
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

7

Hardware Software Co-Simulation of Canny Edge

Detection Algorithm

Kazi Ahmed Asif Fuad

Post-Graduate Student
Dept. of Electrical & Electronic Engineering

American International University-Bangladesh

Shahriyar Masud Rizvi
Assistant Professor

Dept. of Electrical & Electronic Engineering
American International University-Bangladesh

ABSTRACT

Edge detection is a method to detect presence of an object’s

image- typically this is identified by sharp changes in pixel

density. We realized Canny Edge Detection Algorithm, the

most optimal edge detector, in FPGA hardware utilizing

Hardware-Software Co-Simulation with the help of Simulink

(Mathworks) and System Generator (Xilinx). We explored

and utilized different edge detection operators, in addition to

Sobel, which is the typical such operator, for gradient

calculation (the primary edge detection process). After

comparative analysis, we found both Sobel and Robert

operators among the best with hardware realization of Robert

operator utilizing less resources (LUT & Flip-Flops). All the

different versions of the algorithm was synthesized for

Spartan-6 LX16 FPGAs from Xilinx.

General Terms

Edge Detection Algorithm, Canny Edge Detection, H/W

Software Co-Simulation.

Keywords

Canny Edge Detection, Sobel, Robert, Xilinx System

Generator, Nexys3- Spartan 6 FPGA Board.

1. INTRODUCTION
Edge detection is used as an initial step for many image

processing such as image enhancement, image segmentation,

object tracking & motion analysis. Edge detection is a process

of identifying an edge. The sharp change in image pixel

intensity is considered as the edge of the image. Edges

correspond to points in an image where the gray value

changes significantly from one pixel to the next pixel.

Usually, edge detection techniques are implemented using

software but with the advancement in Very Large Scale

Integration (VLSI) technology, hardware implementation of

edge detectors has become an effective option for real-time

applications. In many real-world applications, the use of

Canny is predominant due to its ability to extract significant

edges with good detection and good localization performance.

But unfortunately, the Canny algorithm contains extensive

pre-processing such as smoothing and post-processing steps

such as NMS and is more computationally complex than other

gradient based edge detection algorithms such as Roberts,

Prewitt and Sobel algorithms. [1][2] In our research of

comparative study of edge detection technique, we designed

and implemented Canny Edge Detection Algorithm using

Xilinx System Generator and Spartan 6 FPGA (within Nexys3

Board). Detailed Canny algorithm is explained and later on

System Generator Implementation technique is discussed.

Finally impact of different operator on the gradient calculation

of Canny is shown with experimental data and resource

utilization summery.

2. CANNY EDGE DETECTION

ALGORITHM
The objective of edge detection is to significantly reduce the

amount of data in an image, while keeping the original

properties of the image to be used for further processing.

Amongst several algorithms, this paper focuses on a particular

algorithm developed by John F. Canny in 1986. [3][4] Though

it is quite old, it has become one of the prominent edge

detection methods and it is still in research for further

improvement. The aim of Canny was to develop an algorithm

that is efficient with regards to the following criteria:

1. Detection: The edge detector should respond only to edges,

and should find all of them; no edges should be missed. This

corresponds to maximizing the signal-to-noise ratio. [4]

2. Localization: The distance between the edge pixels as

found by the edge detector and the actual edge should be as

small as possible. [4]

3. Number of responses: An original edge should not result in

more than one detected edge. [4]

The algorithm consists of 5 separate steps: 1. Smoothing:

Smoothing the image to remove noise. 2. Calculating

gradients: The edges should be found where the gradients of

the image has high magnitudes. 3. Non-maximum

suppression: Only local maxima should be taken as an edge.

4. Double thresholding: Prospective edges are determined by

thresholding. 5. Edge tracking by hysteresis: Final edges are

determined by suppressing all edges that are not associated to

a very definite edge. [3] [4]

2.1 Smoothing (Noise Reduction)
Generally images taken from a camera contains some amount

of noise and to prevent that noise is mistaken for edges, noise

must be reduced. That’s why the image is first smoothed by

applying a Gaussian filter.[5]The Gaussian smoothing filter, a

2-D convolution operator, is used to ‘blur’ the images and

remove details and noise by convolving with the image using

a kernel that represents a Gaussian (‘bell-shaped') hump

shape. As the image is like a collection of discrete pixels,

discrete approximation to the Gaussian function is needed

before the convolution is performed. [6] The kernel of a

Gaussian filter with a standard deviation of σ = 1.4 is shown

in Equation (2) and the Gaussian function is given in equation

(1). JFC showed that Gaussian filter is the optimal filter for

Gaussian noise. [3]

(1)

.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

8

(2)

2.2 Gradients Calculation
The Canny algorithm calculates edges where the grayscale

intensity of the image changes the most. Gradients at each

pixel in the smoothed image are determined by applying

gradient based edge detection operator. There are many

gradient based edge detector. Amongst them, Sobel is mostly

used in Canny Edge Detection. [3] The gradient magnitudes

are determined by applying Manhattan distance measure as

shown in Equation (3) to reduce the computational

complexity.

|G| = |Gx| + |Gy| (3)

Where: Gx and Gy are the gradients in the x- and y-directions

respectively. In this paper, we analyzed the impact of Sobel,

Robert, Prewitt & Robinson operators which are given in

figure 1. In a compass operator such as Robinson, total 8

masks are convolved with the image and the max is selected

as gradient. [7]

Sobel Operator

Prewitt Operator

Robinson Compass Operator

Robert Operator

Figure 1: Different Gradient based Edge detection

Operator.

2.3 Non-Maximum suppression (NMS)
The main objective of this step is to convert the “smoothed”

edges in the image of the gradient magnitudes to “sharp”

edges. Basically, this is implemented by keeping all the local

maxima in the gradient image, and making others zero. The

algorithm is for each pixel in the gradient image:

1. Compare the edge strength of the current pixel with the

edge strength of the pixels in both positive and negative

gradient direction. 2. If the edge strength of the current pixel

is greater than the neighbor pixels then keep the value of the

edge strength otherwise make the pixel value zero.

2.4 Thresholding
The edge-pixels after the NMS are identified with their

strength pixel-by-pixel in which many of them will probably

be actual edges in the image, but some may be not. The

simplest way to discern between these would be to use a

threshold. The Canny edge detection algorithm uses double

thresholding in which edge pixels greater than the high

threshold are identified as strong; edge pixels weaker than the

low threshold are deleted and edge pixels between the two

thresholds are marked as weak.

2.5 Edge Tracking by Hysteresis
Strong edges is included in the final edge image where weak

edges are included if and only if they are associated with

strong edges. As noise and other small variations are unlikely

to result in a strong edge, thus strong edges will be true edges.

The weak edges can either be because of true edges or

noise/color variations. Weak edges due to true edges are much

more likely to be connected directly to strong edges BLOB-

analysis (Binary Large OBject) can be used to find whether

they are edge or not. The edge pixels are divided into

connected BLOB’s using 8-connected neighborhood. BLOB’s

containing at least one strong edge pixel are then preserved,

while other BLOB’s are suppressed.

3. H/W SOFTWARE CO-SIMULATION/

IMPLEMENTATION OF CANNY EDGE

DETECTION
For or H/W Software Co-Simulation/Implementation, ISE

14.7 (Xilinx) & MATLAB 2012b (Mathworks) have been

used. System Generator part of Simulink from MATLAB &

Xilinx was the H/W configuration generating tool which is

very useful to work in Image processing arena as it gives

faster and smarter way to simulate systems close to real life

hardware output. Figure 2 shows the full flow diagram of

HW/Software environment for the Canny implementation

process. As we can see from flow diagram, image data

serialization & de-serialization is completed in Software

(Simulink) and edge detection is implemented in H/W. Our

primary objective is to implement the edge detection

algorithm and find a better solution for existing system. H/W

Software Co-Simulation Co-Design is a powerful way to

realize this. This method allows one to do without any camera

or VGA-monitor interfacing which minimizes the complexity

of whole system setup. But then again, Xilinx Platform

Studio-XPS allows interfacing VGA monitor with Nexyx3

board (not done in this paper). It’s useful when system is

designed for applications such as Face detection. Figure 4

shows the full H/W Software implementation system

Generator diagram. [8]

3.1 Image From File Block
‘Image From File’ is used to access the input images where

image file path is given and data type of image data is

selected. If the image is an MxNxP array, then the block

outputs a color image in which MxN are the number of rows

& columns in each color pan.

3.2 Simulink Image Pre-Processing
Simulink Image Pre-Processing serializes the image data for

the H/W as Xilinx System Generator serial Data transfer.

‘Color Space Conversion’ converts the color image into a

grayscale image and the data which is in 2-D is converted into

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

9

Image Input

Gray Scale Conversion of

Colour Image

2-D to 1-D Conversion of Image

Data

Smoothing of Image

Using Gaussian Filter

Convolution of Image with

Operator (Sobel) Mask in x- & y-Direction

Gradient Calculation

Non-Maximum Suppression (NMS)

Thresholding

Unbuffering the Frame Data for

Hardware

1-D to 2-D Conversion of Image

Data

Buffering the Frame Data from

Hardware

Display the Edge Map of the Image

S
o
ft

w
ar

e
S

o
ft

w
ar

e
H

ar
d
w

ar
e

Figure 2: Flow Diagram of H/W-Software Implementation

Process of Canny Edge Detection Algorithm.

1-D by ‘Convert 2-D to 1-D’ Simulink block whereas

‘Transpose’ block transposes the image data. ‘Frame

Conversion’ & ‘Unbuffer’ block together sends the 1-D image

data frame by frame serially to the H/W input. The ‘Unbuffer’

block converts the frame to scalar samples output at a higher

sampling rate. Figure 3 shows Simulink Image Pre-Processing

block.

Figure 3: Simulink Image Pre-Processing block

3.3 System Generator System Design

Blocks

3.3.1 Xilinx System Generator Token
Xilinx System Generator token is used for FPGA H/W

functionality generation. It can generate (i) HDL, (ii)

Bitstream, (iii) NGC & (iv) Hardware Co-Simulation from

Xilinx System Generator blocks of Simulink. Both VHDL

&Verilog can be generated by the token. It also allows 3rd

party synthesis tool such as Synplify Pro from Synopsys Inc.

[8]

3.3.2 Gateway In/Gateway Out
Gateway In and Gateway Out blocks are one of the basic

blocks of System Generator which works as input and output

respectively for the H/W design. These blocks are used to

convert Simulink data type to Xilinx data type and vice versa.

These blocks define top level input & output port respectively

in the HDL design generated by System Generator. [8]

Figure 4: System Generator Block Diagram of H/W Software Implementation of Canny Edge Detection Algorithm

Hardware

Software

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

10

3.3.3 Convolution Blocks
Both Gaussian &Sobel uses convolution. From the study of

convolution it is seen that it’s actually a FIR filter. So for this

purpose basic FIR filter was designed instead of using the

System Generator built in blocks. Figure 5 shows how

convolution is implemented in hardware. To create 2-D image

data ‘Virtex2 Line Buffer’ is used. It takes data serially and

buffers them up to certain numbers. Then each of line data is

passed through FIR filter consists of Register (Flip-Flop),

Multiplier, Adder and Constants blocks. [9]

Figure 5: Convolution in Hardware

3.3.4 Thresholding& NMS
Thresholding and NMS, both are implemented using

Comparator and Register block. Each of the image data is

compared with a certain value if the image data is greater than

the comparing value then that image data is transferred

otherwise the value is set zero. In NMS, each image data is

checked whether it’s greater than its adjacent image data or

not. If it’s true then the image data is passed otherwise it is set

zero.

3.3.5 JTAG Co-Sim
JTAG Co-Sim is the Hardware Co-Simulation Block

generated by System Generator Token after the simulation of

the whole system. This is the block which configures the

FPGA, gets its output and displays it in Simulink.

3.4 Simulink Image Post-Processing
Simulink Image Post-Processing, which is opposite of Image

Pre-Processing is used to transform the image data back to

floating type. To de-serialize the image data, at first, ‘Buffer’

block is used to convert the scalar samples to frame output at

lower sampling rate along with the ‘Convert 1-D to 2-D’ then

the image data is transposed by the ‘Transpose’ block.

Figure 6: Simulink Image Post-Processing block

4. IMPACT OF DIFFERENT EDGE

DETECTION OPERATORS
Output of Canny without Thresholding& NMS and final

Canny output along with Krisch operators are given in the

figure 7. For comparative study, ‘Lena’ and ‘Cameraman’

images were experimented. In Canny Edge Detection

Algorithm, edges are mainly found by using gradient based

edge detector Sobel operator. So one of our approaches was to

find out impact of different gradient operators on the Canny.

So, Robert, Prewitt & Robinson Compass operators were

implemented into Canny algorithm in addition to Sobel and

outputs were checked how they behave on the experimenting

images. Device utilization is given in table 1. From visual

analysis of images showed in figure 8, it is seen that with the

use of Prewitt operator in Canny, the performance of Canny

degrades. When only Prewitt operator was applied to the

experimenting images, the result was close to the one

generated by Sobel alone. But in Canny, Prewitt becomes

noise prone as it detects false edges and Canny final output

fails to detect original edges. On the other hand, performance

of Robert operator in Canny is better in than Prewitt as it does

not detects any false edge though it fails to detect low contrast

edges. As Robert operator does not detect wrong edges our

objective became to find a proper way to fit it into Canny. It’s

seen that edge detection in high contrast, edge detection using

Robert was the same as Sobel. Our visual analysis shows that

Canny edge detection without Thresholding & NMS using

Robert is better than when only Robert operator was

convolved with the image (as noise is reduced). So further

analysis was done to get better output from Canny. First

approach was to change NMS technique. 8-Point comparison

NMS was applied and output result was not satisfactory as

compared to 3-Point NMS. Increasing the point only

increased delay but not quality. Varying the thresholding

value does not improve the output as well. But without

thresholding output was satisfactory as Robert itself is the

simplest edge detection operator.

Table 1: Device utilization summary

Device Utilization Summary :Nexys3 Spartan-6 FPGA

Board

Selected device

6slx16csg324-3

Canny Edge

Algorithm

with Sobel

Modified

Canny Edge

Algorithm

with Robert

Resource Availa

ble

Used % Used %

Number of Slice

Registers:

18,224 3,071 16 2,356 12

Number used as Flip Flops: 2,629 2063

Number used as AND/OR

logics

442 293

Number of Slice

LUTs:

9,112 4,388 48 3,804 41

Number used as

logic:

9,112 2,914 31 2,465 27

Number used as

Memory:

2716 613 28 548 25

Number used as Single Port

RAM:

384 320

Number of

occupied Slices:

2,278 1,472 64 1,254 55

Number of LUT Flip Flop

pairs used:

4,968 4,155

The calculation of Robert operator is simpler than other

operators as only adder-subtractor is enough to get the

gradient values. Sobel operator offers a lot of data for analysis

but our modified Canny Algorithm with Robert operator

provides much less data which is shown in figure 9. All the

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

11

designs are synthesized and implemented using ISE 14.7.

From device utilization summary of selected chip

6slx16csg324-3, it shows that modified Canny Algorithm takes

less area than original Canny Algorithm. Original Canny

Algorithm uses 3,071 slices but on the other hand Modified

Canny Algorithm uses 2,356 slices out of 28,224 slices

available in our 6slx16csg324-3 FPGA and 4% slices are

saved. 34% less combinational logics are used in Modified

Canny Algorithm. Number of ‘AND/OR’ logic used by

Canny Algorithm is 442 and Modified Canny Algorithm is

293. Use of ‘Single Port RAM’ is also decreased by 17%.

 Original Image Canny Edge without

Thresholding& NMS

Canny Edge Krisch Edge

a.

b.

Figure 7: Output of Canny without Thresholding & NMS and final output along with Krisch operator of (a) Lena image (b)

Cameraman Image

Canny Edge without

Thresholding & NMS

Canny Edge with Sobel

Operator

Canny Edge without

Thresholding & NMS with

Prewitt Operator

Canny Edge with Prewitt

Operator

Canny Edge without

Thresholding& NMS with

Robert Operator

Canny Edge with Robert

Operator

Canny Edge without

Thresholding & NMS with

Robinson Operator

Canny Edge with Robinson

Operator

Figure 8: Canny edge detection output of ‘Lena’ image using different edge detection operator:

Prewitt, Robert & Robinson compass

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.19, July 2015

12

Canny With Sobel Operator

Canny with Robert Operator and with only NMS

Figure 9: Canny output of ‘Lena’ image.

5. DISCUSSION
Sobel operator emphasizes on central pixels and that’s why

the edges are thicker and it can calculate edges at low

contrast. On the other hand Robert operator calculates the

edges so quickly by only addition and subtraction. Note that,

Canny algorithm removes noises and also implement NMS.

So combination of Canny algorithm and Robert operator gives

a satisfactory output as image is smoothed by Gaussian filter,

color changes are more distinct due to Robert operator. So,

applications in which medium range contrasted images are

primary objective and faster output & less device resources

are required our modified Canny algorithm is an optimal edge

detection algorithm.

6. CONCLUSION AND FUTURE WORK
After investigating different operators, we conclude that our

Modified canny Algorithm is the optimal Algorithm. One

drawback of Hardware/Software Co-Simulation is output is

retrieved serially and becomes a slow process but to make the

system more robust and faster we need to find an effective

method. Now a days, Distributed implementation of system

has become popular and it might make our Modified Canny

Algorithm even more effective and efficient in Real-Time

applications.

7. REFERENCES
[1] Qian Xu; Chakrabarti, C.; Karam, L.J., "A distributed

Canny edge detector and its implementation on FPGA,"

Digital Signal Processing Workshop and IEEE Signal

Processing Education Workshop (DSP/SPE), 2011 IEEE

, vol., no., pp.500, 505, 4-7 Jan. 2011

[2] Qian Xu; Varadarajan, S.; Chakrabarti, C.; Karam, L.J.,

"A Distributed Canny Edge Detector: Algorithm and

FPGA Implementation," Image Processing, IEEE

Transactions on, vol.23, no.7, pp.2944,2960, July 2014.

[3] Canny, John, "A Computational Approach to Edge

Detection," Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol.PAMI-8, no.6, pp.679, 698,

Nov. 1986.

[4] Notes of Prof Thomas B Moselund. Available:

http://www .cse.iitd.ernet.in/~pkalra/csl783/canny.pdf

[5] (2015) HIPR2. [Online]. [Visited on May, 2015]

Available:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

[6] (2015) Autonomous System Lab by William E. Green,

Drexel University. [Online]. [Visited on May, 2015]

Available:

http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.dr

exel.edu/_weg22/can_tut.html

[7] “Digital Image Processing” by Rafael C. Gonzalez,

Richard E. Woods, 2nd Ed., Prentice Hall, 2002.

[8] System Generator for DSP User Guide by Xilinx.

Downloadable From: http:// www.xilinx.com.

[9] S. Allin Christe, M. Vignesh, Dr. A. Kandaswamy, “An

Efficient FPGA Implementation of MRI Image Filtering

& Tumor Characterization Using Xilinx System

Generator”, International Journal of VLSI design &

Communication Systems (VLSICS) Vol.2, No.4,

December 2011.

IJCATM : www.ijcaonline.org

