
International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

13 

Replication: A Technique for Scalability in Cloud 

Computing 

 
Nagamani H Shahapure 

JSS Academy of Technical Education 
Uttarahalli-Kengeri Main Road 

Bangalore-60 

 

P Jayarekha, Ph.D 
BMS College of Engineering 

Bull Temple Road, Basavanagudi 
Bangalore-19 

 
 

ABSTRACT 

Cloud computing is a technology which produces and 

consumes huge amount of data every day. This makes the cloud 

to store tons of applications. The demand for these resources is 

on the rise. Multi cloud environment is used to satisfy these 

demands. If multiple providers cooperatively work together, the 

availability of resource can be improved. The replication of 

data across multiple places in cloud has become an effective 

solution to achieve good performance in terms of load 

balancing, response time and availability. Replication of data is 

a good way to achieve reliability and improve performance in a 

distributed system. The rising popularity of cloud computing is 

an alternative to classic information processing systems. This 

has increased the importance of its correct and continuous 

operation even in the presence of faulty components. Fault 

tolerance is a major concern to guarantee availability and 

reliability of critical services as well as application execution. 

In order to minimize failure impact on the system and 

application execution, failures should be anticipated and 

proactively handled. 

General Terms 

Cloud Computing, Scalability  

Keywords 

Cloud, Distributed Systems, Replication, Availability, Fault 

Tolerance 

1. INTRODUCTION 
The main apprehension for the users storing the data in the 

cloud is to preserve the data and recover it whenever required. 

Any server failure should not result in data loss. Cloud 

applications include gaming, voice and video conferencing, 

online office, storage, backup, social networking. The 

performance of these applications depends largely on the 

availability of high performance communication resources and 

network efficiency [1] [2]. Data replication is a commonly used 

technique to increase the data availability. It requires a high 

bandwidth data throughput path. Cloud replicates the data and 

stores them strategically on multiple servers located at various 

geographic locations. Replication ensures consistency; 

improves availability and reliability by creating multiple copies 

of the same data on different storage devices and geographical 

locations. Replication and availability play a major role in fault 

tolerance. 

Data is distributed across the cloud. This has to be made 

available to the applications that want to use it. The 

performance must not be degraded. The data access speed 

should be increased, keeping the load balanced in the system. 

Scalability and availability are the two major factors to improve 

the performance of the cloud. Creating replicas is also one of 

the important strategies to achieve the above. Replication also 

reduces access latency and bandwidth consumption. Some of 

the concepts related to replication are discussed in the next 

section. 

2. REPLICATION 
Replication is creating multiple copies of an existing entity 

[15]. Replication increases availability of resources. It also 

provides consistency and reliability by creating multiple copies 

of the same data on different sites. Replication also provides 

minimum access cost, shared bandwidth utilization and delay 

time by replicating data. The value of replication is to provide 

transparent, flawless access to resources in the event of a 

system failure. Replication can be extended across a computer 

network so that storage devices can be located in physically 

separated facilities.  

Users access nearby replicas and increase the throughput in 

case of failure to maintain the transmission of data. There are 

advantages of storing the data at more than one site. If a server 

with the required data fails, a system can operate using 

replicated data. This concept maintains availability. The data is 

stored at multiple sites. The requested data is fetched from the 

nearest source from where the request originated. This 

increases the performance of the system. The benefits of 

replication do not come without overheads of creating, 

maintaining and updating the replicas. Replication can greatly 

improve the performance [11].  

There is a performance overhead in replication technique as it 

takes time to recover data from other sites and restart the 

service again. The advantage is fault can be tolerated and 

availability can be increased [10]. 

2.1 Data Availability 
The availability of a service is given by the quantity of the time 

that the service is in use by the clients in both normal and 

abnormal conditions. The high availability arises from the fact 

that its clients need a permanent access to the service [7]. The 

unavailability of some services has a negative impact for their 

clients. This is in case of banking institutions, 

telecommunication companies, military applications or 

hospitals. Cloud infrastructures offer availability above 99.9%; 

therefore performance degradation is a more serious concern 

than resource failures in such environments [8]. The rise in the 

demand for continuous availability of high performance 

computing (HPC) systems is evident. This is a major step 

towards capability computing, where scientific applications 

desire considerable amounts of time (weeks and months) 

without interruption on the fastest HPC machines available [9]. 

These high end computing (HEC) systems must be able to run 

in the event of failures in such a manner that its potential is not 

rigorously degraded. High availability (HA) computing has for 

a long time played an important role in mission critical 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

14 

applications, such as in the military, banking, and 

telecommunication sectors. To achieve high availability a 

number of replicas are stored across multiple servers. If 

unavailability of a server is exceeds a particular time then the 

replication process is automatically started. This ensures 

continuous service.  

2.2 Fault Tolerance 
The vulnerability to failures is one of the problems in cloud 

computing systems. Indeed, whenever a single node crashes, 

availability of the whole system may be compromised [3]. 

However, the distributed nature of those systems provides the 

mean to increase the reliability of the system. A fault tolerant 

system is a configuration that prevents a computer system from 

failing in the event of an unexpected problem. Fault tolerance is 

the ability to preserve the delivery of expected services despite 

the presence of fault causing errors in the results within the 

system [4]. It aims at the avoidance of failures in the presence 

of faults. Errors are detected and corrected in a fault tolerant 

system. Permanent faults are located and removed while the 

system continues to deliver acceptable services. It is concerned 

with all the techniques necessary to enable a system to tolerate 

software faults remaining in the system after its development.  

Fault tolerance can be classified into reactive fault tolerance 

and proactive fault tolerance [16]. 

2.2.1 Reactive Fault Tolerance 
This technique reduces the effect of failures on application 

execution when the failure effectively occurs. One of the 

techniques applied is checkpoint/restart. When a task fails, it is 

allowed to restart from the point of failure instead of the 

beginning. Another method is retrying. In this method the failed 

method is retried in the same resource. Task resubmission is 

another approach. Whenever a failed task is detected, it is 

resubmitted either to the same resource or to a different 

resource at runtime. Another process of achieving this is 

through replication. 

2.2.2 Proactive Fault Tolerance 
The principle of proactive fault tolerance is to avoid recovery 

from faults. The faulty components are replaced with working 

components. One way of achieving this is by using a technique 

called software rejuvenation. Here the system is designed for 

periodic reboots. The system is restarted in a clean state. One 

more method used for proactive fault tolerance is through self 

healing. Multiple instances of an application run on multiple 

virtual machines. When one VM fails the other immediately 

takes over.  

Fault tolerance, reliability, scalability and availability are 

directly proportional to each other. All these parameters are 

critical to ensure correct and continuous system operation. 

Availability is measured in terms of mean time between failures 

and mean time to repair [5]. High availability is addressed by 

means of replicating servers and storage [6]. 

Challenges in Replication [11]: 
 Data Consistency: Maintaining data integrity and 

consistency in a replicated environment is most 

important. High precision applications may require 

strict consistency of the updates made by 

transactions. 

 Downtime during new replica creation: If strict data 

consistency is to be maintained, performance is 

severely affected if a new replica is to be created. 

Sites will not be able to fulfill request due to 

consistency requirements. 

 Maintenance overhead: If the files are replicated at 

more than one site, it occupies more storage space. 

This requires more additional maintenance. This 

becomes an overhead in storing multiple files. 

 Lower write performance: Performance of write 

operations can be considerably lower in applications 

requiring high updates in replicated environment, 

because the transaction may need to update multiple 

copies. 

The main aim of using replication is to reduce access latency 

and bandwidth consumption. The other advantages of 

replication are that it helps in load balancing and improves 

reliability by creating multiple copies of the same data. These 

can generally be classified as static and dynamic. In static 

replication, a replica exists until it is deleted by users or its 

duration is expired.  Static replication is used to copy data to 

other datacenter where it is most popularly requested. The 

drawback of static replication is evident when client access 

patterns change greatly in the data. The drawback with static 

replication is that it cannot adapt to changes in user behavior. 

The replicas have to be manually created and managed if one 

were to use static replication. When events affecting a primary 

location where the data resides occur, data can be recovered 

from the secondary location to provide continued service, fault 

tolerance, higher availability. The other type is dynamic 

replication. In this method replica creation, deletion and 

management are done automatically. Dynamic strategies have 

the capability to adapt to the changes in the user behavior [19]. 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

15 

 
Fig 1: Replication Architecture 

3. TYPES OF REPLICATION 

TECHNIQUES [3] [6] 
 Active Replication: This is also called the state-

machine approach. The behavior of the replicas is 

independent of each other. It is ensured that all the 

replicas receive the requests in the same order. In this 

technique the response time is low, even in the case 

of a crash. The disadvantages of this method: (1) the 

redundancy of processing implies a high resource 

usage (2) the requests have to be handled in a 

deterministic manner. Determinism means that the 

result of an operation depends only on a replica’s 

initial state and the sequence of operations it has 

already performed. Multithreaded servers typically 

lead to non-determinism. 

 Passive Replication: This is also called primary-

backup [12] [13]. The primary (master) replica 

receives the requests from the clients and returns 

responses. The backups (slaves) interact with the 

primary replica only. They receive state update 

messages from this replica. This consumes less power 

than active replication. The implementation of 

passive replication requires a mechanism to agree on 

which resource has to be the primary replica (e.g., a 

group membership service). If the master fails, one of 

the slaves takes over. If the primary crashes before 

sending a response to the client, the clients will 

eventually time-out. A new master takes over. Then 

the request is reissued. This leads to a significantly 

increased response time in the case of failure that 

makes it unsuitable in the context of time-critical 

applications. Moreover, passive replication does not 

totally mask failures to the client. 

 Quoram Replication: Quorum replication is based on 

Quorum consensus (Agrawal & El Abbadi 1991; 

Malkhi & Reiter 1997) where requests are processed 

by a quorum of replicas before returning to the client. 

A simple quorum (Q) is defined as any majority of 

nodes such that Q > N=2, where N is the total number 

of replicas. In the ideal case all operations would be 

processed in a majority before returning to the client 

in order to guarantee that each client always accesses 

the most recent version in the system. However, some 

systems allow the configuration of the size of read 

(R) and write (W) quorums in order to achieve better 

performance. To ensure the same properties as when 

a majority is used, the quorums must intercept in 

some node such that W + R > N. Otherwise, the 

quorums may not overlap and stale versions can be 

observed. 

 Primary Backup Replication: In the primary-backup 

approach updates are made on a single replica 

(master) and then propagated to the remaining 

replicas. This propagation can be either made in an 

impatient or lazy way. In the impatient approach, the 

client issues an update and the master only replies 

after the update has been propagated to all the 

replicas. This method provides strong consistency. In 

the primary backup approach it is simple to control 

the concurrency of updates. A single master can be 

seen as a bottleneck in the system. 

 Lazy Replication: In this approach it is assumed that 

the master replies to the client after the update has 

been applied locally. If the client issues a read 

operation to one of the other replicas before the 

propagation of the update the stale data can be seen.  

 Chain Replication: Chain Replication is a 

specialization of the primary backup approach that 

allows building a data store that provides high 

throughput and availability. This approach assumes 

that replicas are structured in a series/chain. A chain 

consists of a set of nodes where each node has a 

successor and a predecessor except for the first (head) 

and last (tail) nodes of the chain. 

The following points are to be considered for implementing 

replication [14]: 

 The time of creation of the replicas 

 The files that are to be replicated 

 The placement of the replicas 

The goals of replication: 

 Decrease latency time 

 Reduce the bandwidth 

 Balance the workload 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

16 

 Minimize execution time 

 Minimize the maintenance cost 

 Achieve high scalability and availability 

 Fault tolerant 

4. REPLICATION ALGORITHMS [14] 
 Best Client: A replica is created at the client that has 

generated the most requests for a file. This client is 

called the best client.  At a given time interval, each 

node checks to see if the number of requests for any 

of its file has exceeded a threshold. If it has exceeded 

then the best client for that file is identified.  

 Cascading Replication: It supports tree structure. 

The data files are generated in the top level. Once the 

number of accesses for the file exceeds the threshold, 

then a replica is created at the next level. This is 

created on the path to the best client. The same 

continues on all levels until it reaches the best client 

itself.  

 Fast Spread: In this method a replica of the file is 

stored at each node along its path to the client. When 

a client requests a file, a copy is stored at each layer 

on the way. This leads to a faster spread of data. 

When a node does not have enough space for a new 

replica it deletes the least popular file that had come 

in the earliest.  

 Least Frequently Used (LRU): This strategy always 

replicates files to local storage system. In LRU 

strategy the requested site caches the required 

replicas. If the local storage is full, the oldest replica 

in the local storage is deleted in order to free the 

storage. However, if the oldest replica size is less 

than the new replica, the second oldest file is deleted 

and so on. 

 Bandwidth Hierarchy Replication (BHR): It is a 

novel dynamic replication strategy which reduces 

data access time by avoiding network congestions in 

a data grid network. This strategy benefits from 

“network-level locality” which represents that 

required file is located in the site which has broad 

bandwidth to the site of job execution. 

 Weight Based Dynamic Replica Replacement: This 

strategy calculates the weight of replica based on the 

access time in the future time window on the last 

access history. After that, calculate the access cost 

which embodies the number of replicas and the 

current bandwidth of the network. The replicas with 

high weight will be helpful to improve the efficiency 

of data access, so they should be retained and then the 

replica with low weight will not make sense to the 

rise of data access efficiency, and therefore, should be 

deleted.  

 Agent-based replica placement algorithm: This 

determines the candidate site for the placement of 

replica. For each site that holds the master copies of 

the shared data files will deploy an agent. The main 

objective of an agent is to select a candidate site for 

the placement of a replica that reduces the access 

cost, network traffic and cumulative response time for 

the applications. Furthermore, in creating the replica 

an agent prioritizes the resources in the grid based on 

the resource configuration, bandwidth in the network. 

It insists for the replica at their sites and then creates 

a replica at suitable resource locations. 

 Efficient Replacement Strategy: It is a replication 

strategy for dynamic data grids, which take into 

account the dynamic of sites. This strategy can 

increase the file availability, improved the response 

time and can reduce the bandwidth consumption. 

Moreover, it exploits the replicas placement and file 

requests in order to converge towards a global 

balancing of the grid load. This strategy will focus on 

read-only-access as most grids have very few 

dynamic updates because they tend to use a load 

rather than update strategy. 

 

  

Fig 2: Replication with Fault Tolerance

 

 

 

VM Instance 

Client Application 

Primary 

 

 

 
VM Instance 

 

VM Instance 

 

 

 

 
VM Instance 

 

VM Instance 

 

 

 

 
VM Instance 

 

VM Instance 

 

Secondary 

Client Application 

Secondary 

 

Secondary 

 

Client Application 

 

Client Application 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

17 

Table I gives a comparative study of the different replication strategies [14] 
Table I: Comparison of the Replication Algorithms 

Replication 

Technique 

Method Performance 

Metric 

Type Scalability 

Best Client Replicates file to site 

that generates maximum 

number of requests  

 

Response time , 

Bandwidth 

conservation 

 

Dynamic Medium 

 

Cascading If number of requests 

exceeds threshold then 

replica trickles down to 

lower tier  

 

Response time , 

Bandwidth 

conservation 

 

Dynamic Medium 

 

Fast Spread If a client requests a file 

then a replica of file 

stores at each node 

along the path toward 

the client  

 

Response time , 

Bandwidth 

conservation 

 

Dynamic Medium 

 

Caching  A requesting client 

receives the file and 

stores a replica of it 

locally  

Response time , 

Bandwidth 

conservation  

Static Medium 

Least Frequently 

Used (LFU)  

Always replicates files 

to local storage , if no 

space : delete least 

accessed files  

Job execution time  Static High 

Least Recently Used 

(LRU)  

Always replicates files 

to local storage , if no 

space : delete oldest file 

in the storage  

Job execution time  Static High 

Weight-based 

replication] 

Calculates the weight of 

replica based on the 

access time in the future 

time window, based on 

the last access history  

Effective network 

usage, Mean job 

execution time  

Static Medium 

Agent based 

replication  

An agent holds the 

master copy  for each 

site, select a candidate 

site for the placement of 

replica that exceeds the 

conditions 

Execution time test, 

Data availability test  

Static Low 

Efficient replication 

strategy  

Takes into account the 

dynamic of sites. 

Exploits the replicas 

placement and file 

request in order to 

converge towards a 

global balancing of grid 

load  

Response time, 

Effective Network 

Usage  

Dynamic Medium 

Enhanced Fast 

Spread (EFS)  

Uses a dynamic 

threshold that 

determines if the 

requested replica should 

be stored at each node 

along its path to the 

requester. Keeps only 

the important replicas 

while other less 

important replicas are 

replaced with more 

important replicas  

Total response time, 

Total bandwidth 

consumption  

Dynamic Medium 

Bandwidth 

Hierarchy 

Replication (BHR)  

Replicates files which 

are likely to be used 

frequently within the 

region in near future  

Total job execution 

time  

Static Medium 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.5, July 2015 

18 

4.1 Implementation Methodology 
The requirement for high availability solutions has generated a 

lot of design policies to provide a consistent service. These 

approaches involve systems such as heartbeat and cluster 

computing. The basic mechanism for synchronizing two or 

more servers and detecting server failures is the heartbeat. It 

monitors the data flow on a network shared by a pair of servers. 

Heartbeat is used in a system with many nodes. One machine is 

designated as the primary node and the other nodes are 

considered the secondary nodes. It is a signal which is sent 

from all the nodes at regular intervals so that each system will 

come to know the status of availability of other node. If the 

primary node fails or requires downtime, the secondary node 

can take over the primary role. This concept of heartbeat is 

used in clustered computing. A computer cluster is a group of 

connected computers. They work together as a single computer. 

Clusters are usually set up to improve performance and/or 

availability over that of a single computer. They are more cost-

effective than single computers of comparable speed or 

availability.  

5. CONCLUSION 
Cloud is a form of distributed computing that is gaining high 

popularity. With most of the applications deployed in cloud, the 

number of users accessing the cloud has increases 

exponentially. Scalability and availability are required for such 

applications. Replication of the services is one of the ways to 

achieve these two parameters. To implement replication and 

availability fault tolerance is one of the important concepts. 

This can be implemented by making use of heartbeat. This idea 

of heartbeat in cluster computing can be used in cloud 

computing. This is based on an active-passive high availability 

solution. Each service under high availability needs at least two 

identical servers: a primary host, on which the service run, one 

or more secondary hosts, able to recover the application in less 

than one second. A heartbeat system is used to monitor the 

health of the nodes in the cluster. It is able to detect errors or 

failures on one node and automatically transfer workload or 

applications to another active node in the same cluster. Such 

systems typically have redundant hardware and software that 

make the applications available, despite failures. 

6. BIBLIOGRAPHY 
[1] Dejene Boru, Dzmitry Kliazovich, Fabrizio Granelli, 

Pascal Bouvry, and Albert Y. Zomaya, “Energy Efficient 

Data Replication in Cloud Computing Data Centers”, Eco 

Cloud Project. 

[2] D. Kliazovich, J. E. Pecero, A. Tchernykh, P. Bouvry, S. 

U. Khan, and A. Y. Zomaya, “CA-DAG: Communication-

Aware Directed Acyclic Graphs for Modeling Cloud 

Computing Applications,” IEEE International Conference 

on Cloud Computing (CLOUD), Santa Clara, CA, USA, 

2013.  

[3] Xavier D´efago, Andr´e Schiper and Nicole Sergent, 

“Semi-Passive Replication”, IEEE Computer Society 

Press. Appeared in Proceedings of the 17th IEEE 

Symposium on Reliable Distributed Systems, 1998. 

[4] Manjula Dyavanur and Kavita Kori, “Fault Tolerance 

Techniques in Big Data Tools: A Survey”, International 

Journal of Innovative Research in Computer and 

Communication Engineering IJIRCCE, Vol.2, Special 

Issue 2, May 2014, ISSN (Online): 2320-9801. 

[5] R. Jemina Priyadarsini and L. Arockiam, “Failure 

Management in Cloud: An Overview”, International 

Journal of Advanced Research in Computer and 

Communication Engineering Vol. 2, Issue 10, October 

2013, ISSN (Print): 2319-5940, ISSN (Online): 2278-

1021. 

[6] Sergio Filipe Garrau dos Santos Almeida, “Geo 

Replication in Large Scale Cloud Computing 

Applications”, Dissertation submitted for Master Degree 

in Information Systems and Computer Engineering, 

November 2012. 

[7] Adrian Coles and Bica Mihai, “An Adaptive Virtual 

Machine Replication Algorithm for Highly- Available 

Services”, Proceedings of the Federated Conference on 

Computer Science and Information Systems pp. 941–948, 

ISBN 978-83-60810-22-4, 978-83-60810-22-4/$25.00 c 

2011 IEEE. 

[8] Rodrigo N. Calheiros and Rajkumar Buyya, “Meeting 

Deadlines of Scientific Workflows in Public Clouds with 

Tasks Replication”, IEEE Transactions On Parallel And 

Distributed Systems, Vol. 25, No. 07, September 2013, 

Digital Object Indentifier 10.1109/TPDS.2013.238, 1045-

9219/13/$31.00 © 2013 IEEE. 

[9] C. Engelmann, S. L. Scott, C. Leangsuksun and X. He, 

“Towards High Availability for High-Performance 

Computing System Services: Accomplishments and 

Limitations”, This work was done at Oak Ridge National 

Laboratory and Tennessee Tech University and was 

partially sponsored by the Laboratory Directed Research 

and Development Program of Oak Ridge National 

Laboratory. 

[10] Dhananjaya Gupt, Mrs.Anju Bala, “Autonomic Data 

Replication in Cloud Environment”, International Journal 

of Electronics and Computer Science, IJECSE, Vol.2 

No.2, ISSN 2277-1956/V2N2-459-464. 

[11] Sushant Goel and Rajkumar Buyya, “Data Replication 

Strategies in Wide Area Distributed Systems”, Grid 

Computing and Distributed Systems Lab, University of 

Melbourne, Australia. 

[12] Laiping Zha, Yizhi Ren, Yang Xiang, and Kouichi 

Sakurai, “Fault-Tolerant Scheduling with Dynamic 

Number of Replicas in Heterogeneous Systems”, 2010 

12th IEEE International Conference on High Performance 

Computing and Communications, 978-0-7695-4214-0/10 

$26.00 © 2010 IEEE, DOI 10.1109/HPCC.2010.72. 

[13] Bakhta Meroufela, Ghalem Belalem, “Managing Data 

Replication and Placement Based on Availability”, 2013 

AASRI Conference on Parallel and Distributed Computing 

Systems, AASRI Procedia 5 (2013) 147 – 155 © 2013 The 

Authors. Published by Elsevier B.V. 

[14] Sheida Dayyani and Mohammad Reza Khayyambashi, “A 

Comparative Study of Replication Techniques in Grid 

Computing Systems”, (IJCSIS) International Journal of 

Computer Science and Information Security, Vol. 11, No. 

9, September 2013. 

[15] Arindam Das and Ajanta De Sarkar, “On Fault Tolerance 

of Resources in Computational Grids”, International 

Journal of Grid Computing and Applications, Vol.3, No.3, 

Sept. 2012, DOI: 10.5121/ijgca.2012.3301. 

[16] Thakur Kapil Singh, Godavarthi Tarakarama Ravi Teja 

and Padmavathi Srinivasa Pappala, “Fault Tolerance-

Challenges, Techniques and Implementation in Cloud 

Computing”, International Journal of Scientific and 

Research Publications, Vol.3, Issue 6, June 2013, ISSN 

2250-3153.  

IJCATM : www.ijcaonline.org 


