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ABSTRACT 

This paper presents fuzzy goal programming approach for 

solving multilevel programming problems with fuzzy 

parameters. The proposed approach is based on  -cut and 

fuzzy goal programming. In the proposed approach, the 

tolerance membership functions for the fuzzily described 

objective functions are defined by determining individual best 

solution of the objective function of every decision maker. 

Since the objectives of the level decision makers are 

potentially conflicting in nature, decision deadlock may arise 

due to the dissatisfaction of the solution of upper level 

decision makers.  Sometimes upper level decision makers 

insist to work more than stipulated working hours or overtime 

duty in order to meet the heavy demand of the market arising 

for festivals or emergency reasons. In order to survive in the 

open competitive market, the relaxations of lower level 

decision makers are very crucial for the upper level decision 

makers and for the organization. So in the proposed model 

relaxation of decision for each level decision maker is 

considered.  The relaxation of decision is performed by 

providing preference bounds on the decision variables for 

avoiding decision deadlock. Then three fuzzy goal 

programming models for multilevel programming are 

formulated. In general, the fuzzy goal programming models 

offer different solutions. In order to find the best compromise 

solution Euclidean function is used. An illustrative numerical 

example is provided to demonstrate the efficiency of the 

proposed approach. 

General Terms 

Decision Making, Linear Programming, Optimization. 

Keywords 

Multi-level programming, Fuzzy goal programming, goal 

programming.  

1. INTRODUCTION 
Multi-level programming problem (MLPP) is developed to 

deal with hierarchical decision making problems. Burton [1], 

Bard and Falk [2], Anandalingam [3], Anandalingam and 

Apprey [4] studied different models to solve multi-level 

programming problems in crisp environment.  

 However, classical MLPP considers crisp variables and 

values, and produces crisp kinds of model. That is, classical 

MLPP does not consider randomness, vagueness or 

uncertainty included in the system [5]. For real world MLPP, 

the information available to decision makers is often 

imprecise due to inaccurate attribute measurements and 

inconsistent priority judgments. In order to deal with such 

situations, the concept of fuzzy set [6] is very helpful. Lai [7] 

at first proposed hierarchical optimization method and 

obtained a satisfactory solution using the concept of tolerance 

membership functions based on fuzzy set theory in 1996. Shih 

et al. [8] extended the concept of satisfactory solution of Lai 

[7] using non-compensatory max-min aggregation operator 

for solving MLPPs. Shih and Lee [9] studied MLPPs using 

the compensatory fuzzy operator.  

Sakawa et al. [10] investigated interactive fuzzy programming 

for multi-level linear programming problem. Sakawa et al. 

[11] used genetic algorithm to solve multi- level 0 – 1 

programming based on interactive fuzzy approach.  

Sinha [12, 13] studied alternative fuzzy mathematical 

programming approach to solve MLPP. In Sinha’s approach, 

last (lowest) level is most important and decision of the lowest 

level remains either unchanged or closest to individual best 

decision, which reflects the paradox that the decision power of 

the lowest level DM dominates the higher level decision 

maker. To deal such situation, Pramanik and Roy [14] studied 

MLPP based on fuzzy goal programming. In 2010, Baky [15] 

proposed FGP approach to solve multi objective MLPP. Han 

et al. [16] studied reference-based uncooperative multi-

follower tri-level decision problem based on fuzzy approach. 

They developed Kth-Best algorithm to find an optimal 

solution to the model. They presented a real-world case study 

on production-inventory planning. 

Sakawa et al. [17] studied interactive fuzzy programming for 

multi-level linear programming problems with fuzzy 

parameters. Pramanik [18] formulated three fuzzy goal 

programming models for solving bi-level programming 

problem with fuzzy parameters extending the concept of 

Pramanik and Roy [19]. Pramanik and Dey [20] extended the 

concept of Pramanik [18] to multi-objective bi-level 

programming problem with fuzzy parameters where they 

considered relaxation provided by the both level decision 

makers.  Pramanik et al. [21 studied decentralized bi-level 

multi-objective programming problem with fuzzy parameters 

based on fuzzy goal programming.   

In the paper, the concept of Pramanik [18] is extended for 

multilevel programming problem.  

Rest of the paper is designed as follows: Section 2 presents 

mathematical preliminaries. Section 3 presents formulation of 

FGP having fuzzy parameters.  Section 4 is devoted to 

formulate FGP models for MLPP. In the next section 5, a 

numerical example is solved. In section 6, conclusion and 

future direction of research are presented. 

2. MATHEMATICAL PRELIMINARIES 
Fuzzy set: In 1965, Zadeh [6] grounded the concept of fuzzy 

sets as a mathematical form for representing impreciseness.   

Definition 2.1 [6] A fuzzy set 

~

  in a universe of discourse 

X is defined by 

~

  = { x, ~



 (x)  x X}, where ~



 (x): 
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X  [0, 1] is called the membership function of 

~

  and ~





(x) is the degree of membership to which x

~

 . 

Definition 2.2 [6] Union of two fuzzy sets 

~

  and 

~

 with 

respective membership functions ~



 (x), ~



 (x) is defined 

by a fuzzy set 

~

C  whose membership function is defined by 

~~

Β∪Α
μ (x) = ~

 C

 (x) = max [ ~



 (x), ~



 (x)], x X. 

Definition 2.3  [6] Intersection of two fuzzy sets 

~

  and 

~

  

with respective membership functions ~



 (x), ~



 (x) is 

defined by a fuzzy set 

~

C whose membership function is 

defined by ~~



 (x) = ~

 C

 (x) = min [ ~



 (x), ~



 (x)], x 

X. 

Definition 2.4  -cut. The -cut of a fuzzy set 

~

  of X is a 

non-fuzzy set denoted by Αα defined by a subset of all 

elements x X such that their membership functions exceed or 

equal to a real number  [0, 1], i.e. Αα = [

( ) ∈x∀],1,0[∈α,α≥xμ:x ~
Α

X ]. 

3.  FORMULATION OF FUZZY GOAL 

PROGRAMMING HAVING FUZZY 

PARAMETERS 

Consider the following fuzzy optimization problem: 

maximize
~

F )x(  = ( xc~,...,xc~,xc~ P21 )T                                (1)                                                         

subject to x  S = { x n  0≥x,B
~

*xA
~

},                    (2)        

where ( )P ..., 2, 1, =pc~p  are n-dimensional fuzzy vector, B
~

 

is an m-dimensional fuzzy vector, A
~

 is an m  n fuzzy 

matrix. Here, the symbol  denotes respectively , ,  and =. 

x = (x1, x2, …, xn)
T. Consider that the problem (2) has fuzzy 

coefficients having possibility distributions. Assume that 
αx  

be a solution of (2). Here  [0, 1] reflects the level of 

possibility at which all fuzzy coefficients is feasible. 

Let )r~( α  be the -cut of a fuzzy number r~   

  )r~( α ={rSupp( r~ ) α≥)r(μ r~
, [0, 1]}                       (3) 

Here supp( r~ ) denotes the support of r~ . Let L
α)r~( and U

α)r~(  

be the lower bound and upper bound of the  -cut of r~

respectively satisfying the following relation   

L
α)r~(  )r~( α  U

α)r~(                                                                (4) 

Then, for a prescribed value of , for maximization-type 

objective function [22], ( )xFp

~

 (p = 1, 2, …, P) can be 

replaced by the upper bound of its -cut i.e.   

U
αp

~

))x(F( = j

n

1=j

U
αpj x)c~(∑                                                        (5)     

Similarly, for a prescribed value of , for minimization-type 

objective function [22] , )x(Fp

~

 (p = 1, 2, …, P) is replaced 

by the lower bound of its -cut i.e.     

L
αp

~

))x(F( = j

n

1=j

L
αpj x)c~(∑                                                       (6)                 

For inequality constraints 

~

i

n

1=j
j

~

ij Β≥xΑ∑ , i = 1, 2, …, m1,                                           (7)                               

and  ,Β≤xΑ
~

i

n

1=j
j

~

ij
∑  i = m1+1, …, m2,                                (8)                                 

can be replaced by the following constraints: 

j

n

1=j

U
αij x)A

~
(∑ ≥ L

αi )B
~

( , i = 1, 2, …, m1                                 (9) 

j

n

1=j

L
αij x)A

~
(∑ ≤ U

αi )B
~

( , i = m1+1, …, m2                           (10)                            

For fuzzy equality constraints 

~

i

n

1=j
j

~

ij Β=xΑ∑  , i = m2+1, …, m,                                     (11)                                          

can be replaced by two equivalent constraints 

j

n

1=j

U
αij x)A

~
(∑ ≥ L

αi )B
~

(  i = m2+1, …, m,                (12) 

and j

n

1=j

L
αij x)A

~
(∑ ≤ U

αi )B
~

(    i = m2+1, …, m,                     (13)                                                                                        

For proof of equivalency of (11) with (12) and (13), see Lee 

and Li [22].  

Therefore, for a prescribed value of , the problem (1) 

reduces to the following problem: 

Maximize   U
αp

~

))x(F( = j

n

1=j

U
αpj x)c~(∑                                   (14)                                                                                     

subject to  

j

n

1=j

U
αij x)A

~
(∑ ≥ L

αi )B
~

( , i = 1, 2, …, m1, m2+1, …, m,        (15)                                                                                                                

j

n

1=j

L
αij x)A

~
(∑ ≤ U

αi )B
~

( , i = m1+1, …, m2, m2+1, …, m,     (16)                                                                                                                                 

xj  0, j = 1, 2, …, n.                                                          (17)                                                                                                                             

For simplicity, denote the system constraints (15), (16) and 

(17) as S. 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.21, July 2015 

36 

For a prescribed value of , the problem (14) reduces to a 

deterministic linear programming problem with multiple 

objectives.   

The resulting membership functions for maximization-type 

objective functions are defined as follows:  

U
αpp ))x(F

~
(μ

 
=

-

αp
o
αp

-

αp
U
αp

)F
~

(-)F
~

(

)F
~

(-))x(F
~

(
, p = 1, 2, …, P,        (18)                                                                                      

where the aspired level o
αp )F

~
(  and highest acceptable level 

-
αp )F

~
(  are ideal and anti-ideal solutions, respectively, which 

can be obtained by solving each of the following problem 

independently: 

o
αp )F

~
( =

S∈Χ
max j

n

1=j

U
αpj x)c~(∑ , p = 1, 2, …, P                         (19) 

-
αp )F

~
( =

S∈Χ
min

j

n

1=j

U
αpj x)c~(∑ ,  p = 1, 2, …, P                         (20)                                    

For minimization type objective function ideal and anti-ideal 

solutions can similarly be obtained. Assume that all of the 

fuzzy coefficients are trapezoidal fuzzy numbers. Trapezoidal 

fuzzy number r~  can be defined as: 

r~ = (r1, r2, r3, r4) and the membership function of the fuzzy 

number will be interpreted as follows: 

( )r~μ r~  = 

4

43

34

4

32

21

12

1

1

r≥r,0

,r≤r≤r,
r-r

r-r
,r≤r≤r,1

,r≤r≤r,
r-r

r-r
,r≤r,0

              (21)                                                                   

So, an -cut of r~ [12] (see the Fig 1) can be expressed by the 

following interval  

α)r~( = [ L
α)r~( , U

α)r~( ] = [ α)r-(r-r,α)r-r(+r 344121  ]      (22)  

It is to be noted that when r(2)
 = r(3), r~ reduces to the 

triangular fuzzy number, specified by  (r1,  r2 = r3, = r4);  

In simple form, triangular fuzzy number r~ = (r1, r2, r3) can be 

defined as: 

( )r~μ r~  = 

otherwise,0

,r≤r≤r,
r-r

r-r

,r≤r≤r,
r-r

r-r

32

23

3

21

12

1

               

(23)

      

                                                                              

 

 

 

 

 

 

)r~(r~  

 
                                

 

 

 
α  

 

 

 

 

                       L
α)r~(                                     U

α)r~(  

 

r~number fuzzy  lTrapezoida :1 Fig
 

So, an -cut of r~ [22] (see the figure2) can be expressed by 

the following interval 
 

α)r~( = [ L
α)r~( , U

α)r~( ] = [ α)r-(r-r,α)r-r(+r 233121 ]   (24)                                          

and the membership function of this fuzzy number can be 

interpreted as follows:
 α)r~( = [ L

α)r~( , U
α)r~( ]=  (r1, r2, r3)                

)r~(μ r~  

 

 

 

 

                                                     
 

 

                                  L
α)r~(                        U

α)r~(  

 

Fig 2: Triangular fuzzy number r~                                                                       

For given value of , the main interest of the decision 

making unit is to maximize the degree of membership 

functions of the objective functions subject to the system 

constraints i.e.  

max   U
αpp ))x(F

~
(μ  , p = 1, 2, …, P,                                    (25) 

subject to    0 U
αpp ))x(F

~
(μ   1,                              (26) 

 S                                                                               (27) 

Then according to Pramanik and Roy [14], Pramanik [18] and 

Pramanik and Dey [23], the FGP model for maximization type 

objective function can be explicitly formulated as: 

FGP model (1): 

min  λ                                                                                  (28) 

subject to  

-

αp
o
αp

-

αp
U
αp

)F
~

(-)F
~

(

)F
~

(-))x(F
~

(
+

-
pd = 1, p = 1, 2, …, P,                     (29)                                    

j

n

1=j

U
αij x)A

~
(∑ ≥ L

αi )B
~

( , i = 1, 2, …, m1, m2+1, …, m,        (30)                                                                                                                  

1 

0 

r1 r2 r3 r4 

r1 r3 r2 

1 

α
 

0 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.21, July 2015 

37 

j

n

1=j

L
αij x)A

~
(∑ ≤ U

αi )B
~

( , i = m1+1, …, m2, m2+1, …, m,     (31)                                                                                                                                     

xj  0, j = 1, 2, …, n.                                                          (32)                                                                                                                                             

λ  
-
pd , p = 1, 2, …, P,                                                      (33)                                                                                                                            

-
pd   0, p = 1, 2, …, P,                                                       (34)                                        

-
pd  1≤  0, p = 1, 2, …, P.                                                (35)                                                                                                         

FGP model (II): min   = ( ∑  d  w
P

1= p

-
p

-
p )                              (36)                                                                                           

subject to the constraints given by (30), (31), (32), (34), and 

(35) 

FGP model (III): min  = ∑d
P

1 P

1=p

-
p                                    (37)                                                                                                                                   

subject to the constraints given by (30), (31), (32), (34), and 

(35). 

Using the interval expression for trapezoidal fuzzy numbers 

(22), the problem (25) can be written as: 

FGP model I: min λ                                                           (38)                                                                                                                                                                                                                                                             

subject to 

-

αp
o
αp

-

αpj)3(pj)4(pj

n

1=j
)4(pj

)F
~

(-)F
~

(

)F
~

(-x]α)c-c(-∑c[

+
-
pd = 1,                 (39) 

p = 1, 2, …, P,                                                                                        

 

[ j)3(ij)4(ij)4(ij x]α)A-A(-A ≥ α)B-B(+B )1(i)2(i)1(i  
     (40) 

m, ,… 1,+m , m ,… 1, = i, 21                                             

j)1(ij)2(ij)1(ij x]α)A-A(+A[ ≥ ]α)B-B(-B )3(i)4(i)4(i      (41) 

m, ,… 1,+m ,m ,… , 2, 1,+m = i, 221                                           

λ  
-
pd , p = 1, 2, …, P,                                                      (42)                                                                                                                                                       

xj   0, j = 1, 2, …, n,                                                          (43)                                                              
-
pd  0, p = 1, 2, …, P.                                                      (44)   

-
pd  1≤ , p = 1, 2, …, P.                                     (45)

                                                                     

Using the interval expression (22), the problem (36) and (37) 

can be written as follows: 

FGP model II: min   = ( ∑
P

1= p

-
p

-
p  d  w )                                (46)                                                           

and  

FGP model III: min  = ∑  d  
P

1 P

1= p

-
p                                      (47)                                                                                                            

subject to the constraints  (39), (40), (41), (43), (44), and (45). 

 w -
p  = 1/ ])F

~
(-)F

~
[(

-

αp
o
αp , p = 1, 2, …, P                           (48)                                            

Using the interval expression for triangular fuzzy numbers 

[24], the FGP model for maximization type objective function 

can be explicitly formulated as: 

min λ                                                                                  (49)                                                                                                                                       

subject to 

-

αp
o
αp

-

αpj)2(pj)3(pj

n

1=j
)3(pj

)F
~

(-)F
~

(

)F
~

(-x]α)c-c(-∑c[

+
-
pd = 1,                 (50) 

p = 1, 2, …, P,                                                                                      

[ j)2(ij)3(ij)3(ij x]α)A-A(-A ≥ α)B-B(+B )1(i)2(i)1(i       (51) 

m, ,… 1,+m , m ,… 1, = i, 21                                                      

j)1(ij)2(ij)1(ij x]α)A-A(+A[ ≤ ]α)B-B(-B )2(i)3(i)3(i     (52)                                                                    

m, ,… 1,+m ,m ,… , 2, 1,+m = i, 221                                           

λ  
-
pd , p = 1, 2, …, P,                                                      (53)                                                                                                                                                                                      

xj   0, j = 1, 2, …, n,                                                         (54)                                                                                         
-
pd  0, p = 1, 2, …, P.                                                    (55)

                                                                        
-
pd  1≤ , p = 1, 2, …, P.                                                     (56) 

FGP model II: min   = ( ∑
P

1= p

-
p

-
p  d  w )                                (57)                                                                                           

and FGP model III:   = ∑  d  
P

1 P

1= p

-
p                                     (58)                                                                                    

subject to the constraints  given by (50), 51), (53), (54), (55), 

and (56). 

In Model (II), numerical weight  w -
p  (p = 1, 2, …, P) presents 

the reciprocal of the admissible violation constant. The 

numerical weight associated with negative deviational 

variable represents the relative importance of achieving the 

aspired level of the fuzzy goal. The larger admissible violation 

of constants [
-

αp
o
αp )F

~
(-)F

~
( ] indicates less important k-th 

fuzzy goal. i.e. the larger numerical weight  w -
p  = 1/

])F
~

(-)F
~

[(
-

αp
o
αp , (p = 1, 2, …, P) reflects the more important 

of the p-th fuzzy goal.   

4. FORMULATION OF MULTILEVEL 

PROGRAMMING PROBLEM 
We consider a P-level programming problem of 

maximization-type objective function at each level. 

Mathematically, the problem can be stated as:           

1x

1 )x(F
~

max  = 11c~ 1x  + 12c~ 2x  + 13c~ 3x  + … + P1c~ Px    (59)                                                                                              

2x

2 )x(F
~

max = 21c~ 1x  + 22c~ 2x  + 23c~ 3x  + … + P2c~ Px (60)                                                                                             

 . 

 . 

 .  

Px

P )x(F
~

max = 1Pc~ 1x  + 2Pc~ 2x  + 3Pc~ 3x  + … + PPc~ Px (61)                                                                                              

subject to    

1iA
~

 1x  + 2iA
~

 2x  + 3iA
~

 3x  + … + iPA
~

Px     ib
~

,     (62) 

i = 1,2,… , q1                                                                                

1iA
~

 1x  + 2iA
~

 2x  + 3iA
~

 3x  + … + iPA
~

Px   ib
~

 ,       (63) 

i = q1 + 1, q1+ 2, ,… , q2                                                             

1iA
~

 1x  + 2iA
~

 2x  + 3iA
~

 3x  + … + iPA
~

Px  =   ib
~

,    (64)    

 i = q2 + 1, q2+ 2, ,… , m                                                               

1x   0 , 2x   0 , … , Px   0                                         (65)                                                                                              

1x  = {x
1

1 , x
2

1 , 
...

, x
1n

1 } : decision variables under the control 

of first level DM  

2x  = {x
1

2 , x
2
2 ,...,  x

2n

2 }: decision variables under the control 

of second level DM 

  . 

  . 
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  . 

 Px  ={x
1
P , x

2
P ,...,  x

Pn

P }: decision variables under the 

control of P-th level DM.       

Where  denotes transposition. 1iA
~

, ( i = 1, 2, ..., q) is the 

fuzzy row vector of dimension (1n1). Similarly; 2iA
~

 are (q2 - 

q1) fuzzy row vectors, each of dimension (1n2) and iPA
~

   are 

(m- q2) fuzzy row vectors, each of dimension (1nP).  

ipA
~

 Px   (p = 1, 2, …, P)  is the fuzzy column vector  of 

dimension (m1). 11c~ , 12c~ , 13c~ ,  … , P1c~  are fuzzy row 

vectors of dimension (1n1), 21c~ , 22c~ , 23c~ , … , P2c~   are 

fuzzy row vectors of dimension (1n2) and 1Pc~ , 2Pc~ , 3Pc~ , …  

PPc~    are fuzzy row vectors of dimension (1nP). We take x

= 1x   1x   …  Px  and n = n1+ n2+ …. + n P. Here, one DM 

is located on each level. The problem consists of n decision 

variables and m fuzzy constraints. Decision vector px , p = 1, 

2, …, P is under the control of p-th level DM having np 

number of decision variables. For simplicity, denote the 

system constraints (62), (63), (64), and (65) as .                                          

4.1 DETERMINISTIC FORMULATION OF MLPP 

WITH FUZZY PARAMETERS 

At first, we transform the fuzzily described objective 

functions and constraints into deterministic objective 

functions and constraints for a given value of α . Now, for a 

given value of α , maximization-type objective function ( )xF
~

p

, (p = 1, 2, …, P) can be replaced by the upper bound of its α -

cut i.e., 

 
U
αP )x(F

~
 = 

U
α1p )c~( 1x  + 

U
α2p )c~( 2x  + 

U
α3p )c~( 3x  + 

…
 + 

U
αpP )c~ Px , P = 1, 2, ..., P                                                                      (66) 

The system constraints (62), (63) and (64) inequality 

constraints can be replaced by the following constraints: 

p

P

1=p

U
αip

~

x∑ )A(   L
αi )b

~
( ,                                                     (67) 

 i = 1, 2, …, q1, q2 + 1, q2+ 2, ,… , m                                                                                                                                     

p

P

1=p

L
αip

~

x∑ )A(  U
αi )b

~
( ,                                                       (68) 

i = q1+1, m1+2, …, q2,  q2 + 1, q2+ 2, ,… , m.                                                                                                                    

Then, for a prescribed value of α , the MLPP reduces to the 

following problem. 

1x

U
α1 )x(F

~
max  = p

P

1=p

U
α1p

~

1x
x∑ )c(max                                                    (69)                                                                                                                                                                     

2x

U
α2 )x(F

~
max = p

P

1=p

U
α2p

~

2x
x∑ )c(max                                                 (70)                                                                                                                       

 . 

 . 

 .  

Px

U
αP )x(F

~
max = p

P

1=p

U
αPp

~

Px
x∑ )c(max                                                  (71)                                                                                                                            

subject to 

p

P

1=p

U
αip

~

x∑ )A(   L
αi )b

~
( ,                                                     (72) 

 i = 1, 2, …, q1, q2 + 1, q2+ 2, ,… , m                                                                                                                                     

p

P

1=p

L
αip

~

x∑ )A(  U
αi )b

~
( ,                                                       (73) 

  i = q1+1, m1+2, …, q2,  q2 + 1, q2+ 2, ,… , m.                                                                                                                    

1x   0 , 2x   0 , … , Px   0                                          (74)                                                                                                         

For simplicity, denote the system constraints (72), (73), and 

(74) as S.                                          

To formulate the fuzzy goal programming model of the 

MLPP, the objective function U
αp )x(F

~
 (p = 1, 2, …, P) would 

be transformed into fuzzy goals by means of assigning an 

aspiration level to each of them. Then, they are to be 

characterized by the associated membership functions by 

defining tolerance limits for achievement of the aspired levels 

of the corresponding fuzzy goals. 

4.2 CHARACTERIZATION OF MEMBERSHIP 

FUNCTION AND FORMULATION FGP MODELS  

In the decision making context, each level DM is interested in 

optimizing his or her own objective function, the optimal 

solution of each level DM when calculated in isolation would 

be considered as the best solution and the associated objective 

value can be considered as the aspiration level of the 

corresponding fuzzy goal. Let B
1

o
p x(=x be the best solution of 

the p-th level DM. It is quite natural that objective value 

which is equal to or larger than O
α

U
p )F

~
( = 

S∈Χ
max U

αp )x(F
~

, (p = 

1, 2, ..., P) should be absolutely satisfactory to the p-th level 

DM. In general, the individual best solutions are different due 

to the conflicting nature of the objectives. To obtain 

satisfactory solution each level decision maker should give 

some tolerance (relaxation) [24] and the relaxation of decision 

of each level DM depends on the needs, desires and practical 

situations in the decision making situation. 

 Then the fuzzy goals take the form U
αp )x(F

~
 

~
 O

α
U
p )F

~
( , p = 1, 

2, …, P. 

The resulting membership functions for maximization-      

type objective functions (see figure 3) can be defined as 

follows: 

))x(F
~

(μ U
αpp  = 

-
αp

U
αp

o
αp

U
αp

-
αp-

αp
o
αp

-
αp

U
αp

o
αp

U
αp

)F
~

(≤)x(F
~

if,0

)F
~

(≤)x(F
~

≤)F
~

(if,
)F

~
(-)F

~
(

)F
~

(-)x(F
~

)F
~

(≥)x(F
~

if,1

, 

j = 1, 2, ..., P                                                                         (75)    

Here, O
α

U
p )F

~
( = 

S∈Χ
max U

αp )x(F
~

, p = 1, 2, ..., P                      (76)                                                                                                                               

-
α

U
p )F

~
( =

S∈Χ
min U

αp )x(F
~

 , P = 1, 2, ..., P                                           (77)                                                      
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Fig 3:. Membership function for the objective function 

U
αp )x(F

~
 (p = 1, 2, ..., P). 

In the multi-level decision making situation, decision 

deadlock arises as the lower level decision makers are not 

satisfied with the solution of upper level decision makers. In 

order to deal with the deadlock situation, each level DM 

provides some possible relaxation on the bounds of the 

decision vector under his / her control. The cooperation 

between level DMs is useful to obtain the overall satisfactory 

solution.  

Let )ρ,...,ρ,ρ(=ρ
Lin

i

L2
i

L1
i

L
i  and )ρ,...,ρ,ρ(=ρ

Uin

i

2
i

U1
i

U
i , (i = 

1, 2,..., P) be the vectors of preference lower and upper 

bounds on the decision vector ix = (X
1
i , X

2
i ,...,  X

in

i ), 

controlled by the i- th level DM  (i = 1, 2, ..., P). The i-th level 

DM controls 
i

n variables (X
1
i , X

2
i ,...,  X

in

i ) out of n variables. 

Suppose the best solution for the i-th level DM is-

)x...,,x,x(=x •i
P

•i
2

•i
i

•i . The relaxation is given by the i-th 

level decision as follows: 
U
i

*i
ii

L
i

*i
i ρ+x≤x≤ρ-x  and in general, iL

iρ
iU
iρ≠ , i = 1, 2, 

..., P. 

More precisely, preference bounds of the decision variables 

can be presented as follows: 
U
1

*1
11

L
1

*1
1 ρ+x≤x≤ρ-x

, 
U
2

*2
22

L
2

*2
2 ρ+x≤x≤ρ-x

, 

. 

. 

. 
U
P

*P
PP

L
P

*P
P ρ+x≤x≤ρ-x

,
 

. 

Then the problem reduces to ‘ 

max ))x(F
~

(μ U
αpp ,  p = 1, 2, ..., P 

subject to 
U
1

*1
11

L
1

*1
1 ρ+x≤x≤ρ-x

, 
U
2

*2
22

L
2

*2
2 ρ+x≤x≤ρ-x

, 

. 

. 

. 
U
P

*P
PP

L
P

*P
P ρ+x≤x≤ρ-x

, 

and xS.
 

Then the three FGP models due to Pramanik and Roy [14], 

Pramanik [18] and  Pramanik and Dey [23] can be presented 

in the following forms: 

FGP model-1:  

min                                                                              (78) 

subject to 

 ))x(F
~

(μ U
αpp  + d -

p =1, p = 1, 2, .;.., P 

  d -
p , p = 1, 2, .;.., P 

d -
p 0≥ , p = 1, 2, .;.., P 

d -
p 1≤ , p = 1, 2, .;.., P 

U
1

*1
11

L
1

*1
1 ρ+x≤x≤ρ-x , 

U
2

*2
22

L
2

*2
2 ρ+x≤x≤ρ-x , 

. 

. 

. 
U
P

*P
PP

L
P

*P
P ρ+x≤x≤ρ-x ,  

 xS.
 

FGP model-2:  

min  ∑ dwmin=ξ
P

1=p
pp                                               (79) 

subject to  

d -
p 0≥ , p = 1, 2, .;.., P 

d -
p 1≤ , p = 1, 2, .;.., P 

U
1

*1
11

L
1

*1
1 ρ+x≤x≤ρ-x , 

U
2

*2
22

L
2

*2
2 ρ+x≤x≤ρ-x , 

. 

. 

. 
U
P

*P
PP

L
P

*P
P ρ+x≤x≤ρ-x ,  

 xS. 

Here, 
-
αp

o
αp

p
)F

~
(-)F

~
(

1
=w  

FGP MODEL-3:  

∑d
P

1
min=ζmin

P

1=p
p                                                           (80) 

4. 3 Euclidean Distance 
Yu [25] studied the concept of utopia point (the ideal-point) 

and the use the distance function for group decision analysis. 

Pramanik and Roy [14] used Euclidean distance to identify 

which FGP model provides best compromise optimal solution. 

Pramanik and Roy [19] also used Euclidean distance function 

to select appropriate priority structure in application of fuzzy 

goal programming technique to transportation problems. 

Generally, it is expected that proposed three FGP models offer 

three different solutions. Euclidean distance function is used 

to identify which FGP model provides better solution than 

other two FGP models.   In the FGP formulation, since the 

aspired level of each of the membership function goals is 

unity, the point consisting of the highest membership value of 

each of the goals would represent the ideal point. The 

Euclidean distance [26] can be defined as follows: 

2/1

2p

1=j
jj2 ]∑ ))}x(z(μ-1{[=L                         (81) 

The solution having minimum value of L2 reflects the best 

compromise solution.
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5. NUMERICAL EXAMPLE  
Consider the following MLPP with fuzzy parameters. 

[First Level] 

1x
max 1

~

F (x) = 
~

3 x1 + 
~

1 x2 +
~

3 x3 

= (2, 3, 4) x1+ (1, 2, 3) x2 +((2, 3, 4) x3 

 [Second Level] 

2x
max 2

~

F (x) = 
~

4 x1 + x2 - 
~

3 x3 

(3, 4, 5) x1 +x2 – (2, 3, 4) x3 

 [Third Level] 

3x
max 3

~

F (x) = 
~

9 x1 -
~

5  x2 + 
~

5 x3 

= (7, 9,11)x1-(3, 5, 7) x2 + (4, 5, 6)x3 

Subject to 
~

1 x1 +x2 + x3 
~

4 , 

x1 -x2 - 
~

1 x3 
~

2 , 

x1 - 
~

1 x2 - x3 
~

1 , 
~

1- x1 -x2 + x3 
~

2 , 

x1 ≥0,  x2 ≥0, x3 ≥0. 

Here, all the fuzzy numbers are assumed to be triangular 

fuzzy numbers and are presented by  

)2,1,5(.=1
~

, )6,5,4(=4
~

, )3,2,1(=2
~

 

By replacing the fuzzy coefficient by their α -cuts, the MLPP 

can be represented as given below. 

1x
max U

α1 )x(F
~

= (4 - α ) x1 + (3- α ) x2 + (4 - α ) x3, 

2x
max U

α2 )x(F
~

= (5 - α ) x1 + x2 - (4 - α ) x3, 

3x
max U

α3 )x(F
~

= (11 - 2 α ) x1 - (7-2 α ) x2 + (6 - α ) x3, 

 

Subject to 

(.5+.5 α )x1 +  x2 + x3 ≤6 - α , 

 x1 - x2 - (.5+.5 α )x3 ≤3 - α , 

x1 – (2- α )x2 - x3 ≥.5 + .5 α , 

-(.5+.5 α ) x1 -x2 +) x3  ≤3 - α , 

x1, x2, x3   0. 

 For construction of membership function for specified value 

of α = 0.5 the upper and lower tolerance limits can be 

determined as follows:
  

o
α1 )F

~
( =

 S∈Χ
max U

α1 )x(F
~

                                    
 

       = 
S∈Χ

max  (4 - α ) x1 + (3- α ) x2 + (4 - α ) x3  

        = 22.96                                ;
  

-
α1)F

~
( =

S∈Χ
min U

α1 )x(F
~

  

      = 
S∈Χ

min (4 - α ) x1 + (3- α ) x2 + (4 - α ) x3  

       = 2.625 

Similarly, for α = 0.5, 
o
α2 )F

~
( =22.64286, 

-
α2 )F

~
(  =3.375, 

o
α3 )F

~
( = 55.16, = 

-
α3 )F

~
( =7.5 

Level decision maker’s preference bounds are considered as 

follows:  

2 5≤x≤ 1 ,             ( 1st level DM’s preference bounds) 

3≤x≤ 1.25 2 ,      ( 2nd  level DM’s preference bounds) 

5.2≤x≤ 0.9 3        ( 3rd  level DM’s preference bounds) 

Obtained solutions are presented in the table 1. 

Table 1. Comparison between compromise optimal 

solutions obtained from the proposed FGP models 

Proposed FGP 

Model-1 

Proposed FGP 

Model-2) 

Proposed FGP 

Model-3 

•λ  = 

0.2769618 

•ξ =0.02073882 •ζ =0.1899187 

x1 = 4.44 x1 = 4.442857            x1 = 4.442857            

x2 = 1.25 x2 = 1.267857 x2 = 1.267857 

x3 = 0.92 x3 = 0. 9 x3 = 0. 9 

F1 = 21.885 F1 = 21.86964 F1 = 21.86964 

F2 =18.01 F2 = 18.11071 F2 = 18.11071 

F3 = 41.96 F3 = 41.77143 F3 = 41.77143 

1Fμ = 0.9471 
1F

μ = 0.9463803  
1F

μ = 0.9463803  

2Fμ = 0.7596 
2Fμ = 0.7647821 

2Fμ = 0.7647821 

3Fμ = 0.7230 
3Fμ =0.7190816 

3Fμ =0.7190816 

L2 = 0.37056 L2 = 0.3702941 L2 = 0.3702941 

                              

Note: Comparing Euclidean distance (see Fig 4), we see that 

FGP Model2 and FGP Model 3 provide the better optimal 

compromise solution than FGP Model1.  

 

 

Fig 4: Comparison of Euclidean distance 

6. CONCLUSION 
In the paper, MLPP with fuzzy parameters is presented. The 

concept of α -cut and goal programming are used to 

formulate the proposed fuzzy goal programming models. 

Three fuzzy goal programming models are developed and 

distance function is used to identify the best compromise 

solution. Numerical example is provided to demonstrate the 

proposed fuzzy goal programming models of MLPP with 

fuzzy parameters.  

In terms of future research, the proposed approach can be 

extended to decentralized multi objective multi - level linear 

programming problem with fuzzy parameters. In addition, we 

will focus our future research on other relationships, such as 

0.37056 
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41 
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41 
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0.3706 

FGP model-
1 

FGP model-
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cooperative and semi-cooperative situations [27], among 

multiple followers in decentralized MLPP with fuzzy 

parameters. 
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