
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

5

A Study of Software Defined Networking with OpenFlow

Rekha P M

JSS Academy of Technical Education
Department of Information Science & Engineering

Dakshayini M
 BMS College of Engineering

Department of Information Science & Engineering

ABSTRACT

Today’s data center complexity has been drastically increased

with the widespread of many dynamic services. However,

provisioning heterogeneous services to satisfy user’s demand

is a challenging task for the service providers and as well for

the cloud Network administrators. Traditional network

architectures were not designed to meet the requirements of

today’s enterprises and end users. Hence to meet the users

demand and to address the difference between market

requirements and network capabilities in data centers the

industry has come up with the Software-Defined Networking

(SDN) architecture and its related standards. With SDN, static

network can advance into a wide range of service delivery

platform capable of responding rapidly to changing business,

end user’s demand, and market needs. SDN provides a novel

and innovative approach for controlling and managing virtual

machines in data centers. In this paper, we discuss the concept

of SDN, which can be implemented by the OpenFlow

protocol. We discuss the OpenFlow architecture and its

components with various OpenFlow versions. Finally we

discuss OpenFlow based SDN implementation, testing and

present an overview of SDN based applications.

Keywords
Software Defined Networking, Open Flow, Network

management

1. INTRODUCTION
Data centers consist of layer 2 and layer 3 devices, namely

switches and routers which carry traffic. With the growth of

the network, and to meet the growing traffic demands of new

applications many efforts have been taking place in

configuring these switches and routers. As demand on the data

center growing rapidly, so is the network growth. However,

the network becomes very much difficult with the addition of

hundreds to thousands of devices that must be configured and

managed. The change in traffic patterns, rise of cloud

services, and growing demand of bandwidth has lead network

administrators to look for innovative solutions, since

traditional networking technologies are not suited to the

dynamic computing and storage needs of data centers.

Applications are distributed across many virtual machines

(VM), which exchange traffic flows with each other.

Migration of VMs to optimize and rebalance workloads

causes the physical end points of existing flows to change.

Therefore an approach is necessary for maintaining growing

network easily. Instead of configuring scattered thousands of

devices, network operators and administrators can

programmatically configure this simplified network

abstraction. Hence, Software Defined Networking (SDN) a

new approach in networking technology, was designed to

create high level abstractions on top of which hardware and

software infrastructure can be built to support new emerging

applications. SDN allows network providers to expand their

network and services with a common approach and tool set.

OpenFlow protocol follows SDN approach which gives

programmable control of flows to network administrators. It

helps to identify a path that a flow takes from source to

destination in spite of the network topology, and utilizes flow

based processing for forwarding packets. The objective of this

paper is to focus on the concept of SDN from the Open

Networking Foundation (ONF).Several versions of OpenFlow

specification exist with more powerful features. The rest of

the paper is organized as follows. We discuss how SDN

supports to network innovation by various networking

applications that were implemented and analyzed in recent

years. These applications are in the areas of network

management and traffic engineering, cloud data center,

security, network virtualization. Several surveys of SDN have

been made this contribution differs from them through an

analysis of architectural design choices for OpenFlow based

SDN networks. Section 2 explains the concept of SDN, and

Section 3 gives an overview of the OpenFlow architecture,

which is currently the major protocol to control network

elements in SDN. Section 4 we discuss SDN implementation

and testing. Section 5 we discuss various SDN applications.

Finally, Section 6 concludes this work.

2. SOFTWARE DEFINED

NETWORKING
SDN is the network architecture that helps to ease network

control, management, virtualization, multi tenancy and to

allow improvement through network programmability.SDN

consists of separate control plane and forwarding data plane.

The separation of this forwarding hardware from the control

logic allows easier operation of new protocols, applications,

network visualization and management. Instead of enforcing

policies and running protocols on spread devices, the network

is reduced to simple forwarding hardware and the decision

making network controller. The controller manages all

switches, routers, and other network devices as a common

logical architecture. This logical architecture may be of

different behavior on different vendor equipment and in

different types of network devices. SDN architectures support

a set of APIs that make it possible to implement common

network services, including routing, multicast, security, access

control, bandwidth management, traffic engineering, quality

of service, processor and storage optimization, energy usage,

and all forms of policy management.

3. OPEN FLOW ARCHITECTURE
OpenFlow is the standard communication interface defined

between the control layer and forwarding layer of SDN

architecture. OpenFlow allows direct access to and

manipulation of the forwarding plane of network devices both

physical and virtual devices such as switches and routers.

OpenFlow protocol is defined between SDN controllers and

network devices and as well as it specifies the logical

structure of the network switch functions [1, 2].

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

6

The OpenFlow Switch Specification is published by the Open

Networking Foundation (ONF). ONF is a group of software

providers, content delivery networks, and networking

equipment vendors to support software defined networking.

The OpenFlow version 1.0 was first developed at Stanford

University and was widely implemented. OpenFlow version

1.2 was released from ONF after the project from Stanford.

Extended functions were released in OpenFlow versions 1.3

and 1.4 as depicted in table 1.

The OpenFlow architecture consists of three components

 The data plane network is built up by Open Flow

switches

 The control plane consists of OpenFlow controller

 A secure control channel connects the switches with

the control plane

In the following, we discuss internal structure of Open Flow

switches and their interactions with the controller. Figure 1

shows the basic structure of the OpenFlow environment. An

SDN controller communicates with OpenFlow switches using

the OpenFlow protocol running over the Secure Sockets

Layer. Every switch connects to other OpenFlow switches and

also to end-user devices.

Fig 1: OpenFlow Switch Architecture

3.1 Open Flow Switch
An OpenFlow switch is a basic forwarding device that

forwards packets according to its flow table. The OpenFlow

switch consists of three types of tables. The flow table, group

table and the meter table. In turn, each switch consists of a

series of tables, implemented in hardware or firmware to
manage the flows of packets through the switch. All incoming

packets from a particular flow are matched with the flow

table. The flow table describes the functions that are to be

performed on the packets. There may be one or more flow

tables. A Group table does many actions on one or more

flows. Flow table directs a flow to the group table. Flow

performance related actions are done on Meter Table.

Table 1. OpenFlow versions and its features

Version Released

in year
Features

Statistics

Measured

1.0 [3] December

2009

Provides QoS

support , single

flow table

Per

table/flow/port/

queue statistics

1.1[4]
February

2011

Provides additional

statistics fields due

to the changed

switch

architecture,

multiple flow

tables

Per

table/flow/port/

queue /Group

/Action bucket

statistics

1.2 [5] December

2011

Extended protocol

support for IPv6,

multiple flow

tables, it can be

configured to

simultaneous

communication

with multiple

controllers

Per

table/flow/port/

queue /Group

/Action bucket

statistics

1.3 [6] June 2012

Multiple flow

tables, Introduces

new features for

monitoring and

operations and

management

Per

table/flow/port/

queue /Group

/Action bucket

statistics

Per-flow meter

/meter band

1.4 [7]

October

2013

Multiple flow

tables, support for

the Open Flow

Extensible Match

Group /Action

bucket statistics

Per-flow meter /

meter band

In the following section we discuss in detail open switch

components.

3.1.1 Flow- Table components
A flow consists of a sequence of packets that matches a

specific entry in a flow table. A combination of flow entries

on multiple switches defines a flow that is bound to a specific

path. Each flow table in the switch contains six entries as

shown in table 2.

Table 2. Components of Flow Table

Match

Field
Priority Counter Instructions

Time

outs

Cookies

 Match Fields: Used to select packets that match the

values in the fields.

 Priority: priority order of each table entries.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

7

 Counters: Many counters are defined in the Open

Flow specification namely, number of received

bytes, packets per port, per flow table, per flow

table entry, number of packets dropped, and period

of a flow.

 Time outs: Defines the Maximum amount of idle

time before a flow is discarded by the switch.

 Cookie: Data value chosen by the controller to filter

flow statistics, flow modification, and flow deletion

and is not used when processing packets.

 Instructions: Is associated with the specific flow

entry and is executed if a match entry is found else

if no match found in a flow table, the outcome

depends on configuration of the table-miss flow

entry.

3.1.2 Match Fields
The Match Fields component of a table consists of Ingress

port, Ethernet source and destination addresses, IPv4 or IPv6

protocol number, IPv4 or IPv6 source Address and destination

Address, TCP source and destination Ports, UDP source and

destination Ports. Open Flow switch must support these match

fields and the optional fields such as physical port, Ethernet
Type, VLAN ID ,VLAN user Priority and Traffic Class.

3.1.3 Instructions
The instructions component of a table entry consists of a set

of instructions with actions and action set that are executed if
the packet matches the entry.

 Instructions are of four types:

 Go-to-Table: The packet is directed to a table along the

pipeline using the Go to-Table instruction.

 Meter instruction: The packet is directed to a specified

meter using the meter instruction.

 The packets modification can be done between two

tables and multiple actions can be executed on the packet

of the same type when it is matched to a table entry.

 All the actions can be cleared in the action set or

specified actions can be combined into the current action

set for the packet on this flow.

 Packet consists of metadata value which is used to carry

information from one table to the next.

3.1.4 Action Set
An action set is related with each packet which describes

packet forwarding, packet modification, and group table

processing operations. The action set can be modified using a

Write-Action instruction or Clear-Action instruction attached

with a particular match. The action set is accepted between

flow tables. When the instruction set of a flow entry does not

contain a Go-to-Table instruction, pipeline processing is

stopped and the actions in the action set of the packet are

executed.
The OpenFlow specification includes the following actions:

 Output: The packets are forwarded to the specified

port.

 Set-Queue: Queue ID is put for each packet, the

queue ID determines which queue attached to port is

used for scheduling and forwarding the packet. It is

used to provide basic QoS support.

 Group: specifies particular group packet that can be

processed.

 Push-Tag/Pop-Tag: Field is applied for virtual

network like VLAN or MPLS packet.

 Set-Field: Is used to modify the values of respective

header fields in the packet.

 Change-TTL: To used to change the values of the

IPv4 Time to Live (TTL), IPv6 Hop limit, or MPLS

TTL in the packet.

3.1.5 Flow-Table Pipeline
A switch has one or more flow tables. If there is more than

one flow table then the tables are labeled with numbers

starting with 0.When a packet is sent to a table for matching,

the input to the table consists of the packet, the identity of the

ingress port, the associated metadata value, and the associated

action set.

For table 0, the metadata value is blank and the action set is

null. Processing is done as follows:

 Find the highest-priority matching flow entry. If no

match on any entry and no table-miss entry, then the

packet is dropped.

 If there is a match only on table-miss entry, then

that entry tells one of the below three actions:

 Send packet to controller to define a new

flow for this and similar packets, or

decide to drop the packet.

 Direct packet to another flow table down

the pipeline.

 Drop the packet.

 If there is a match on one or more entries, then the

match will be with the highest-priority matching

entry. The following actions are performed:

 Counter is updated associated with this

entry.

 Instructions associated with this entry are

executed.

 Lastly, the packet may be forwarded to

either to flow table or to the group table,

or to meter table, or it could be send to an

output port.

There is no option for forwarding to another flow table from

the last table in the pipeline. When a packet is finally directed

to an output port, the action set is executed and then the

packet is queued for output. Some of OpenFlow switches with

design type and versions are summarized in table 3.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

8

Table 3: OpenFlow Switches

Switch

Design

Type

Series and

Versions

OpenFlow

version

Arista [8] HW 7050 ,7150,

7500

1.0

Cisco HW 3750

Brocade [9] HW CES 2000,

CER 2000,

MLX

1.0, 1.3

HP [10] HW 3500, 3500yl,

5400zl, 6200yl,

6600

1.0, 1.3

IBM

[11,12]

HW IBM 8264,

RackSwitch

G8264,

G8264T

1.0

LINC [13] SW - 1.2,1.3,1.4

NEC [14]

HW PF5240,

PF5248

1.0 , 1.3.1

Open

vSwitch

[15]

SW Latest version

OVS 2.1.2

 1.0 for OVS

1.9 ,

1.2 and 1.3

for OVS

1.10

1.1 for OVS

2.0

1.4 for OVS

2.2

Pica8 [16] HW P-3290, P-

3295, P3930,

P-3297,

P-3922

1.0, 1,1, 1.2,

1.3, 1.4

3.2 OpenFlow Controllers
Network devices in data center gets instructions and network

rules from the controller. In turn, the controller does switch

configuration, management, get events from the switch, and

sends packets out to the switch. Using the OpenFlow protocol

it manages packets, switch flow table entries by adding and

removing flow entries over the secure channel. The Controller

can be configured either in centralized configuration using

single controller for managing and configuring all devices or

in distributed configuration with a single controller for each

set of switches. The controller operates either in reactive

mode or proactive mode [17].

In reactive mode, the table does not have any rules. Hence

when the packets appear at a switch, the switch informs the

controller about the packet. Then the controller finds the path

for the packet and set the suitable rules for all switches along

the path, and lastly the packets of that flow are forwarded to

their destination. In proactive mode, in prior controller installs

the required flow entries in the switches. In this configuration,

the controller will have more power on performance than a

proactive flow configuration. The controllers are much faster

than the switches with respect to performance. Due to

timeouts like TLS echo request, session timeouts or other

disconnections switch may lose connection with all

controllers. The switch must leave at once depending upon the

switch implementation and configuration. The packets and

messages destined to the controllers are dropped in fail secure

mode. According to fail secure mode flow entries have their

expire timeouts. In fail standalone mode all packets are

processed by the switch using the reserved port where it acts

as a legacy router or Ethernet switch. At the start up, switch

will operate in fail secure mode or in fail standalone mode,

unless successfully connected to the controller. When the

controller is connected existing flow entries remain same

unless if required the controller has the option of deleting all

flow entries. Table 4 provides a list of open source controllers

with its main descriptions.

3.3 OpenFlow Channel
The messages are exchanged between OpenFlow switch and

OpenFlow controller using the OpenFlow channel. On set up,

the switch and controller communicates through a TLS

connection which is situated by default on TCP port 6653.

While using TCP, Security actions has to be considered to

prevent from attacks, eavesdropping, and controller

impersonation on the OpenFlow channel. Switches

communicate with the controller using a user-specified

transport port or the default transport port switches at a user

configured IP address. If the switch is configured with the IP

address of the controller to connect, the switch initiates a

standard TLS or TCP connection to the controller.

Authentication between the switch and controller is done by

exchanging the certificates signed by a private key. Each

switch must be configured by user with one certificate for

authenticating the controller. A single controller or several

controllers can be connected to the switch. If one controller

connection fails then it can be replaced by other controllers.

For more reliability multiple controllers are connected. The

controller manages the switch, enables load balancing and fast

recovery from failure.

3.4 OpenFlow Protocol
The OpenFlow protocol is a key enabler for SDN which

directs handling of the forwarding plane of network devices.
The messages are exchanged between an OpenFlow controller

and an OpenFlow switch using OpenFlow protocol. The

controller can delete, add and update actions to the flow

entries in the flow table with the OpenFlow protocol. The

three classes of communication namely, controller-to-switch,

asynchronous, and symmetric is supported by OpenFlow

protocol.

 Asynchronous: This class includes various status

messages to the controller. The Packet-in message is

used by the switch to send a packet to the controller

when there is no flow-table match.

 Controller-to-Switch: The controller sends messages to

manage the logical state of the switch, configuration

details of flow and group table entries. Packet out

message is send when a switch forwards packet to the

controller and then the controller directs the packet to a

switch output port without dropping it.

 Symmetric: These messages are sent without the help

from either the controller or the switch. Hello messages

are sent back and forth when the connection is set up

between the controllers and switch. The OpenFlow

protocol messages are summarized in table 5, 6 and 7.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

9

Table 4: Controllers in SDN

Controller Language Created by Open

source

Open

Flow

version

Description

NOX Python,

C++

Nicira Yes 1.0, 1.3

Asynchronous, event-based

programming model, component based

framework. NOX-MT is multithreaded

with improving throughput and

response time [18].

POX Python 2.7 Nicira Yes 1.0 Component based framework, targets

Linux, Mac OS, and Window [19].

Beacon Java Stanford university Yes 1.0.1 Event based and threaded Cross-

platform, Dynamic, and Rapid

Development [20].

Maestro Java Rice university Yes 1.0 Modular network control applications,

multi-thread [21].

Floodlight Java Big Switch

Networks

Yes 1.0 Based on Beacon, core architecture is

modular, open source agent [22].

Floodlight-plus Java Big Switch

Networks

Yes 1.3 New version of floodlight for

supporting OF 1.3 [23].

Ryu Python NTT Labs Yes 1.0, 1.2,

1.3, 1.4

Component based, supporting

components development in other

languages, event management and

reusable NETCONF library, sFlow

/Net flow library [24].

Open Daylight Java Linux Foundation Yes 1.0 , 1.3 Modular, pluggable, and flexible

controller platform, supporting

multiple southbound protocols [25].

Table 5: Asynchronous Messages

Packet-in

Transfer packet to controller, used to configure buffer packets

Packet-out

Message send from the controller

Flow-Removed Report to the controller about the removal of a flow entry from a flow table

Port-Status Report to the controller from the switch such as port-status, port configuration or

port state changes

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

10

Table 6: Controller to Switch Messages

Table 7: Symmetric Messages

Hello

Upon connection set up ,hello message

is exchanged between the switch and

controller

Error

Switch informs to the controller to

notify to notify the connection problems

and also indicates failure of a request

initiated by the controller

Echo

Echo request/reply messages can be

sent from either the switch or the

controller verify the liveness of a

controller-switch connection as well

used to measure its latency or

bandwidth

Experimenter Meant for future Open Flow revisions

4. IMPLEMENTATION AND TESTING
Researchers can test new services, applications and protocols

on an emulation of the expected deployment environment

before moving to the actual hardware. Mininet is a software

tool supports entire OpenFlow v1.0 network can be emulated

on a single computer .It uses Linux kernels along with Python

language scripts to construct a virtual network of large

number of host network, Open Flow switches, and controllers

in any network topology over a single desktop or laptop

station.EstiNet is simulation as a service which uses the

company servers to run the simulation or the emulation

projects [27]. Ns-3 supports OpenFlow protocol and its

switches in simulator environment but the drawback is it

cannot readily run a real Open Flow controller such as NOX,

POX, or Floodlight. Trema is an OpenFlow framework for

integrated testing and debugging environment. It manages,

monitor, and diagnose the entire system with a network

emulator and a diagnostic tool like Trema shark, Wireshark

plug-in [28]. For testing novel applications using OpenFlow

test-beds, experimental environments were developed. To

support experimental research in networking Global

Environment for Network Innovations (GENI) supported by

the National Science Foundation were developed. Researchers

can dynamically control and extend the network through

OpenFlow OFELIA test-bed.

5. SDN APPLICATIONS

5.1 Network Management
Network management in software defined network can be

done from logical flow tables which are in the centralized

logical controllers and these flow tables can be used in

distributed switches. Due to high-level policies in a

distributed low-level configuration using CLI mode network

state is difficult to achieve. Authors solved problems in an

event-driven control framework which is on functional

reactive programming and OpenFlow 1.0.0 [29].Another

control system was proposed that does integrated network

management, control system discovery and fault detection

[30]. Security management is another aspect of network

management. The algorithm of information security

management system combined with fuzzy logic and a

prototype of intrusion detection system was designed [31].

For event-based network control approach, Lithium system

was developed [32]. For minimal visibility of performance

and control, a programmable measurement platform approach

was Bismarck was introduced [33].

5.2 Network Virtualization
Network virtualization is one of the important key research

areas of network that allow multiple users to share resource

and infrastructure. A system for managing virtual networks

and sharing infrastructure based on layer 2 and OF were

introduced [35]. For managing and monitoring slices

infrastructure operations an approach for network isolation

based on Flow Visor and Slice Control and Management

Layer was presented [36]. To manage and allocate resource

optimally a test-bed for isolated virtual network with different

QoS to help administrator was presented [37]. Xen hypervisor

is used for virtualization with the high performance and to

manage resources [38].

5.3 Cloud Data Center
SDN gives better solution for cloud Services and data center.

In cloud, users gain the enough resources based on

requirement in real time [39]. The cloud data center was

implemented using SDN based implementation which is faster

Message Description

Features Request the identity and capabilities

of a switch. Switch responds by

specifying its capabilities

Configuration Switch responds with parameter

settings Set and query configuration

parameters

Modify-State To set switch port properties like

Add, delete, and modify flow/group

entries

Read-State To collect status such as current

configuration, statistics, and

capabilities of the switch

Packet-out Packet is send to a specified port on

the switch and with a list of actions

to be applied in the order they are

specified, an empty action list drops

the packet

Barrier Barrier request/reply messages are

used by the controller to ensure

message dependencies have been

met or to receive notifications for

completed operations

Role-Request These messages are used by the

controller to set the role of its Open

Flow channel or query that role.

Useful when the switch connects to

several controllers

Asynchronous-

Configuration

These messages are used by the

controller to set filter on the

asynchronous messages that it

wishes to receive on its Open Flow

channel, or to query that filter. This

is mostly useful when the switch

connects to several controllers

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

11

and easier to configure [40]. NetGraph, software architecture

to manage SDN based cloud systems were introduced which

provides a module with a set of API for monitoring and

diagnostics cloud system [41]. Hedera defines dynamic Flow

Scheduling for Data Center Networks with a central scheduler

to balance load based on dynamic flow condition on whole

system [42]. Cross stratum architecture was proposed for data

center interconnection designed for Flexi-Grid optical

networks. Authors argued that the system has improved end to

end responsiveness and optimized resource usage [43].

5.4. Security
A system was introduced in which OpenFlow switch on edge

is used to pass only safe traffic defined on flow table to

recognize trusty user [44].OpenFlow Random Host Mutation

system was introduced in which real IP of each host is

changed with the random virtual IP [45]. Multilevel security

system was developed that prevents information of specific

level which gathered by same or lower level host to monitor

packet and check content so filter the packet with security

problem [46]. The authors suggested architecture with IDS

component responsible for detecting attacks and recognizing

unsecure devises and inform OpenFlow controller [47].

One problem of SDN approach is that when network traffic is

high gathering full data from flow table is not resourceful so

author suggested solution to optimal real time detection

system [48].

6. CONCLUSION
In this study, we discussed the concept of software defined

networks and the open Flow architecture with three

components namely, OpenFlow switch, Open Flow controller

and OpenFlow protocols. We discussed switches and their

capabilities, communication between switch and controller.

We presented different SDN implementations and testing

platforms. At last we briefed SDN applications in different

areas to improve network management, virtualization, cloud

data centers and the works done on security of SDN. Finally,

we conclude that SDN promises to change static networks

into flexible, programmable platforms with the intelligence to

allocate resources dynamically in data centers and it supports

dynamic, highly automated, and secure cloud environments.

7. REFERENCES
[1] Thomas A. Limoncelli. OpenFlow: a radical new idea in

networking.Communication, ACM, 55(8):42–47, August

2012.

[2] Open networking foundation.

https://www.opennetworking.org

[3] OpenFlow Switch Consortium and Others, “OpenFlow

Switch Specification Version 1.0.0”, 2009.

[4] OpenFlow Switch Consortium and Others, “OpenFlow

Switch Specification Version 1.1.0”, 2011.

[5] Open Flow Switch Consortium and Others, “Open Flow

Switch Specification Version 1.2.0”, 2011. Available

online: https://www.opennetworking.org.

[6] OpenFlow Switch Consortium and Others, “Open Flow

Switch Specification Version 1.3.0”, 2012. Available

online: https://www.opennetworking.org

[7] OpenFlow Switch Consortium and Others, “Open Flow

Switch Specification Version 1.4.0”, 2013. Available

online: https://www.opennetworking.org

[8] Arista Networks, available online:

http://www.aristanetworks.com/en/products/eos/openflo

w, last visit: 18.10.2014.

[9] Brocade, available online:

http://www.brocade.com/products/all/switches/product-

details/netiron-ces-2000-series/index.page, last visit:

18.10.2014.

[10] HP switches, available online:

http://h17007.www1.hp.com/us/en/networking/products/

switches/HP_3500_and_3500_yl_Switch_Series/index.as

px, last visit: 18.10.2014.

[11] IBM, available online: http://www-

03.ibm.com/systems/networking/software/sdnve last

visit: 8.8.2014.

[12] Juniper, http://www.juniper.net/us/en/products-

services/sdn , last visit:8.8.2014

[13] Y. Cheng, V. Ganti and V. Lubsey, “Open Data Center

Alliance Usage Model: Software-Defined Networking

rev. 2.0”, Open Data Center Alliance, 2014, [Online].

[14] NEC, available online:

http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Sw

itch, last visit: 18.10.2014

[15] OpenvSwitch, available online: http://openvswitch.org,

last visit: 18.10.2014

[16] Pica8 open networking, http://www.pica8.org/open-

switching/1gbe-10gbe-40gbe-open-switches.php, last

visit: 18.10.2014

[17] Evaluation of OpenFlow Controllers Guillermo Romero

de Tejada Muntaner, October 15, 2012.

[18] NOX, available online:

http://www.noxrepo.org/nox/about-nox/, last visit:

18.10.2014.

[19] POX, available online:

http://www.noxrepo.org/pox/about-pox/, last visit:

18.10.2014.

[20] Beacon, available online:

https://openflow.stanford.edu/display/Beacon/Home, last

visit: 18.10.2014.

[21] E. Ng, “Maestro: A System for Scalable OpenFlow

Control”, available online:

www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf, last

visit: 18.10.2014.

[22] Floodlight OpenFlow Controller - Project Floodlight,

available online:

http://www.projectfloodlight.org/floodlight/, last visit:

18.10.2014.

[23] Announcing release of Floodlight with OF 1.3 support,

available online: http://sdnhub.org/releases/floodlight-

plus-openflow13-support/, last visit: 18.10.2014.

[24] Ryu 3.9 documentation, available online:

http://ryu.readthedocs.org/en/latest/getting_started.html#

what-s-ryu, last visit: 18.10.2014.

[25] Opendaylight, available online:

http://www.opendaylight.org/, last visit: 18.10.2014.

[26] S. Azodolmolky, Software Defined Networking with

OpenFlow, Packt Publishing, 1st ed., October 2013.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.5, July 2015

12

[27] EstiNet Technologies Inc., “The GUI user Manual for

the EstiNet 8.0 Network Simulator and Emulator”,

January 2013.

[28] T. Dietz, “Trema tutorial”, NEC Corporation, March

2012.Available at: http://www.fp7-

ofelia.eu/assets/Uploads/201203xx-Trema Tutorial.pdf,

accessed on 23/3/2014.

[29] H. Kim and N. Feamster, “Improving network

management with software defined networking”,

Communications Magazine, IEEE, Vol.51, No.2, 2013,

pp.114-119.

[30] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim

and D. Pinheiro, “Enhancing network management

frameworks with SDN-like control”, 2013 IFIP/IEEE

International Symposium on Integrated Network

Management ,2013, pp.688-691.

[31] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy

logic-based information security management for

software-defined networks”, 16th International

Conference on Advanced Communication Technology

(ICACT), 2014, pp. 167-171.

[32] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R.

Clark, “Lithium: Event-driven network control”, Georgia

Institute of Technology, 2012.

[33] Bismarck, Available online: http://projectbismark.net,

last visit: 18.10.2014.

[34] S. Song, S. Hong, X. Guan, B.-Y. Choi, and C. Choi,

"NEOD: network embedded on-line disaster

management framework for software defined

networking," Integrated Network Management (IM

2013), 2013 IFIP/IEEE International Symposium on,

(2013), pp.492-498.

[35] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N.

Toledo, “Implementing Layer 2 Network Virtualization

using OpenFlow: Challenges and Solutions”,

Proceedings of European Workshop on Software Defined

Networking (EWSDN), 2012, pp: 30-35.

[36] R. Nejbati, S. Azodolmolky and D. Simeonidou, “Role of

Network Virtualization in Future Internet Innovation”,

Proceedings of 17th European Conference on Networks

and Optical Communications (NOC), 2012, pp: 1-4.

[37] I. M. Moraes, D. M. Mattos, L. H. G. Ferraz, M. E. M.

Campista, M. G. Rubinstein, L. H. M. Costa, et al.,

“FITS: A Flexible Virtual Network Test bed

Architecture”, Computer Networks, Vol.63, 2014, pp:

221–237.

[38] P. Barham, B. Dragovic, K. Fraser, S. H and T. Harris, A.

Ho, “Xen and the Art of Virtualization”, Proceedings of

the nineteenth ACM symposium on Operating systems

principles, Vol.37, 2003, pp:164-177.

 [39] J. Hurwitz, A. Nugent, F. Halper and M. Kaufman, Big

Data for Dummies, John Wiley & Sons, Inc., 201, pp: 7-

35.

[40] C. Baker, A. Anjum, R. Hill, N. Bessis and S. L. Kiani,

“Improving Cloud Datacenter Scalability, Agility and

Performance using OpenFlow”, Proceedings of 4th IEEE

International Conference on Intelligent Networking and

Collaborative Systems (INCoS), 2012.

[41] R. Raghavendra, J. Lobo and K.-W.Lee, “Dynamic

Graph Query Primitives for SDN-based Cloud Network

Management”, Proceedings of the first workshop on Hot

topics in software defined networks, 2012, pp.97-102.

[42] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang

and A. Vahdat, “Hedera: Dynamic Flow Scheduling for

Data Center Networks”, Proceedings of 7th USENIX

conference on Networked systems design and

implementation, 2010.

[43] H. Yang, J. Zhang, Y. Zhao, H. Li, S. Huang, Y. Ji, et

al., “Cross Stratum Resilience for OpenFlow enabled

Data Center Interconnection with Flexi-Grid Optical

Networks”, Optical Switching and Networking, Vol.11,

2014, pp:72-82.

[44] C. YuHunag, T. MinChi, C. YaoTing, C. YuChieh, and

C. YanRen, “A Novel Design for Future on-demand

Service and Security”, Proceedings of 12th IEEE

International Conference on Communication

Technology, 2010, pp:385-388.

[45] J. H. Jafarian, E. Al-Shaer and Q. Duan, “Openflow

Random Host Mutation: Transparent Moving Target

Defense using Software Defined Networking”,

Proceedings of the first workshop on Hot topics in

software defined networks, 2012, pp: 127-132.

[46] X. Liu, H. Xue, X. Feng and Y. Dai, “Design of the

Multi-level Security Network Switch System Which

Restricts Covert Channel”, Proceedings of 3rd IEEE

International Conference on communication software and

networks (ICCSN), 2011, pp:233-237.

[47] Y. Juba, H.-H. Huang and K. Kawagoe, “Dynamic

Isolation of Network Devices Using OpenFlow for

Keeping LAN Secure from Intra-LAN Attack”, Procedia

computer science, Vol. 22, 2013, pp: 810-819.

[48] K. Giotis, C. Argyropoulos, G. Androulidakis, D.

Kalogeras, and V. Maglaris, "Combining OpenFlow and

sFlow for an Effective and Scalable Anomaly Detection

and Mitigation Mechanism on SDN Environments",

Computer Networks, (2013), available online:

http://dx.doi.org/10.1016/j.bjp.2013.10.014.

IJCATM : www.ijcaonline.org

