
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

10

MQ Sort an Innovative Algorithm using Quick Sort and

Merge Sort

Renu

R N College of Engg. & Technology,
Panipat

Manisha
Assistant Professor

RN College of Engg. & Technology,
Panipat

ABSTRACT

Sorting is a commonly used operation in computer science. In

addition to its main job of arranging lists or arrays in

sequence, sorting is often also required to facilitate some other

operation such as searching, merging and normalization or

used as an intermediate operation in other operations. A

sorting algorithm consists of comparison, swap, and

assignment operations[1-3]. There are several simple and

complex sorting algorithms that are being used in practical

life as well as in computation such as Quick sort, Bubble sort,

Merge sort, Bucket sort, Heap sort, Radix sort etc. But the

application of these algorithms depends on the problem

statement. This paper introduces MQ sort which combines the

advantages of quick sort and Merge sort. The comparative

analysis of performance and complexity of MQ sort is done

against Quick sort and Merge sort. MQ sort significantly

reduces complexity and provides better performance than

Quick sort, Merge sort.

Keywords

Sorting, Merge sort, MQ sort, Bubble sort, Insertion sort,

Time Complexity, Space Complexity.

1. INTRODUCTION
Algorithms have a key role in computer science. As we know

that computer works on instructions and an algorithm is

simply a definite sequence of instruction that we use to

perform any task on computer. So informally an algorithm is a

well defined procedure that is used to solve a computational

problem. There are different categories of algorithms;

different algorithms for different problems. Sorting algorithms

are one such category. Sorting algorithms are used to arrange

the given data into a logical sequence. Sorting algorithms

usually work on an array or a list of elements which can be

alphabets or numerals. There are several algorithms available

for sorting some of which have quite simple working while

others have complex working. These algorithms are problem

specific means a single algorithm does work best in all

situation[7,8,10].

For deciding which algorithm to use when we have to analyse

the situation at hand. For example one algorithm gives

optimal performance when the number of elements in the list

is small while when the number of elements is large the

algorithm may become unstable or may not provide optimal

results or we can say its performance degrades. Likewise

some algorithms work well on floating point numbers while

others may have flawed performance. Other factors also

contribute for selection or rejection of an algorithm for a

specific problem like programming effort which increases

with complexity of the algorithm, memory space available

and if the data exists in main memory or an external device.

These factors deduce that sorting algorithms are problem

specific. But there is a direct relation between the complexity

of an algorithm and its relative effectiveness [6,11].

Formally defining a sorting algorithm is a procedure that

accepts a random sequence of numbers or any other data

which can be arranged in a definite logical sequence as input;

processes this input by rearranging these random elements in

an order like ascending or descending and provides the output.

For example if the list consist of numerical data such as

Input: 22,35,19,55,12,66

Then the output would be: 12,19,22,35,55,66

12<19<22<35<55<66(given that the input had be arranged

into ascending order)

OR

The output will be: 66<55<35<22<19<12

Similarly sorting algorithm can be used to order alphabetical

data into a lexicographical order.

Sorting is a fundamental data structure operation in computer

science. Sorting is used as intermediate step in many other

operations. Sorting facilitates other operations such as

searching and selecting largest or smallest item in the list.

Sorting usually consist the following operations:

 Comparing two data items

 Swapping data items to get them to their correct

position

For selecting a sorting algorithm for a particular problem[4]

we have to consider various factors such as:

 Size of the array or list

 Memory constraints

 Condition of the input data

o Completely sorted

o Inversely sorted

o Partially sorted

o Almost sorted

o Random

There are many categories in which we can divide the sorting

algorithms. One such category is called internal or external

sort depending on whether the data is stored in internal or

external memory. Another way to categorize sorting

algorithms are on based on their complexities. The two groups

of sorting algorithms based on complexities are O(n2), which

includes the bubble, insertion, selection sort and O(nlogn)

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

11

which includes the merge, heap & quick sort.

The paper is organized into following sections. In section 2,

related work is discussed. In section 3, the working of the

proposed algorithm is discussed. The complexity of the

algorithm is also discussed in this section. Next section i.e. 4,

discusses the comparative analysis of the proposed algorithm

with the existing ones. The last section gives a conclusions

about the performance and hence, the results achieved by the

proposed algorithm.

2. RELATED WORK

2.1 Quick Sort
Quick Sort is one of the most efficient internal sorting

algorithm which is based upon the Divide and Conquer

approach [7] and is the method of choice for many application

because it uses less resources as compare to other sorting

algorithm. To sort an array, it picks the pivot element and

partitions the array into two parts, placing small elements on

the left and large elements on the right, and then recursively

sorts the two sub-arrays and place the pivot element at its

correct position.

 There are many different versions of quick Sort that pick

pivot in different ways.

1. Always pick leftmost element as pivot.

2. Always pick rightmost element as pivot

3. Pick a random element as pivot.

4. Pick median element as pivot.

The key process in quick Sort is partition() . work of partitions

is, given an array and an element x of array as pivot, put x at

its correct position in sorted array and place all smaller

elements than x before pivot element, and put all greater

elements than x after x. which should be done in linear

time[5,9,12,14].

2.1.1 Partition Algorithm
The logic is simple, we start from the leftmost element and

keep track of index of smaller (or equal to) elements as i.

While traversing, if we find a smaller element, we exchange

current element with arr[i]. Otherwise we ignore current

element.

Pseudo code: Quick Sort()

/* This function choose rightmost element as pivot. */

/* array[] --> Array to be sorted, l --> Starting index, h -->

Ending index */

int partition (int array[], int l, int h)

{

 int x = array[h]; // taking last element as pivot

 int small = (l - 1); // Index of smaller element

 for (int j = l; j <= h- 1; j++)

 {

 // If current element is smaller than or equal to pivot

element

 if (array[j] <= x)

 {

 small++; // increment index of smaller element in

array

 swap(&array[small], &array[j]); // Swap current

element with small index

 }

 }

 swap(&array[small + 1], &array[h]);

 return (small + 1);

}

void quickSort(int array[], int l, int h)

{

 if (l < h)

 {

 int pivot = partition(array, l, h); /* Partitioning pivot

index */

 quickSort(array, l, pivot - 1);

 quickSort(array, pivot + 1, h);

 }

}

Analysis:

Time taken by QuickSort in general can be written as

following.

T(n) = T(k) + T(n-k-1) + (n)

The first two terms are for two recursive calls, the last term is

for the partition process. k is the number of elements which

are smaller than pivot.

The time taken by QuickSort depends upon the input array

and partition strategy.

Following are three cases.

2.1.2 Worst Case
The worst case occurs when the partition process always picks

greatest or smallest element as pivot. If we consider above

partition strategy where last element is always picked as pivot,

the worst case would occur when the array is already sorted in

increasing or decreasing order. Following is recurrence for

worst case.

T(n) = T(0) + T(n-1) + (n)

which is equivalent to

T(n) = T(n-1) + (n)

The solution of above recurrence is (n2).

Solution of above recurrence is also O(nLogn)

Although the worst case time complexity of QuickSort is

O(n2) which is more than many other sorting algorithms like

Merge Sort and Heap Sort, QuickSort is faster in practice,

because its inner loop can be efficiently implemented on most

architectures, and in most real-world data. QuickSort can be

implemented in different ways by changing the choice of

pivot, so that the worst case rarely occurs for a given type of

data. However, merge sort is generally considered better when

data is huge and stored in external storage.

2.1.3 Time complexity
The time complexity of quicksort is O(n log n) in best and

average case but in worst case(in already sorted array) is up to

O(n2).

So the performance falls on already sorted/almost sorted lists

if the pivot is not randomized.

2.1.4 Space complexity
Space complexity of quicksort is O(log n), taking into account

the stack space used for recursion.

2.2 Merge Sort
MergeSort is a external sort which is also use Divide and

Conquer approach like Quick Sort algorithm. The main

http://geeksquiz.com/merge-sort/
http://geeksquiz.com/heap-sort/

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

12

difference between these two sort is Quick Sort is internal sort

as Merge sort is external sorting. A Merge Sort Works as

Follows:-

1. It divides input array in two halves using merge

sort ,then calls itself for the two halves and then

merges the two sorted halves.

2. The merge() function is used for merging two

halves. The merge(array, l, m, r) is key process that

assumes that array[l..m] and array[m+1..r] are

sorted and merges the two sorted sub-arrays into

one.

The following diagram from wikipedia shows the complete

merge sort process for an example array {38, 27, 43, 3, 9, 82,

10}. If we take a closer look at the diagram, we can see that

the array is recursively divided in two halves till the size

becomes 1. Once the size becomes 1, the merge processes

comes into action and starts merging arrays back till the

complete array is merged [13, 15].

Fig 1: Diagram showing working of merge sort

2.2.1 Pseudo Code: Merge Sort()
 /* Function to merge the two haves array[l..m] and

array[m+1..r] of array array[] */

void merge(int array[], int l, int m, int r)

{

 int i, j, k;

 int n1 = m - l + 1; // no of elements in first temp subarray

 int n2 = r - m; // no of elements in second temp subarray

 /* create temp arrays */

 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */

 for(i = 0; i < n1; i++)

 L[i] = array[l + i];

 for(j = 0; j < n2; j++)

 R[j] = array[m + 1+ j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0;

 j = 0;

 k = l;

 while (i < n1 && j < n2)

 {

 if (L[i] <= R[j])

 {

 array[k] = L[i];

 i++;

 }

 else

 {

 array[k] = R[j];

 j++;

 }

 k++;

 }

 /* Copy the remaining elements of L[], if there are any */

 while (i < n1)

 {

 array[k] = L[i];

 i++;

 k++;

 }

 /* Copy the remaining elements of R[], if there are any */

 while (j < n2)

 {

 array[k] = R[j];

 j++;

 k++;

 }

}

/* l is for left index and r is right index of the sub-array

 of arr to be sorted */

void mergeSort(int array[], int l, int r)

{

 if (l < r)

 {

 int m = l+(r-l)/2;

 mergeSort(array, l, m);

 mergeSort(array, m+1, r);

 merge(array, l, m, r);

 }

}

2.2.2 ANALYSIS Time and Space Complexity
Given two sorted sub-arrays, together having a total of n

elements, the merge operation uses an auxiliary array of size

n to merge them together into a single sorted array in linear

time i.e. O(n) in Big Oh notation.
 Mergesort operation works as follows. Given an array of

elements A, it sorts the left and right sub-arrays using

mergesort itself, and then merges them together into one

single sorted array. The base case is a sub-array of size 1,

which is implicitly sorted.

If we analyze the time complexity of mergesort, we will see it

is O(n log n) in all cases. That is, the time taken to sort n

elements grows proportionally to n log n. Merge sort also

needs an extra array of size n for the merge operation. So its

space complexity is O(n).

2.2.3 Auxiliary Space: O(n)

2.2.4 Algorithmic Paradigm: Divide and Conquer

http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

13

3. PROPOSED ALGORITHM: MQ SORT
We introduce a new algorithm MQ Sort to solve the problem

by divide and conquer strategy, that is, in each partition one

element pivot has located in correct position, which will be

recursively executed until atmost 10 element left in array.

Then merge sort will be called to sort the subarray of atmost

10 element. The theoretical evaluation shows Quick Sort

takes time in order of O(n2) in worst case as Bubble Sort,

Insertion Sort, Selection Sort, and takes time in order of

O(nlogn) in best case as Merge Sort in both best and worst

case. We can make MQ Sort pursuit best case by combining

Quick Sort and Merge Sort. so that we can decrease the time

complexity in order of O(nlogn). Furthermore the process of

partition is finished by until we got subarray of atmost 10

element. Quick Sort demand for low memory compared with

Merge Sort. Finally the empirical evaluation demonstrates that

the CPU time of MQ Sort time decrease as compare to merge

and quick sort. More specific, according to the significance

testing when array size is greater and equal 2000 the

difference is significant, whereas when array size is less and

equal 2000 they are insignificantly different. The drawback of

Quick Sort is also patently, when the pivot chosen for each

partition get close to median, the time required decrease,

whereas when the pivot gets closer to maximum or minimum,

the inverse is true.

MQ Sort will perform the merge sort; if numbers of elements

are less than 10 otherwise quick sort will work. As quick sort

gives better results when number of elements are large and

Merge sort gives better results when number of elements are

less. That’s why proposed algorithm performs better as

compare to merge and quick sort.

3.1 Pseudo Code: MQ Sort()
/* l is for left index and r is right index of the sub-array

 of arr to be sorted */

void MQSort(int array[], int p, int r)

{

 if (p < r)

 {

 If(r-p<10)

 mergeSort(array,p,r);

 else

{

q->partition(array,p,r);

MQsort(array,p,q-1);

MQsort(array,q+1,r);

}

 }

}

4. COMPARATIVE ANALYSIS
4.1 Time and Space Complexity
As mentioned above MergeSort and QuickSort both uses the

divide and conquer approach. But Both algorithm have the

some advantages and disadvantages.

Quick Sort is the In Place Sorting thus saving the

performance, it doesn’t require extra space but in worst case

(Already Sorted array) due to wrongly selected pivot element,

its complexity goes up to O(n2).

In Merge Sort, it require additional scratch space but it

always gives O(n*logn) Performance(best, average and worst)

in all the cases and it is a stable sort, and there is no worst-

case scenario.

So In MQ sort we try to combine merge and quicksort to

achieve the good performance as compare to merge and quick

sort. Average case time: O(n*log(n)), However there are

various differences.

So MQ sort always gives O(n*logn) complexity in all the

cases like merge sort and do not use extra space like Quick

sort, as we are using Quick sort for dividing the array if

subarray is having more than 10 elements.

4.2 TIME COMPARISON OF MERGE, QUICK

AND MQ SORT

 Fig 2: Chart showing time comparison of Quick sort,

Merge sort and MQ sort

 The x-axis represents the number of elements

sorted.

 The x-axis is linear and the last entries show the

highlight feature of the graph. The difference in the

three algorithms performance.

 MQ Sort seems to not want to let go off the axis. It

is not a mistake, it is a reality. A sweet reality.

5. RESULTS AND DISCUSSIONS:
This Table Shows the time comparison of Merge Sort and

Quick Sort with new introduced algorithm MQ Sort.

From Results we can see that MQ Sort take less time as

Compare to Merge and Quick Sort, As it combine the

Advantages of both the Algorithm. It is also based on Divide

and Conquer approach.

Table 1. Table showing time taken to sort arrays of

different sizes by Quick sort, Merge sort and MQ sort

0

0.2

0.4

0.6

0.8

1000 2000 3000 4000 5000

Merge Sort

Quick Sort

MQ Sort

Size of

Array

Merge Sort Quick Sort MQ Sort

1000 0.0464 0.0630 0.0451

2000 0.2873 0.3518 0.2776

3000 0.3110 0.3784 0.2302

4000 0.4628 0.5336 0.2996

5000 0.5605 0.7263 0.4202

https://vinayakgarg.wordpress.com/2011/10/25/time-comparison-of-quick-sort-insertion-sort-and-bubble-sort/

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.21, July 2015

14

6. CONCLUSION

Table 2. Table comparing Quick sort, Merge sort and MQ sort

Name Best Case Average Case Worst Case Stable Remark

Quick Sort O(nlogn) O(nlogn) O(n2) No In Place Sorting

Merge Sort O(nlogn) O(nlogn) O(nlogn) Yes Require Extra

Memory

MQ Sort O (nlogn) O(nlogn) O(nlogn) Yes Does not

Require Extra

Memory

Any sorting algorithm for 10 integers will take negligible time

and memory.

I would conclude this, that

 Merge Sort is suitable in External Sorting

circumstance. It is an O(n*log(n)) algorithm in all

cases , but it takes the extra memory.

 Quick Sort is an O(n*log(n)) algorithm on an

average case and an O(n2) algorithm in the worst

case scenario. (Quick sort’s worst case occurs when

the numbers are already sorted!!) The graph speaks

it all. You need this algorithm when the list is large

and time is premium. No Extra Memory is required.

 MQ Sort also is an O(n*log(n)) algorithm in all

cases , but it does not takes the extra memory.

Quick Sort gives better results while list of elements is large

and merge Sort gives better results when number of elements

are less. Thus we proposed an algorithm named MQ Sort

which is the combination of the two sorting algorithms i.e.

Quick Sort and Merge Sort. Comparisons are also made with

respect to time increasing the size of array.

7. REFERENCES
[1] Donald E. Knuth et al. “The Art of Computer

Programming,” Sorting and Searching Edition 2, Vol.3.

[2] Cormen et al. “Introduction to Algorithms,” Edition 3, 31

Jul, 2009.

[3] D. Knuth, “The Art of Computer programming Sorting

and Searching”, 2nd edition, Addison-Wesley, vol. 3,

(1998).

[4] A. D. Mishra and D. Garg, “Selection of the best sorting

algorithm”, International Journal of Intelligent

Information Processing, vol. 2, no. 2, (2008) July-

December, pp. 363-368.

[5] C. A. R. Hoare, Algorithm 64: Quick sort. Comm. ACM,

vol. 4, no. 7 (1961), pp. 321.

[6] Ahmed M. Aliyu, Dr. P. B. Zirra, “A Comparative

Analysis of Sorting Algorithms on Integer and Character

Arrays,” The International Journal Of Engineering And

Science (IJES)., ISSN(e): 2319 – 1813 ISSN(p): 2319 –

1805.

[7] E. Horowitz, S. Sahni and S. Rajasekaran, Computer

Algorithms, Galgotia Publications.

[8] Horowitz, E., Sahni. S, Fundamentals of Computer

Algorithms, Computer Science Press, Rockville. Md

[9] Laila Khreisat, “Quick Sort: A Historical Perspective and

Empirical Study”, IJCSNS

[10] T. H. Coreman, C. E. Leierson, R. L. Rivest and C. Stein,

Introduction to Algorithms, 2nd edition, MIT Press.

[11] John Darlington, Remarks on “A Synthesis of Several

Sorting Algorithms”, Springer Berlin / Heidelberg, pp

225-227,Volume 13, Number 3 / March, 1980.

[12] http://www.geeksforgeeks.org/iterative-quick-sort/

[13] https://en.wikipedia.org/?title=Merge_sort

[14] https://en.wikipedia.org/?title=Quicksort

[15] http://www.geeksforgeeks.org/forums/topic/merge-sort/

IJCATM : www.ijcaonline.org

