
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

24

Block Level De-duplication Check for Shared Data

on Hybrid Cloud using Convergent Key

Priyanka N. Patil
Department of Computer Engineering,

 GES’s R. H. Sapat College of Engineering,
Savitribai Phule Pune University, India

C. R. Barde
Department of Computer Engineering,

GES’s R. H. Sapat College of Engineering,
Savitribai Phule Pune University, Indianilesh.

ABSTRACT
In regards to increase in use of digital information users prefer

to store information in cloud system. In cloud storage system

many users can store same type of data leading to data

duplication causing a high utilization of bandwidth. Some

techniques are proposed for making cloud more efficient and

effective regarding to storage and bandwidth. In current time

data de-duplication is effective technique to avoid such data

duplication caused due to privileged as well as non-privileged

user. To save bandwidth to transact data when replicating it

offsite for disaster recovery huge organization, companies and

all education institutes supports de-duplication technique.

With the help of “Content hash keying” data confidentiality is

provided. Using this technique data is first encrypted and the

encrypted data is outsourced to the client. To address the

problem of authorized access in our proposed system de-

duplication check technique is introduced and privileged

access which is different from traditional data de-duplication

check system. Log based approach for unauthorized data

duplication check in hybrid cloud architecture is also

explored. For privileged as well as for non-privileged users

de-duplication can be managed using the above technique.

Proposed system provides clever solution for duplication of

data and also works on bandwidth efficiency.

Keywords
Cloud, Content Hash Keying, Convergent Key De-

Duplication, Encryption

1. INTRODUCTION
This project focuses on a method to manage data redundancy

on cloud caused due to massive data transaction by cloud

users. De-duplication technique avoids storage of repetitive

data on cloud. This makes cloud more responsive by saving

storage space and its bandwidth. Duplicate replica of text file

is traced and eliminated. Along with this de-duplication

technique the project covers security aspect on cloud. Users

encrypt their data and save cipher texts on cloud. This

encrypted data creates some difficulty to compare same data.

If two users try to upload same file then it will be encrypted

and separate cipher texts are stored for two users on cloud.

Hence different cipher texts for same file are stored leading to

data redundancy. Convergent encryption technique is used for

this bottle neck problem. In this technique de-duplication is

possible and secrecy of data is preserved by encryption. In

Convergent key technique / Content Hash Keying process,

same cipher text is generated for same file though keys are

different. Same cipher text for same file is helpful to compare

and provide de-duplicate facility.

For effective bandwidth constraints on uploading and down-

loading of files which consume considerable bandwidth is put.

Also uploading of file which is already present can be

avoided. Regarding the presence of same kind of file,

metadata of file generated during uploading is matched with

metadata of already existing file. Such tag matching or Meta

data matching technique improves the usage of bandwidth.

Problem Definition

Knowingly or unknowingly multiple copies of data can be

uploaded to the cloud storage due to increase of cloud

utilization for data storage as well as sharing. Due to

duplicated data on public cloud, its storage efficiency and

bandwidth efficiency is not utilized properly. De-duplication

is one of the important compression techniques.

This technique removes duplicate copies of data and reserve a

single copy. In this technique, upload data is compared with

the data on public cloud and such duplication is avoided. Data

is encrypted by the user for the security reason using his/her

private key. As key changes various copies of same data will

be generated. So the main problem is the comparison of

encrypted data on cloud same file.

2. LITERATURE REVIEW
Cloud computing is now an emerging market. Day by day

application hosting on cloud increases rapidly causes huge

data storage on cloud. Due to this the main challenge faced by

cloud service provider is the management of this ever

increasing bulk data.

S. Quinlan and S. Dorward. Venti[2] In 2002, write-once

policy of data approach is used. It provides efficient storage

applications such as backup system.

On the similar lines, P. Anderson and L. Zhang [3] proposed a

system for laptop and mobile backup system. The backup is in

encrypted format. This paper mainly focuses on increasing the

speed of backup, and reducing the storage requirements.

The above mentioned paper only focuses on data backup de-

duplication technique. Using above technique only the user

specific data de-duplication is avoided but not the complete

data de-duplication.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.

Theimer [4] introduced convergent key technique. Which

resulted in increased data confidentiality and feasible data de-

duplication).By applying cryptographic hash function on data

convergent key is generated. Using this key it

encrypts/decrypts a data. Encrypted data is sent to the cloud

and user preserves the key and sends the cipher text to the

cloud.

The encryption is deterministic operation. The key is derived

from the data content, hence identical data copies will

generate the same convergent key and using the same key

same cipher text is generated.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

25

Pinkas, and A. Shulman-Peleg [5] secure proof of ownership

protocol is also needed to prevent unauthorised access. When

same data is found this proof is used. After the proof,

subsequent users with the same file will be provided a pointer

from the server without needing to upload the same file. A

user can download the encrypted file with the pointer from the

server, which can only be decrypted by the corresponding data

owners with their convergent keys.

Some Security proofs systems [10] provide either security

proofs or attacks for a large number of identity-based

identification and signature schemes defined either explicitly

or implicitly.

M. Bellare and A. Palacio. Gq and schnorr [9] introduced first

security proofs for these schemes under assumptions related to

the underlying one-way functions. Both results extend to

establish security against impersonation under concurrent

attack. The formal security definition for PoW, roughly

follows the threat model in a content distribution network,

where an attacker does not know the entire file, but has

accomplices who have the file. The accomplices follow the

“bounded retrieval model”, such that they can help the

attacker obtain the file, subject to the constraint that they must

send fewer bits than the initial min-entropy of the file to the

attacker.

M. Bellare, S. Keelveedhi, and T. Ristenpart[6] Message-

locked encryption and secure de-duplication: Message-

Locked Encryption (MLE), where the key under which

encryption and decryption are performed is itself derived from

the message. MLE provides a way to achieve secure de-

duplication.

Weak leakage-resilient client-side de-duplication of encrypted

data in cloud storage by Xu et al. [13] introduced convergent

encryption for efficient encryption.

The proposed technique only focuses on encryption and file

level de-duplication not block level.

D. Ferraiolo and R. Kuhn. [8] Role-based access controls: In

this they represent limitation of Mandatory Access Controls

(MAC) technique. This is required for high level security like

multilevel secure military applications. Discretionary Access

Controls (DAC) focusing on security processing needs of

industry and civilian government. This paper enlists the

limitations of DAC as the principal access control method.

This method is unfounded and inappropriate for personalized

civilian access.

Architecture for secure cloud computing - Bugiel et al. [11] It

provided an architecture consisting of twin clouds for securely

outsourcing of user private data and arbitrary computations to

an untrusted commodity cloud.

Privacy aware data intensive computing on hybrid clouds -

Zhang et [12] al also presented the hybrid cloud techniques to

support privacy-aware data-intensive computing.

We consider addressing the authorized privileged de-

duplication problem over data in public cloud. The security

model of our systems is similar to those related work, where

the private cloud is assume to be honest but curious.

S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-[14]

Proposes of POW (proof of ownership) technique is that a

user can efficiently prove to the cloud storage server that

he/she owns a file without uploading the file itself. It also

proposes the Merkle-Hash Tree to enable client-side de-

duplication, which include the bounded leakage setting.

The proposed scheme is focusing only on the data ownership

and not on the data privacy.

In S. Ossowski and P. Lecca [15] extended proofs of

ownership mechanism for encrypted files. These papers do

not address how to minimize the key management overhead.

Pietro and Sorniotti [16] proposed efficient PoW scheme by

choosing the projection of a file onto some randomly selected

bit-positions as the file proof But this project do not deal with

data privacy.

3. PROPOSED WORK

Fig.1 Architecture of proposed system

The above Fig.1 shows the basic structure of proposed

system. User, S-CSP and P-CSP are different sections of

system. P-CSP is secured cloud storage provider that

authenticates as well as provides convergent key to the user.

A user generates file tag and uploads to the S-CSP to check

de-duplication. Increase in efficiency and reduction in

bandwidth usage is achieved by uploading tag instead of

complete file. De-duplication at block level is checked. If de-

duplication found proof of ownership is executed. S-CSP

notify to the user if some blocks or no block are found at S-

CSP. The file is encrypted using convergent key and uploaded

to the Storage CSP by the user.

Our proposed work mainly focuses on outsourcing the key

management to the P-CSP, block level de-duplication and

efficient bandwidth usage is the mainly focused in the project.

If a user with privilege access demands a file for download

from S-CSP it receives a convergent key further used for

decryption.

3.1 Methodology
This system is divided in to two sections one is upload file

and another is download file

Methodology for File Upload:

1. Register user data on P-CSP

2. User Login on P-CSP

3. P-CSP return the identification token T to the user

4. User selects the file to upload and add the group members

with whom the file will get shared.

5. File tag generation at user end using SHA-1

6. Send tags to P-CSP using HTTP connection

7. P-CSP checks privileges of user

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

26

8. If access Privilege Check passes then system will allow de-

duplication check else gives error message

9. In de-duplication check, it matches the file tag with existing

file tags

Case 1: If tag matches run proof of ownership and share link

with other users

Case 2: If no file tag matches then it will check de-

duplication at block level

Case I: If Partial Duplication found: It runs proof of

ownership for partial no of blocks

-For new blocks generate convergent key and return token

+key + block matching file information to the user

-User encrypts unmatched block data using convergent key

-Upload token +encrypted data and file info to S-CSP.

-S-CSP save the file block

-Generate relative address mapping of file block of a file

-Returns the token and relative address tag information to P-

CSP

-P-CSP saves the token

-Run proof of ownership

-Share link with other users

Case II: If no duplication found generate convergent key and

return token +key

-User encrypt file block data using convergent key

-Upload token +encrypted data to S-CSP

-S-CSP save the file block

-Generate relative address mapping of file block of a file

-Returns the token and relative address tag information to P-

CSP

-P-CSP saves the token

-Run proof of ownership

-Share link with other users

Methodology for File Download:

1. Register user data on P-CSP

2. User Login on P-CSP

3. P-CSP return the identification token T to the user

4. User Ask for file to download to P-CSP

5. P-CSP checks the privileges of user.

6. If user has privileges it returns file info + decryption key to

the user

7. User sends file info and token to S-CSP

8. S-CSP verifies the token and return file blocks to the user

9. User decrypts the block and generates the original file

3.2 Mathematical Model

S = {U, P-CSP, S-CSP}

U = {IU, OU, FU}

IU= {I1, I2, I3, I4}

I1 = user registration details

I2 = User login details

I3 = File to upload

I4 = File name to download

FU= {F1, F2, F3, F4, F5, F6, F7}

F1 = User registration Request

F2 = User Login Request

F3 =File selection and block generation

F4 = tag generation for file level and block level using sha-1

algorithm

F5 = File encryption using AES

F6 = File Decryption using AES

F7 = generate tag for user access

OU= {O1, O2, O3, O4}

O1 = File level Tag

O2= Bock level tag

O3 = Access Privilege Tag

O4 = Cipher text

P-CSP=IP, OP, FP

IP= {I1, I2, I3, I4, I5}

I1 = User Registration Data

I2 = User Login Data

I3=File Tags for matching

I4 = Access Privileges

I5 = File location relative address detail array

FP= {F1, F2, F3, F4, F5}

F1= User Registration

F2 = User Identity Check

F3 = De-duplication check using tag matching

F4 = Proof Of ownership

F5 = File information storage

OP= {O1, O2, O3, O4}

O1 = User authentication response

O2 = de-duplication response

O3 = data sharing link

O4 = Access Privilege token

S-CSP= {IS, OS, FS}

IS= {I1, I2, I3}

I1 = Encrypted file block

I2 = File location relative address detail array

I3 = File Access Privilege Token

FS = {F1, F2, F3}

F1 = File block Storage

F2 = Maintain file storage data structure

F3 = File download

OS = {O1, O2}

O2 = File location relative address detail array

O1 = File to Download

Fig.2 Design using set theory

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

27

Following fig.3 shows the state representation of our system.

Fig.3 Mathematical module

Where,
R = Registration

ID = Invalid Data

SD = Save data

L = Login

IL = Invalid Login

LR = Login request

VL = Valid Login

UF = Upload file

UL = User list

TG = Tag generation

DU = Data upload

CP = Check Privileges

VP = Valid Privileges

FDC = File de-duplication

check

IP = Invalid Privileges

NFDCF = No File

Duplication found

FDCF= File Duplication

found

BDCF=Block duplication

found

NDC = no duplication

found

KG = Key Generation

EN =Encryption

SFB = save file block

POW=Proof of ownership

SL = share link

3.3 Algorithms
In this section we discuss the algorithm of the models which

will be used in the system.

1. AES Encryption:

Input: Plain text message m in Byte [] , Key k

Output: Cipher text message in byte []

Processing:

1. Define 4 * 4 state array

2. Define constant Nr = 4, R=16

3. Copy m in state[]

4. Add each byte of state[] to key k using ⊕

5. For Nr-1 rounds

Replace every byte in state[] with new value using

lookup table

Shift last 3 rows of state[] upside cyclically

combine last 4 columns of state[]

Add each byte of state[] to key k using ⊕

end For

6. Shift last 3 rows of state[] upside cyclically

7. Add each byte of state[] to key k using ⊕

8. copy State[] to output[]

2. AES Decryption:

Input: Cipher text message C in byte[], Key k

Output: Plain text message m in Byte[]

Processing:

1. Define 4 * 4 state array

2. Define constant Nr = 4, R=16 ,

3. Copy C in state[]

4. Add each byte of state[] to key k using ⊕

5. For Nr-1 rounds

Inverse Replace every byte in state[] with new value

using lookup table

Inverse Shift last 3 rows of state[] downside

cyclically

combine last 4 columns of state[]

Add each byte of state[] to key k using ⊕

end For

6. Inverse Shift last 3 rows of state[] down word cyclically

7. Inverse Add each byte of state[] to key k using ⊕

8. copy State[] to output[]

3. SHA1:

Input: key, message m

Output: Hash Value hh

Processing:

1. ml = message length in bits

Initialize h0 = 0x67452301,h1 = 0xEFCDAB89,h2 =

0x98BADCFE,h3 = 0x10325476,h4 = 0xC3D2E1F0

2. If characters <= 8 bits Then

Append bit 1 to message OR Add 0x80

3. for each chunk

 break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i

≤ 15

4. for i from 16 to 79
 w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16])

leftrotate 1

 a = h0

 b = h1

 c = h2

 d = h3

 e = h4

5. for i from 0 to 79

 If 0 ≤ i ≤ 19 Then

 f = (b and c) or ((not b) and d)

 k = 0x5A827999

 Else If 20 ≤ i ≤ 39 Then

 f = b xor c xor d

 k = 0x6ED9EBA1

 Else If 40 ≤ i ≤ 59 Then

 f = (b and c) or (b and d) or (c and d)

 k = 0x8F1BBCDC

 Else If 60 ≤ i ≤ 79 Then

 f = b xor c xor d

 k = 0xCA62C1D6

temp = (a leftrotate 5) + f + e + k + w[i]

 e = d

 d = c

 c = b leftrotate 30

 b = a

 a = temp

 h0 = h0 + a

 h1 = h1 + b

 h2 = h2 + c

 h3 = h3 + d

 h4 = h4 + e

hh = (h0 leftshift 128) or (h1 leftshift 96) or (h2 leftshift 64)

or (h3 leftshift 32) or h4

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

28

4. HMAC Algorithm Pseudo code :

Input:key, message

Output:Hash Valuehh

Processing:

1. If (length (key) > blocksize) Then

 key = hash(key)

 End If

2. If (length (key) < blocksize) Then

 key = key ∥ [0x00 * (blocksize - length (key))]

 End If

3. o_key_pad = [0x5c * blocksize] ⊕ key

4. i_key_pad = [0x36 * blocksize] ⊕ key

5. hh = hash o_key_pad ∥ hash(i_key_pad ∥message)

4. SYSTEM IMPLEMENTATION
Aim of system implementation is text data de-duplication

check. Java jre 7 environment on windows 7 platform is used

for implementation of this system. User system, P-CSP and S-

CSP are independent systems generated in this process. A

desktop application created using swing control using net

beans IDE is known as user system. Web based systems S-

CSP and P-CSP communicate with desktop client using http

client facility. Apache tomcat - 7 is used for web server setup

and mysql 5.6 is used for storing records. Multipart web

service facility format is used for complete file data / file

blocks transfer among entitles. Also json format is used for

short message communication.

5. RESULTS

5.1 Experimental setup

For testing an application single nodes windows -7 system is

used. Jdk-1.7 Apache-7 and mysql-5.6 is configured on same

system. War files of S-CSP and P-CSP are deployed on

tomcat.

5.2 Results

We have divided our system in 2 major domains

1. User interaction and data communication: In this section

GUI for user and data Communication between client

application with P-SCP and S-CSP is tested.

2. System business logic: Initially we have tested our

system business logic algorithm. It includes

We have implemented system for file level de-duplication

check as well as block level de-duplication check. Text files

are checked for block level de-duplication whereas image files

are tested for file level de-duplication.

File block creation: File data is divided into number block.

We have varied file block size with different values as 1kb,

2kb, and 4kb. As we increase the block size probably of de-

duplication also increases.

For Image deduplication check we have created sha tag for

a complete image file and file encryption is done using AES

algorithm.

File

Size(mb)

TagGenTime KeyGen Time Enc Time Dec Time

1 47 46 827 359

2 73 93 890 374

3 125 109 936 453

4 156 109 998 484

Table.1 Time estimation Values

Fig.5 Time estimation Graph (a)

Fig.6 Time estimation Graph (b)

For text files, We have checked de-duplication for different

block sizes like 2kb, 4kb, and 8kb. As we reduced the block

size number of block increases and hence mapping time

increases. Lower block size provide more accurate and

précised de-duplication check results.

Following chart represents the block level file uploading time

in detail.
File tag

gen

time

file

dedu

time

convergent

key time

tag

gen

time

block

enc

time

for

block

block

upload

time

block

level

dedu

check

F1 35 166 1 164 164 10824 10824

F2 38 177 2 254 254 19812 19558

F3 45 200 2.5 380 380 30020 30400

F4 67 269 3 508 508 41148 44704

Table.2 Time estimation Values

Fig.7 block level files uploading time

http://en.wikipedia.org/wiki/Pseudocode

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

29

If file is already present then only proof of ownership program

is executed and hence no upload time is required.

File tag

gen

time

file

dedu

time

convergent

key time

tag

gen

time

block

enc

time

for

block

block

upload

time

block

level

dedu

check

F1 35 166 1 164 0 87 0

F2 38 177 2 254 0 88 0

F3 45 200 2.5 380 0 88 0

F4 67 269 3 508 0 89 0

Table.3 Time estimation Values

Fig. 8 File is Present

If file is partially present then only remaining blocks are

uploaded to S-CSP and links are created for the file. We have

tested this scenario for different cases where 25%, 50%, 75%

file is already present on the server.

Following table shows the detailed description for partial file

level de-duplication.
File 25% 50% 75% 100%

0.5mb 8118 5412 2706 87

1mb 14859 9906 4953 90

1.5mb 22515 15010 7505 95

2mb 30480 20574 10287 100

Table.4 Time estimation Values

Fig.9 Duplication ratio

6. CONCLUSION
The project focuses on a technique to provide shared data

security in cloud environment using data encryption. Effective

usage of storage space at file level as well as block level is

provided using de-duplication check. To support authorized

duplicate check in hybrid cloud architecture new de-

duplication constructions is provided, in which private cloud

server is used for the duplicate check. This avoids multiple

transaction of complete file also with the help of tag over

network while checking de-duplication usage of bandwidth

can be effective. The outsourcing of convergent key

generation for encryption and key management is done at

private cloud server. A relative addressing method in which

relative file block address and its proper mapping logic

maintained at two different sources P-CSP and S-CSP is

introduced. Hacking and data predictions are blocked due to

this process.

7. FUTURE SCOPE
Now a day’s implementation of this technique on distributed

system, using secret sharing instead of convergent key is

being pursued. In future we work on de-duplication check for

other than txt file.

8. ACKNOWLEDGEMENT
I would like to express my sentiments of gratitude to all who

rendered their valuable guidance for this work. I would like to

thank Dr. P. C. Kulkarni, Principal, GES’s. R. H. Sapat

College of Engineering Nashik, for providing me strong

platform to develop my skills and capabilities.

I am sincerely thankful to Prof. C. R. Barde my guide and

Prof. N. V. Alone, Head of Department, Computer

Engineering Prof. A. S. Vaidya our PG co-ordinator for

helping and guiding me with the topic and also providing me

with adequate facilities, ways and means by which I was able

to complete this paper.

9. REFERENCES
[1] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li,

Patrick P.C. Lee, and Wenjing Lou:"Secure De-

duplication with Efficient and Reliable Convergent Key

Management", IEEE transactions on parallel and

distributed systems, vol. 25, no. 6, june 2014

[2] S. Quinlan and S. Dorward. Venti: "a new approach to

archival storage". In Proc. USENIX FAST, Jan 2002

[3] P. Anderson and L. Zhang. "Fast and secure laptop

backups with encrypted de-duplication". In Proc. Of

USENIX LISA, 2010

[4] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.

Theimer. "eclaiming space from duplicate files in a

serverless distributed file system". In ICDCS, pages 617-

624, 2002. S. Halevi, D. Harnik, B.

[5] Pinkas, and A. Shulman-Peleg. Proofs of ownership in

remote storage systems. In Y. Chen, G. Danezis, and V.

Shmatikov, editors, "ACM Conference on Computer and

Communications Security", pages 491-500. ACM, 2011

[6] M. Bellare, S. Keelveedhi, and T. Ristenpart. "Dupless:

Serveraided encryption for de-duplicated storage". In

USENIX Security Symposium, 2013

[7] M. Bellare, C. Namprempre, and G. Neven. "Security

proofs for identity-based identification and signature

schemes". J. Cryptology, 22(1):1-61, 2009

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

30

[8] D. Ferraiolo and R. Kuhn. "Role-based access controls".

In 15th NIST-NCSC National Computer Security Conf.,

1992.

[9] M. Bellare and A. Palacio. Gq and schnorr "identification

schemes: Proofs of security against impersonation under

active and concurrent attacks." In CRYPTO, pages 162-

177, 2002

[10] M. Bellare, C. Namprempre, and G. Neven. "Security

proofs for identity-based identification and signature

schemes". J. Cryptology,22(1):1–61, 2009.

[11] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider.

"Twin clouds: An architecture for secure cloud

computing". In Workshopon Cryptography and Security

in Clouds (WCSC 2011), 2011.

[12] K. Zhang, X. Zhou, Y. Chen, X.Wang, and Y. Ruan.

Sedic: "privacyaware data intensive computing on hybrid

clouds". In Proceedings of the 18th ACM conference on

Computer and communications security, CCS’11, pages

515-526, New York, NY, USA, 2011. ACM.

[13] J. Xu, E.-C. Chang, and J. Zhou. "Weak leakage-

resilient client-side de-duplication of encrypted data in

cloud storage". In ASIACCS, pages 195-206, 2013

[14] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg.

"Proofs of ownership in remote Storage systems". In Y.

Chen, G. Danezis, and V. Shmatikov, editors, ACM

Conference on Computer and Communications Security,

pages 491-500. ACM, 2011.

[15] W. K. Ng, Y. Wen, and H. Zhu. "Private data

deduplication protocols in cloud storage”,In S. Ossowski

and P. Lecca, editors, Proceedings of the 27th Annual

ACM Symposium on Applied Computing, pages 441-446.

ACM, 2012.

[16] R. D. Pietro and A. Sorniotti. "Boosting efficiency and

security in proof of ownership for de-duplication", In H.

Y. Youm and Y. Won, editors, ACM Symposium on

Information, Computer and Communications Security,

pages 81-82. ACM, 2012.

IJCATM : www.ijcaonline.org

