
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

24

Magnetic Bubble Sort Algorithm

Obed Appiah

University of Energy and Natural Resources
Sunyani, Ghana

Ezekiel Mensah Martey
Christ Apostolic University College

Kumasi, Ghana

ABSTRACT
Sorting a list of items is one basic task in many applications

used on the computer. The term describes the arrangement of a

set of items in a certain order to make analysis and processing

very easy. Numerous sorting algorithms exist however its

efficiency and memory space consumption become a major

issue when it has to be implemented.Essentially, programmers

select sort algorithms that perform well even as the size of the

input data increases. In this study, a new algorithm, Magnetic

Bubble Sort Algorithm (MBS) is proposed. The MBS is an

enhancement of the bubble sort algorithm which offers a far

better performance in the case where redundancies occur in the

list. The run time of the MBS depends on the number of distinct

values that are found in the list to be sorted.The improved

bubble sort algorithm is very simple to analyse, considering the

fact that the time complexity of the algorithm depends on two

main factors that is the size of list (n) and number of distinct

values in the list.

General Terms
Algorithms, Sorting Algorithms, Bubble Sort, Exchange Sort

Keywords
Algorithms, sorting algorithms, bubble sort, exchange sort,

redundancies in dataset

1. INTRODUCTION
One of the basic problems of Computer Science is sorting a list

of items.This is the arrangement of a set of items either in

increasing or decreasing order. The formal definition of the

sorting problem is as follows:

Input: A sequence having n numbers in some random order

(a1, a2, a3, ….. an)

Output: A permutation (a’1, a’2, a’3, …..a’n) of the input

sequence such that

a’1 ≤ a’2 ≤ a’3 ≤ ….. a’n

For instance, if the given input of numbers is 59, 41, 31, 41, 26,

58, then the output sequencereturned by a sorting algorithm will

be 26, 31, 41, 41, 58, 59 [2].

Sorting is considered as a fundamental operation in Computer

Science and various algorithms have been proposed to improve

the sorting process. All sorting algorithms seek to improve the

running time or the space used by sorting algorithm to quickly

and efficiently sort a given list.One of the main reasons for

sorting list is to generally facilitate the process of searching and

in today’s world, timely search for information is critical for the

survival of institutions. Binary search which is one of the

fastest search algorithms requires that the list from which the

key to be searched must be sorted before the search could be

done accurately at all times. Data is generally sorted to

facilitate the process of searching. As a result of its vital or key

role in computing, several techniques for sorting have been

proposed.

There are several sorting algorithms today.Among them are

bubble sort, insertion sort, selection sort, merge sort, quick sort,

heap sort, radix sort, counting sort, and bucket sort. Other

algorithms are mostly enhancement of one of these algorithms

or sometimes hybrid of two or more of the existing algorithm.

According to Jadoon et al, 2011, there is no ideal sorting

algorithm for all types or kinds of dataset but the selection of a

particular type or kind may depend on one of the following

conditions

 The size of the list (number of elements to be sorted).

 The extent up to which the given input sequence is

already sorted.

 The probable constraints on the given input values.

 The system architecture on which the sorting

operation will be performed.

 The type of storage devices to be used: main memory

or disks[5].

Almost all the available sorting algorithms can be categorized

into two groups based on theirdifficulty. The complexity of an

algorithm and its relative effectiveness are directly correlated

[3,6]. Astandardized notation i.e. Big O(n), is used todescribe

the complexity of an algorithm. In thisnotation, the O represents

the complexity of the algorithm and (n) represents the size of

the inputdata values. The two groups of sorting algorithms have

two main run time average cases and they are O(n2), which

includes the bubble, insertion,selection sort and O(nlogn) which

includes the merge, heap & quick sort.

1.1 Bubble Sort Algorithm
Bubble sort, is an example of an exchange sort and sometimes

referred to as sinking sort, is a simple sorting algorithm that

repeatedly steps through the list to be sorted, compares each

pair of adjacent items and swaps them if they are in the wrong

order. The pass through the list is repeated until no swaps are

needed, which indicates that the list is sorted. The number of

repetition required is usually proportional to the size of the list,

that is, the greater the number of items to be sorted, the higher

the number of passes required for the sorting to be completed

successfully. The algorithm, which is a comparison sort, is

named for the way smaller elements "bubble" to the top of the

list. Although the algorithm is simple, it is too slow and

impractical for most problems even when compared to insertion

sort[9]. It can be practical if the input is usually in sort order or

relatively small, but could be worst when the list is already

sorted in the reversed order as the required one.

Donald Knuth, in his famous book The Art of Computer

Programming, concluded that "the bubble sort seems to have

nothing to recommend it, except a catchy name and the fact that

it leads to some interesting theoretical problems", some of

which he then discussed in his book[9].

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

25

1.2 Algorithm: Bubble Sort(a[], n)
Here a is the unsorted input list and nis the size of the list or

number of items in the list. After completion of the algorithm

the array will become sorted.

n length(A)

repeat for j = 1 to n-1

 repeat for i 1 to n-1

 if A[i] > A[i+1]

 //swap(A[i], A[i+1])

 tempA[i]

 A[i] A[i+1]

 A[i+1] temp

Performance Analysis
Bubble sort is considered to be the most inefficient algorithm

for the reason that it has a worst case and average case

complexity of O(n2), where n is the number of elements to be

sorted. Likewise some other simple sorting methods such as

insertion sort and selection sort have the same average case

complexity of O(n2) however the efficiency of bubble sort is

comparatively lesser than these algorithms. Hence

thesecomputational complexity shows that bubble sort should

not be considered over a large amount of data items as

commented by Don Knuth [9].Moreover, there is a better way

of implementing the bubble sort described in the modified

bubble sort. It suggests a few changes to the standard bubble

sort which includes a flag that is set if an exchange is made

after an entire pass over the array. If no exchange is made then

it certainly show that the array is already in the desired order.

With such modification to the bubble sort, the algorithm does

not actually perform any operations on data, but simply

evaluate the content of the list and conclude whether data is

sorted or not. Which gives the best case complexity of O(n) if

the array is already sorted. Another modification of the bubble

sort is the bidirectional Bubble Sort or Cocktail Sort which sorts

the list in both directions each pass through the list. This

process slightly reduces the number of comparisons. Moreover

Batcher [1] proposed a method whose running time is better

than both straight bubble sort and Bidirectional Bubble sort.

Advantages and Disadvantages Bubble Soft Algorithm

Even though bubble sort is considered to be the most inefficient

algorithm, it has some advantage over other algorithms such as

simplicity, ease of implementation, and the ability to identify

that a list is already sorted if it is efficiently implemented. On

the other hand the drawbacks of bubble sort include code

inefficient, inappropriate for large volumes of data elements and

repetitive problems as well[9].

Table 1.0 shows the time complexity of the algorithm in three

different situation of the input list.

Table 1.0: Time Complexity of Bubble Sort Algorithm

Best case Worst case Average case

O(n2) O(n2) O(n2)

2. CONCEPT OF MAGNETIZED BUBBLE

SORT ALGORITHM
Generally, large dataset will contain a couple of repetitions.

For example sorting the ages of citizens of a country with

population of about 15 million will contain a lot of repetitions.

If age ranges between 0 through 100 then each age value could

have a frequency of about 150,000 (15,000,000/100). In terms

of population, more than half will be below the ages of

fifty(50).Another example will be sorting the heights of a given

population of a country. The existingbubble sort will execute

such list in the order ofO(n2) in the worst case scenario, but the

proposed algorithm can do better. The main concept of the

proposed algorithm is to evaluate the data in the list and take

advantage of the number of distinct values in the list in order to

complete the sorting faster.The proposed algorithm, thus, takes

advantage of possible redundancies in the given list to sort and

thereby preventing repetition of comparison of values of the

same magnitude.

The Counting sort is one popular algorithm that attempts to sort

by considering redundancies in the given list as well. The

algorithm is an integer sorting algorithm with linear running

time complexity. Like radix sort, counting sort also works

based on the keys with range between 0and n, where n is the

maximum value in the input array. Counting sort assumes that

the input consists of an integer values and the range of values

from the minimum and maximum is small. It works by

countingthe number of occurrences of each element in the input

usually called keys and store this information into another array

say C. Finally, it determined the positionof each key value in

the final sorted array by using some arithmetic operations on

the data in array C. It is not a comparison sort and it preserves

the relative orderof an element with equal keys. Counting sort is

often used as a subroutine in radix sort [7]. Its main challenges

are that it is used for integer values only and also the range of

values must be small for effective sorting. For example if you

are to sort 10 values with least been 0 and maximum of

2,000,000 then the sorting may require memory space of

2,000,000 in order to maintain array C. This generally

increases the space needed by the algorithm and the run time

may also increase as result of large C size. With such situation,

the bubble sort may finish before the Counting sort. It must be

noted that it works very fast and in linear time complexity O(n

+ k) when the range (k) is very small irrespective of the size (n)

and the values are all integers.

Another algorithm that tries to takes advantage of redundancies

in a given list to effectively sort data is the Improved Selection

Sort Algorithm(ISSA). ISSA however sorts efficiently whether

values are integers or not. The algorithm’s performance is

based on the number of distinct values in the given set [4].

Here the sorting does not depend on whether the content of the

list are integer values or not. The ISSA is quite robust as

compared to the Counting sort, but the latter works far better

than the ISSA if all values to be sorted are integers. The ISSA

can perform in linear time complexity when the number of

distinct values in a given list is very small, but has a worst case

of O(n2) when the list does not contain duplications or very

small number of duplicated values. Another challenge of the

ISSA is that it required a queue of size n in order to work at all

times. This makes the space complexity of the algorithm to be

O(2n). In situation where there is a limited memory space, the

algorithm may not work efficiently and also if the queue is not

managed well may lead to overflow.

2.1 Magnetic Bubble Sort
The MBS implements a similar concept as that of the ISSA, by

looking for redundancies and improving the time required to

sort a list. Here the algorithm does not required a queue or

stack or any extra memory in order to sort the list, meaning that

when it comes to space complexity it is far better than ISSA

especially with large dataset, however the time needed to sort

can usually be estimated to be the same as ISSA

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

26

The MBS works primarily like the bubble sort, but this time

instead of comparing adjacent values and swapping them in the

right order a block of values (subset of the given list) is

introduced in the list. The comparison this time is done

between the block and an adjacent value. The following

principles are generally considered.

1. A block (A continuous subset of the given list to be

sort)

2. All members of the block must be of the same value.

3. The block can expand by attracting items or elements

of the same value to its self.

4. The least number of values to be in the block must be

1 and the maximum equal to n.

5. Block can expand when adjacent value is equal to the

values in the block. That is the adjacent value of

equal magnitude is attracted to the block, hence the

magnetic effect established.

6. The magnetic bar (the block) is dropped or

demagnetised and the new one made whenever the

values in the set are not in place with the adjacent

one.

7. Block is simply maintained with 2 integer variables

(pointers) that points to the start and end of the set.

The end expands to accommodate new values of same

magnitude

8. In situations where a block has to be swapped with

the adjacent value, the first item in the block and the

adjacent value are simply swapped. After this

operation, it will then appear as if the whole block has

been swapped with just a single data. The two

pointers of the block or magnetic are adjusted

accordingly

Example of Magnetic Bubble Sort (Ascending Order)

Block set is presented in square bracket []

List – A[n]

Initial List

A 2 2 1 5 2 5 4 4 5 5

1st Pass

{[2], 2, 1, 5, 2, 5, 4, 4, 5, 5}

{[2, 2], 1, 5, 2, 5, 4, 4, 5, 5}

{1, [2, 2], 5, 2, 5, 4, 4, 5, 5}

{1, 2, 2, [5], 2, 5, 4, 4, 5, 5}

{1, 2, 2, 2, [5], 5, 4, 4, 5, 5}

{1, 2, 2, 2, [5, 5], 4, 4, 5, 5}

{1, 2, 2, 2, 4, [5, 5], 4, 5, 5}

{1, 2, 2, 2, 4, 4, [5, 5], 5, 5}

{1, 2, 2, 2, 4, 4, [5, 5, 5], 5}

{1, 2, 2, 2, 4, 4, [5, 5, 5, 5]}

At the end of the first pass, 4 items or elements are already in

their correct places. The subsequence passes will only will

have to deal with six(6) element instead of nine(9) if it had been

the traditional bubble sort.

2nd Pass

{[1], 2, 2, 2, 4, 4, 5, 5, 5, 5}

{1, [2], 2, 2, 4, 4, 5, 5, 5, 5}

{1, [2, 2], 2, 4, 4, 5, 5, 5, 5}

{1, [2, 2, 2], 4, 4, 5, 5, 5, 5}

{1, 2, 2, 2, [4], 4, 5, 5, 5, 5}

{1, 2, 2, 2, [4, 4], 5, 5, 5, 5}

3rd Pass

{[1], 2, 2, 2, 4, 4, 5, 5, 5, 5}

{1, [2], 2, 2, 4, 4, 5, 5, 5, 5}

{1, [2, 2], 2, 4, 4, 5, 5, 5, 5}

{1, [2, 2, 2], 4, 4, 5, 5, 5, 5}

4th Pass

{[1], 2, 2, 2, 4, 4, 5, 5, 5, 5}

Sorted List

{1, 2, 2, 2, 4, 4, 5, 5, 5, 5}

The list can be sorted with just four passes, but will require at

least nine(9) by the traditional bubble sort.

The Magnetic Bubble Sort Algorithm (MBS) is content

sensitive, in that the nature of data distribution of the list will

greatly influence the run time of the algorithm. The run time of

the MBS depends on the number of distinct values that are

found in the list to be sorted. If the number of distinct values is

big or equal to n, then the run time of the algorithm can be

approximated as O(n2). However, if the number is very small,

the algorithm completes the sorting in the order ofO(n).

Algorithm in implementation in Python

print("\n\nProposed Improved Bubble Sort Algorithm");

#B is the list of values to be sorted

#Let q be the start pointer of the block or magnet

#Let r be the rear pointer or end pointer of the block or magnet.

#Note, element are attracted or added to the block at the rear

#end of the block.

#Let x be a variable to determine or point to the end of the

#unsorted part of the list been sorted. This does not change

#with a common difference as seen in the traditional bubble,

#but it is affected by the size of the block that is moved to the

#end of the unsorted portion during each pass.

i=0;

n=20;

x = n;

whilei<x:

 q=0;

 r=0;

 j=0;

 while j<x-1:

 if B[r]>B[j+1]:

 temp = B[q];

 B[q]=B[j+1];

 B[j+1]=temp;

 r = r+1;

 q = q+1;

 elif B[r]==B[j+1]:

 r=j+1;

 else:

 r=j+1;

 q=j+1;

 j=j+1;

 m=(r-q)+1;

 x=x-m;

 i=i+1;

 print("-"*30);

 print (B);

3. MAGNETIC BUBBLE SORT

ALGORITHM
The improvedbubble sort algorithm is very simple to analyse,

considering the fact that the time complexity or run time of the

algorithm depends on two main factors.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

27

1. Size of list (n)

2. Number of distinct values in the list. dV

Run Time = O(n.dV)

Table 1.0 shows the runtime of a set of n values with different

number of distinct values.

Table 1.0: Run time of Magnetic Bubble Sort Algorithm

(MBSA)

Number of

Distinct Values

Run Time Big-O

1 T = n O(n)

2 T= 2n O(n)

3 T=3n O(n)

...

n-2 T = (n-2)n O(n2)

N T = n2 O(n2)

Figure1:illustrates the relationship between distinct values

in the list and the running time of the MBSA.

Fig 1: Running time of list of size (n) and number of distinct

values using MBSAlgorithm.The performance of the

improvedbubble sort could also be enhanced by introducing the

FLAG concept in order to terminate sorting when the list is

already sorted.

Figure 2: Number of distinct values and run time

complexity of MBSA

Fig 2.0 illustrates the relationship between the number of

distinct values in a list and the time needed to sort it. The

number is illustrated as a ratio of the size of the list (n). If the

number of distinct value is half the size of the list, then the

algorithm will take about half the time the old bubble sort

algorithm takes. From figure 2.0, as the number of distinct

values decreases, the running time for the sorting also

decreases.

Decreasing distinct values:

4. ANALYSIS OF MBAS AND BUBBLE

SORTWITH ASAMPLE DATASET
A given set of data of size 1000 wasfinally used to analyse the

performances of the proposed sort algorithmand the traditional

bubble sort. The number of redundancies in the set was

quantified in terms of percentages and 11 different sets of

valueswere used to test the algorithms. The data redundancies

in set 1 through 11were 0%, 10%, 20%, 30%, 40%,50%, 60%,

70%, 80%, 90%, 100%. Table 2.0illustrates the run times for

the various algorithms on the various categories of the dataset.

Table 2. Estimated run times of Bubble Sort and Magnetic

Bubble Sort Algorithms when input dataset were not sorted

Redundancies

in

Percentages

Old

Bubble

Sort

Magnetic

Bubble

Sort

'0% 499500 499500

'10% 499500 449550

'20% 499500 399600

'30% 499500 349650

n

n/2

n/4

n/8
n/16
n/32 0

5000

10000

15000

20000

25000

Number of distinct values and worst
case run time of ISSA

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

28

'40% 499500 299700

'50% 499500 249750

'60% 499500 199800

'70% 499500 149850

'80% 499500 99900

'90% 499500 49950

'100% 499500 1000

Figure 3.0: Estimated run times of Magnetic Bubble Sort

and Old Bubble Sort algorithms when input dataset were

not sorted

The observation was made that as the number of redundancies

in the list increases, the run time of the proposed algorithm

works far better that the traditional or old bubble sort as well

ass the cocktail or bidirectional bubble sort algorithm.

5. CONCLUSION
This paper proposed a new bubble sort algorithm which

performs better than the existingor the old bubble sort algorithm

and in most cases may have a run time in order of O(n) which is

ideal for sorting relatively large set of data. The strength of the

algorithm depends on the distinct values in the list and where

there are more of such redundancies or repetitions in the list, it

performs better than the existingbubble sort algorithm and also

a couple of the optimized bubble sort. In term of space

complexity, the algorithm is better than the ISSA which require

at least (2n) memory space before the algorithm will work even

though its run time performance is almost the same as the

proposed bubble sot algorithm. In situation where the number

of distinct values is very small, the algorithm may perform

better than even the quick sortand merge sort algorithm which

have running time of O(nlogn).

6. REFERENCES
[1] Batcher, K. E., Sorting networks and their applications,

Spring Joint Computer Conference, AFIPS Proc, 1968

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,

C. 2001. Introduction to Algorithms. MIT Press.

Cambridge. MA. 2nd edition. 2001

[3] “Design and Analysis of Hybrid Selection Sort

Algorithm”.International Journal of Applied Research and

Studies (iJARS) ISSN: 2278-9480 Volume 2, Issue 7

(July- 2013) www.ijars.in

[4] Hayfron-Acquah J. B., Appiah O., Riverson K., Improved

Selection Sort Algorithm, International Journal of

Computer Applications 01/2015

[5] Jadoon, S., Solehria, S. F., Qayum, M., “Optimized

Selection Sort Algorithm is faster than Insertion Sort

Algorithm: a Comparative Study” International Journal of

Electrical & Computer Sciences IJECS-IJENS Vol: 11 No:

02, 2011

[6] Kapur, E., Kumar, P. and Gupta, S., “Proposal of a two

way sorting algorithm and performance comparison with

existing algorithms”. International Journal of Computer

Science, Engineering and Applications (IJCSEA) Vol.2,

No.3, June 2012

[7] Karunanithi A. K., A Survey, Discussion and Comparison

of Sorting Algorithms, June 2014

[8] Khairullah, M. “Enhancing Worst Sorting Algorithms”.

International Journal of Advanced Science and Technology

Vol. 56, July, 2013

[9] Knuth, D. The Art of Computer Programming, Volume 3:

Sorting and Searching, Second Edition. Addison-Wesley,

1998. ISBN 0-201-89685-0.

0

100000

200000

300000

400000

500000

600000

'0
%

'1
0

%

'2
0

%

'3
0

%

'4
0

%

'5
0

%

'6
0

%

'7
0

%

'8
0

%

'9
0

%

'1
0

0
%

Old Bubble Sort Magnetic Bubble Sort

IJCATM : www.ijcaonline.org

