of Technology 

Warangal – 506004, India 

S.M.Reddy 
Department of Mathematics 

National Institute of Technology 
Warangal – 506004, India 

 

 

ABSTRACT 
In this paper a finite element method involving Petrov-

Galerkin method with quintic B-splines as basis functions and 

septic B-splines as weight functions has been developed to 

solve a general seventh order boundary value problem with a 

particular case of boundary conditions. The basis functions 

are redefined into a new set of basis functions which vanish 

on the boundary where the Dirichlet and the Neumann type of 

boundary conditions are prescribed. The weight functions are 

also redefined into a new set of weight functions which in 

number match with the number of redefined basis functions. 

The proposed method was applied to solve several examples 

of seventh order linear and nonlinear boundary value 

problems. The obtained numerical results were found to be in 

good agreement with the exact solutions available in the 

literature. 
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1. INTRODUCTION 
In this paper, we consider a general seventh order linear 

boundary value problem  
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where A0, C0, A1, C1,  A2, C2, A3   are finite  real constants and 

a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x), a7(x)  and b(x)  are 

all continuous functions defined on the interval  [c, d]. 

  

The seventh order boundary value problems generally arise in 

modelling induction motors with two rotor circuits. The 

induction motor behavior is represented by a fifth order 

differential equation model. This model contains two stator 

state variables, two rotor state variables and one shaft speed. 

Normally, two more variables must be added to account for 

the effects of a second rotor circuit representing deep bars, a 

starting cage or rotor distributed parameters. To avoid the 

computational burden of additional state variables when 

additional rotor circuits are required, model is often limited to 

the fifth order and rotor impedance is algebraically altered as 

function of rotor speed. This is done under the assumption 

that the frequency of rotor currents depends on rotor speed. 

This approach is efficient for the steady state response with 

sinusoidal voltage, but it does not hold up during the transient 

conditions, when rotor frequency is not a single value. The 

behavior of such models is shown as seventh order boundary 

value problems [1]. The existence and uniqueness of the 

solution for these types of problems can be found in Agarwal 

[2]. In general to find the analytical solutions of such type of 

boundary value problems is not possible. Over the years, 

many researchers have worked on seventh order  boundary 

value problems by using different methods for numerical 

solutions. Siddiqi et al. [3] developed the solution of special 

type of seventh order boundary value problems by using 

Differential transformation method and they gave the solution 

in the form of a rapidly convergent series. Siddiqi et al. [4] 

discussed the variational iteration principle to solve a special 

case of seventh order boundary value problems after 

transforming the given differential equation into a system of 

integral equations. Siddiqi and Iftikhar [5] presented the 

variational iteration technique for the solution of seventh 

order boundary value problems by using He's polynomials. 

Siddiqi and Iftikhar [6] discussed Adomian decomposition 

method to solve the seventh order boundary value problems. 

Siddiqi and Iftikhar [7] discussed the numerical solution of 

higher order boundary value problems by using Homotopy 

analysis method. Siddiqi and Iftikhar [8] dealt with variation 

of parameters method to solve a special case of seventh order 

boundary value problems and they obtained the solution in the 

form of a rapidly convergent series. Siddiqi and Iftikhar [9] 

presented variational iteration homotopy perturbation method 

to solve the seventh order boundary value problems, where 

the variational iteration homotopy perturbation method is 

formulated by coupling of variational iteration method and 

homotopy perturbation method. Mustafa and Ali [10], 

Ghazala and Rehman [11] got the solution of a special case of 

seventh order boundary value problems by using Reproducing 

kernel Hilbert space method and Reproducing kernel method 

respectively. So far, seventh order boundary value problems 

have not been solved by using Petrov-Galerkin method with 

quintic B-splines as basis functions and septic B-splines as 

weight functions. This motivated us  to solve a seventh order 

boundary value problem by Pertrov-Galerkin method with 
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quintic B-splines as basis functions and septic B-splines as 

weight functions. 

In this paper, we try to present a simple finite element method 

which involves Petrov-Gelerkin approach with quintic B-

splines as basis functions and septic B-splines as weight 

functions to solve a general seventh order boundary value 

problem of the type (1)-(2). This paper is organized as 

follows. Section 2 deals with the justification for using 

Petrov-Galerkin Method. In Section 3, a description of Petrov-

Galerkin method with quintic B-splines as basis functions and 

septic B-splines as weight functions is explained. In particular 

we first introduce the concept of quintic B-splines, septic B-

splines and followed by the proposed method to solve the 

boundary value problem of the type (1) and (2). In Section 4, 

the procedure to solve the nodal parameters has been 

presented. In section 5, the proposed method is tested on 

several linear and nonlinear boundary value problems. The 

solution to a nonlinear problem has been obtained as the limit 

of a sequence of solution of linear problems generated by the 

quasilinearization technique [12]. Finally, in the last section, 

the conclusions are presented. 

2. JUSTIFICATION FOR USING 

PETROV-GALERKIN METHOD 
In Finite Element Method (FEM) the approximate solution 

can be written as a linear combination of basis functions 

which constitute a basis for the approximation space under 

consideration. FEM involves variational methods like 

Rayleigh Ritz method, Galerkin method, Least Squares 

method, Petrov-Galerkin method and Collocation method etc. 

In Petrov-Galerkin method, the residual of approximation is 

made orthogonal to the weight functions. When we use 

Petrov-Galerkin method, a weak form of approximation 

solution for a given differential equation exists and is unique 

under appropriate conditions [13,14] irrespective of properties 

of a given differential operator. Further, a weak solution also 

tends to a classical solution of given differential equation, 

provided sufficient attention is given to the boundary 

conditions [15]. That means the basis functions should vanish 

on the boundary where the Dirichlet type of boundary 

conditions are prescribed and also the number of weight 

functions should match with the number of basis functions. 

Hence in this paper we employed the use of Petrov-Galerkin 

method with quintic B-splines as basis functions and septic B-

splines as weight functions to approximate the solution of a 

seventh order boundary value problem. 

3. DESCRIPTION OF THE METHOD 
Definition of quintic B-splines and  septic B-splines:  

The quintic B-splines and septic B-splines are defined in [16-

18]. The existence of quintic spline interpolate s(x) to a 

function in a closed interval [c, d] for spaced knots (need not 

be evenly spaced) of a partition c = x0 < x1 <…< xn-1 < xn= d   

is established by constructing it. The construction of s(x) is 

done with the help of the quintic B-splines. Introduce ten 

additional knots x-5, x-4, x-3, x-2, x-1, xn+1, xn+2,  xn+3, xn+4 and 

xn+5 in such a way that  

x-5<x-4<x-3<x-2<x-1<x0    

and   xn<xn+1<xn+2<xn+3<xn+4<xn+5. 

Now the quintic B-splines Bi(x)’s are defined by 
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where {B-2(x), B-1(x), B0(x), B1(x),…,Bn-1(x), Bn(x), Bn+1(x), 

Bn+2(x)} forms a basis for the space S5() of quintic 

polynomial splines. Schoenberg [18] has proved that quintic 

B-splines are the unique nonzero splines of smallest compact 

support with the knots at 

x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2 

<xn+3<xn+4<xn+5.     

In a similar analogue septic B-splines Ri(x)'s are defined  by 
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where {R-3(x), R-2(x), R-1(x), R0(x), R1(x),…,Rn-1(x), Rn(x), 

Rn+1(x), Rn+2(x), Rn+3(x)} forms a basis for the space S7() of 

septic polynomial splines with the introduction of four more 

additional knots x-7, x-6, xn+6, xn+7 to the already existing knots 

x-5 to xn+5. Schoenberg [18] has proved that septic B-splines 

are the unique nonzero splines of smallest compact support 

with the knots at 

x-7<x-6<x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn 

<xn+1<xn+2<xn+3<xn+4<xn+5<xn+6<xn+7.  

 
To solve the boundary value problem (1) subject to boundary 

conditions (2) by the Petrov-Galerkin method with quintic B-

splines as basis functions and septic B-splines as weight 

functions, we define the approximation for y(x) as 

 
2
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n

j j
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                 (3)  

where αj’s are the nodal parameters to be determined and 

Bj(x)’s are quintic B-spline basis functions. In Petrov-Galerkin 

method, the basis functions should vanish on the boundary 

where the Dirichlet type  of boundary conditions are specified. 
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In the set of quintic B-splines {B-2(x), B-1(x), B0(x), 

B1(x),…,Bn-1(x), Bn(x), Bn+1(x), Bn+2(x)},  the basis functions  

B-2(x), B-1(x), B0(x), B1(x), B2(x), Bn-2(x), Bn-1(x), Bn(x), Bn+1(x)  

and Bn+2(x) do not vanish at one of the boundary points. So, 

there is a necessity of redefining the basis functions into a 

new set of basis functions which vanish on the boundary 

where the Dirichlet type of boundary conditions are specified. 

When the chosen approximation satisfies the prescribed 

boundary conditions or most of the boundary conditions, it 

gives better approximation results. In view of this, the basis 

functions are redefined into a new set of basis functions which 

vanish on the boundary where the Dirichlet and the Neumann 

type of boundary conditions are prescribed. The procedure for 

redefining of the basis functions is as follows. 

Using the definition of quintic B-splines, the Dirichlet and the 

Neumann boundary conditions  of (2), we get the approximate 

solution at the boundary points as     
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Eliminating α-2, α-1, αn+1 and αn+2 from the equations (3) to (7), 

we get 
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The new set of basis functions in the approximation y(x) is 

{Qj(x), j=0,1,…,n}. Here w(x) takes care of given set of the 

Dirichlet and the Neumann type  boundary conditions and 

Qj(x)'s and its first order derivatives vanish on the boundary. 

In Petrov-Galerkin method, the number of basis functions in 

the approximation should match with the number of weight 

functions. Here the number of basis functions in the 

approximation for y(x) defined in (8) is  n+1 , where as the 

number of weight functions is n+7. So, there is a need to 

redefine the weight functions into a new set of weight 

functions which in number match with the number of basis 

functions. The procedure for redefining the weight functions 

is as follows: 

Let us write the approximation for v(x) as 

3

3
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n

j j

j
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               (13) 

where Rj(x)'s are septic B-splines and here we assume that 

above approximation v(x) satisfies corresponding 

homogeneous boundary conditions of the Dirichlet, Neumann 

and second order derivative boundary conditions given in (2). 

That means v(x) defined in (13) satisfies the conditions 
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 Applying the boundary conditions (14) to (13), we get the 

approximate solution at the boundary points as  
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Eliminating β-3, β-2, β-1,  βn+1, βn+2 and βn+3 from the equations 

(13) and (15) to (20), we get the approximation for v(x) as 
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Now the new set of weight functions for the approximation 

v(x) is {Vj(x), j=0,1,…,n}. Here Vj(x)’s and its first and 

second order derivatives vanish on the boundary. 

Applying the Petrov-Galerkin method to (1) with the new set 

of basis functions {Qj(x), j=0,1,…,n} and with the new set of 

weight functions {Vj(x), j=0,1,…,n}, we get 
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         for    i = 0,1,2,…,n               (25)                                                           

Integrating by parts the first three terms on the left hand side 

of (25) and after applying the boundary conditions prescribed 

in (2), we get  
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Substituting (26), (27) and (28)   in (25) and using the 

approximation for y(x) given in (8), and after rearranging the 

terms for resulting equations, we get a system of equations in 

the matrix form as 

 A B                  (29)                                                                                                                                                                                                                                         
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                   for i =0, 1,..., n.                                             (31) 
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0 1[ .]T

n      

4. PROCEDURE TO FIND THE 

SOLUTION FOR NODAL PARAMETERS 

A typical integral element in the matrix A  is 
1

0

n

m

m

I
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x

m i j
x

I xv r x Z x dx


   and rj(x) are the quintic 

B-spline basis functions or their derivatives, vi(x) are the 

septic B-spline weight functions or their derivatives. It may be 

noted that 

 Im = 0  if 4 4 3 3 1( , ) ( , ) ( , )i i j j m mx x x x x x       .  
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To evaluate each Im, we employed 7-point Gauss-Legendre 

quadrature formula. Thus the stiffness matrix A is a thirteen 

diagonal band matrix. The nodal parameter vector α has been 

obtained from the system Aα=B  using the band matrix 

solution package. We have used the FORTRAN-90 program 

to solve the boundary value problems (1) - (2) by the 

proposed method. 

5. NUMERICAL RESULTS 
To demonstrate the applicability of the proposed method for 

solving the seventh order boundary value problems of the type 

(1) and (2), we considered three linear and three nonlinear 

boundary value problems. The obtained numerical results for 

each problem are presented in tabular forms and compared 

with the exact solutions available in the literature. 

Example 1: Consider the linear boundary value problem 
(7) 2(35 12 12 ) , 0 1xy y x x e x        (32)                                                                     

subject to  

(0) 0, (1) 0, (0) 1, (1) ,

(0) 0, (1) 4 , (0) 3.

y y y y e

y yy e

     

       
 

The exact solution for the above problem is 

(1 ) .xy x x e   

The proposed method is tested on this problem where the   

domain [0, 1] is divided into 10 equal subintervals.  The 

obtained numerical results for this problem are given in  Table 

1. The maximum absolute error obtained by the proposed 

method is 6.735325x10-6. 

Table 1: Numerical results for Example 1 

x 
Absolute error 

 by the proposed method 

0.1 1.415610E-07 

0.2 6.407499E-07 

0.3 2.920628E-06 

0.4 4.410744E-06 

0.5 6.735325E-06 

0.6 6.407499E-06 

0.7 3.665686E-06 

0.8 3.278255E-07 

0.9 1.430511E-06 

 

Example 2: Consider the linear boundary value problem 
(7) 2( 2 6) , 0 1xy xy x x e x        (33)                                                                             

subject to  

(0) 1, (1) 0, (0) 0, (1) ,

(0) 1, (1) 2 , (0) 2.

y y y y e

y yy e

     

       
 

The exact solution for the above problem is y = (1-x)ex.  

The proposed method is tested on this problem where the   

domain [0, 1] is divided into 10 equal subintervals.  The 

obtained numerical results for this problem are given in  Table 

2. The maximum absolute error obtained by the proposed 

method is 4.905462x10-5.     

 

 

 

Table 2: Numerical results for Example 2 

x 
Absolute error 

 by the proposed method 

0.1 6.556511E-07 

0.2 9.596348E-06 

0.3 2.580881E-05 

0.4 4.059076E-05 

0.5 4.905462E-05 

0.6 4.571676E-05 

0.7 3.087521E-05 

0.8 1.317263E-05 

0.9 1.326203E-06 

 

Example 3: Consider the linear boundary value problem 
(7) (4) (1 )

(2 ) , 0 1x

y sinx y cosx y x y

sinx cosx x e x

   

     

             (34)                      

subject to  

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1.

y y e y y e

y y e y

    

    
 

The exact solution for the above problem is y = ex.  

The proposed method is tested on this problem where the   

domain [0, 1] is divided into 10 equal subintervals.  The 

obtained numerical results for this problem are given in  Table 

3. The maximum absolute error obtained by the proposed 

method is 5.269051x10-5. 

 

Table 3: Numerical results for Example 3 

x 
Absolute error 

 by the proposed method 

0.1 2.384186E-06 

0.2 1.204014E-05 

0.3 3.457069E-05 

0.4 4.410744E-05 

0.5 5.269051E-05 

0.6 4.005432E-05 

0.7 2.121925E-05 

0.8 1.192093E-06 

0.9 2.622604E-06 

 

Example 4:  Consider   the nonlinear boundary value problem 
(7) 2 2(2 ( 8) 3 ), 0 1x xy yy e e x x x x       

                      (35)                                                                                                         

subject to  

1

1

(0) 1, (1) 0, (0) 2, (1) ,

(0) 3, (1) 2 , (0) 4.

y y y y e

y y e y





      

     
 

The exact solution for the above problem is y = (1-x)e-x. 

The nonlinear boundary value problem (35) is converted into 

a sequence of linear boundary value problems generated by 

quasilinearization technique [12] as  
(7)

( 1) ( ) ( 1) ( ) ( 1)

2 2

( ) ( )(2 ( 8) 3 ) , 0,1,2,...

n n n n n

x x

n n

y y y y y

e e x x x y y n

  



  

      
   

         (36) 

 subject to  
1

( 1) ( 1) ( 1) ( 1)

1

( 1) ( 1) ( 1)

(0) 1, (1) 0, (0) 2, (1) ,

(0) 3, (1) 2 , (0) 4.

n n n n

n n n

y y y y e

y y e y



   



  

      

     
 

Here y(n+1) is the (n+1)th approximation for y(x).  The domain 

[0, 1] is divided into 10 equal subintervals and the proposed 

method is applied to the sequence of linear problems (36). 

The obtained numerical results for this problem are presented 

in Table 4. The maximum absolute error obtained by the 

proposed method is 1.746416x10-5. 
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Table 4: Numerical results for Example 4 

x 
Absolute error 

 by the proposed method 

0.1 8.344650E-07 

0.2 6.377697E-06 

0.3 1.281500E-05 

0.4 1.686811E-05 

0.5 1.746416E-05 

0.6 1.436472E-05 

0.7 8.881092E-06 

0.8 3.449619E-06 

0.9 3.911555E-07 

 

Example 5: Consider the nonlinear boundary value problem 
(7) (4)

( 1)((12 4 ( 1))

8(5 ) ), 0 1

x

y

x e x cosx

y y e y

e x e x cosx

x sinx x

 

 

   

   

        (37)          

subject to  

(0) 1, (1) 0, (0) 0, (1) 1,

(0) 2, (1) 2 1 2 1, (0) 2.

y y y y ecos

y y ecos esin y

     

        
 

The exact solution for the above problem is  

(1 ) .xy e x sinx   

The nonlinear boundary value problem (37) is converted into 

a sequence of linear boundary value problems generated by 

quasilinearization technique [12] as 

( )

( )

(7) (4)

( 1) ( 1) ( ) ( 1)

( ( 1) )

2

( )

(1 )

((12 4 ( 1))

8(5 ) ) 0,1,2,...

n

x

n

y

n n n n

x e x cosx

y

n

y y e y y

e x e x cosx

x sinx e y n

  

 

  

   

   

    (38)                  

subject to   

( 1) (

( 1

1) ( 1)

( 1)

( 1) 1

)

( )

(0) 1, (1) 0, (0) 0,

(1) 1, (0) 2,

(1) 2 1 2 1, (0) 2.

n n n

n

n

n

n

y y y

y ecos

y ecos esin y

y

  



 




  

    

     

 

Here y(n+1) is the (n+1)th approximation for y(x). The domain 

[0, 1] is divided into 10 equal subintervals and the proposed 

method is applied to the sequence of linear problems (38). 

The obtained numerical results for this problem are presented 

in Table 5. The maximum absolute error obtained by the 

proposed method is 2.980232x10-5. 

 

 

 

Table 5: Numerical results for Example 5 

x 
Absolute error 

 by the proposed method 

0.1 3.576279E-07 

0.2 4.947186E-06 

0.3   1.436472E-05 

0.4 2.515316E-05 

0.5 2.980232E-05 

0.6 2.753735E-05 

0.7 1.963973E-05 

0.8 9.894371E-06 

0.9 2.294779E-06 

 

Example 6: Consider the nonlinear boundary value problem 

(7) (4) (1 ( ) ), 0 1
xy x x ey siny y e y e sin e e x      

 

                                                                (39) 

subject to 

(0) 1, (0) , (1) 1, (1) ,

(0) 1, (1) , (0) 1.

y y e y y e

y y e y

    

    
 

The exact solution for the above problem is y = ex.   

The nonlinear boundary value problem (39) is converted into 

a sequence of linear boundary value problems generated by 

quasilinearization technique [12] as 

( )

( )

( )

(7) (4)

( 1) ( ) ( 1) ( 1)

(4)

( ) ( ) ( ) ( 1)

(4)

( ) ( ) ( ) ( )

)

( )

(cos( )

(cos( )

(1 ( ) ), 0,1,2,

)

...

n

n

n

x

y

n n n n

y

n n n n

y

n n n n

x x e

y sin y y e y

y y e y y

y y e y y

e sin e e n

  



 

 

 

   

  (40)                         

subject to 

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1.

n n n n

n n n

y y e y y e

y y e y

   

  

    

    
 

Here y(n+1) is the (n+1)th approximation for y(x).  The domain 

[0, 1] is divided into 10 equal subintervals and the proposed 

method is applied to the sequence of linear problems (40). 

The obtained numerical results for this problem are presented 

in Table 6. The maximum absolute error obtained by the 

proposed method is 2.849102x10-5. 

 

Table 6: Numerical results for Example 6 

x 
Absolute error 

 by the proposed method 

0.1 1.192093E-06 

0.2 9.059906E-06 

0.3 9.536743E-06 

0.4 2.205372E-05 

0.5 2.300739E-05 

0.6 2.849102E-05 

0.7 2.503395E-05 

0.8 2.336502E-05 

0.9 1.907349E-06 

 

6. CONCLUSIONS 
In this paper, we have employed a Petrov-Galerkin method 

with quintic B-splines as basis functions and septic B-splines 

as weight functions to solve a general seventh order boundary 

value problems with special case of boundary conditions. The 

quintic B-spline basis set has been redefined into a new set of 

basis functions which vanish on the boundary where the 

Dirichlet and the Neumann boundary conditions are 

prescribed. The septic B-splines are redefined into a new set 

of weight functions which in number match the number of 

redefined set of basis functions. The solution to a nonlinear 

problem has been obtained as the limit of a sequence of 

solution of linear problems generated by the quasilinearization 

technique [12]. The proposed method has been tested on three 

linear and three nonlinear seventh order boundary value 
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problems. The numerical results obtained by the proposed 

method are in good agreement with the exact solutions 

available in the literature. The strength of the proposed 

method lies in its easy applicability, accurate and efficient to 

solve seventh order boundary value problems.  
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