
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.17, July 2015

22

Malware Detection Techniques in Android

Pallavi Kaushik
PG Student CSE Department,

Panchkula Engineering College,
Mouli, Haryana, India

Amit Jain
Astt. Prof. & HOD: Dept. of CSE,
Panchkula Engineering College,

Mouli, Haryana, India

ABSTRACT

Mobile Phones have become an important need of today. The

term mobile phone and smart phone are almost identical now -

a-days. Smartphone market is booming with very high speed.

Smartphones have gained such a huge popularity due to wide

range of capabilities they offer. Currently android platform is

leading the smartphone market. Android has gained an

overnight popularity and became the top OS among its

competitor OS. This eminence attracted malware authors as

well. As android is an open source platform, it seems quite

easy for malware authors to fulfill their illicit intentions. In

this paper a new technique will be introduced to detect

malware. This technique detects malware in android

applications through machine learning classifier by using both

static and dynamic analysis. This technique does not rely on

malware signatures for static analysis but instead android

permission model is used. Under dynamic analysis, system

call tracing is performed. Using both static and dynamic

techniques along with machine learning provides all in one

solution for malware detection. The technique used by us is

tested on various benign samples collected from official

android market (Google Play Store) and on various malicious

applications.

Keywords

Android, Dynamic Analysis, Machine learning, Malware,

Malware detection, Static Analysis.

1. INTRODUCTION
Smartphones are used worldwide. Smartphones provide so

many features now a days that they are almost equivalent to

mini computers. Smartphones facilitate us in many areas like

short message service, multimedia messaging service, email,

video calling, GPS navigation, voice dictation, voice activated

personal assistant and now they take care of our health as

well, by containing various applications and sensors that helps

us in keeping track of our health related problems. There are

many operating systems present in the smartphone market but

android leads them. Android platform was launched by

Google and Open Handset Alliance in September 23, 2008

and since then it got an overnight popularity because of its

user friendliness and ease of developing and publishing

applications in android market. Android has total share of

78% in smartphone market in first quarter of 2015 as per

reports of International Data Corporation(IDC)[1](Figure 1).

Open source availability and popularity of android pleased

malware authors as well. As android has largest share in

smartphone market, number of attacks on android platform

are also very large as compare to other platforms. One reason

for the increase in number of android malware is that any

developer can develop his application and publish it in

android market. Though official android market Google

PlayStore is still very much secure as compare to other third

party markets.

Figure 1: Android market share in first quarter of 2015

Most of the malware come when user unknowingly install

applications from third party application stores and many

applications in these unofficial stores are the repackaged

version of original applications that are present in Google

PlayStore. First mobile malware Cabir[2] was detected in

2004 for Symbian mobile operating system. Since then there

was gradual increase in number of malwares in mobile market.

Various techniques have been used so far to detect malware on

mobile platform. Techniques that are used for detecting

android malware can be classified into static techniques and

dynamic techniques. Static techniques does not execute an

application and detects if an application is malicious or not by

checking various parameters like signature verification,

permission analysis etc. Static techniques alone can be easily

obfuscated. Dynamic techniques include analyzing the

behavior of an application by executing it in a confined

environment like in sandbox. In dynamic analysis some

features of an application are extracted to find out if that

application is benign or malicious. These features can be api

tracing and network monitoring but they are also not all in one

solution. Machine learning techniques have been used widely

for malware detection.

With all these details, our method for detecting malware on

android platform use static analysis by analyzing permissions

of an application and then that application is forwarded for

dynamic analysis where its system calls are monitored. When

both these features are extracted from 219 applications, then

machine learning classifiers will be trained with the mentioned

list of samples. Once those classifiers are trained, accuracy of

our results will be validated . Benign applications are taken

from Google's official android market that is Google

PlayStore[3] and malicious applications are taken from

publically available collection of android malware website,

Contagio Mobile Malware Mini Dump[4].

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.17, July 2015

23

Rest of the work is organized as follows. Section 2 contains

related work done in the field of malware detection. Section 3

tells about the dataset that is collected from various sources.

Section 4 includes framework used in this paper for malware

detection. Section 5 concludes whole paper and section 6

discusses future work that can be done to improve techniques

of malware detection.

2. RELATED WORK
Initial techniques that were used for detection of malware in

android based phones were those of power consumption and

battery usage. Application that uses maximum battery power

and CPU resources was seen as malicious application[5].

Mentioned in [6] a power aware malware detection framework

that monitors, detects and analyses previously unknown

energy depletion threats. But these techniques are not suitable

for current scenario as today's mobile devices perform

functions almost equivalent to computers so they consume lot

of power. So, techniques that were used to detect malware by

the amount of power a particular application consumes are

obfuscated now.

After that there were some researches that used static

techniques for malware detection. Technique used in [7]

extracts function calls from Android environment using

command readelf. This function call list is then compared with

malwares and classified with three algorithms and then

collaborative malware detection approach was used to extend

the results. Leonid Batyuk et al.[8] proposes a service that

access android market applications via static analysis and

provide detail reports to the user and then they describe a

means to mitigate security and privacy threats by applying

automated reverse engineering techniques and refactoring

binary application packages. Sanz et al. [9] extracted

permissions from applications and used machine learning

techniques to detect malware. They used Waikato

Environment for Knowledge Analysis(WEKA) and k-fold

cross validation to evaluate the performance of machine

learning classifiers.

There are other researches that used dynamic techniques to

detect malicious behaviour in an application. Enck et al.[10]

proposed a system called TaintDroid, that provided system

wide taint tracking. In this, applications are passed to Dalvik

VM where they are further processed and tracking is done at

four levels: variable-level, method-level, message-level, file-

level. These tracking techniques record any data that

originates from taint sources like from camera, location and

from other identifiers. Untrusted applications cannot execute

native methods directly as all native libraries are called from

virtual machine. At taint sink, all events that are marked as

taint are logged. False positives and false negative may occur

in taintdroid. Burguera et al.[11] used dynamic analysis for the

detection of malicious applications in their framework.

Framework consists of many components which complement

each other. Their main approach was to make a framework

that can easily distinguish between applications with same

name and versions but those behave differently(Trojan Horse).

Main component of this framework is a client application

named as "Crowdroid". This application monitors all the

system calls at kernel level. This framework uses

crowdsourcing system to obtain behaviour of applications.

Logs are created by using a tool Strace after behaviour of

application is analyzed. Strace collects all the system calls and

then these system calls are forwarded to remote server which

will then parse data and record information regarding these

system calls, as number of times each system call is used. By

using this information, a dataset of benign applications will be

created. The detection component uses K- means clustering

algorithm for all system calls dataset and will detect any

anomalous behaviour. Grace et al. (2012) [12] analyzed

applications both from official marketplace and unofficial

marketplace. Their main focus was to process maximum

number of applications in minimum number of time and to

distinguish them as malicious or benign. They performed

Two-Order risk analysis. In first order risk analysis, they

directly identify applications in high and medium risk

categories. During first order analysis, an application is of

high risk if it exploit platform level vulnerability in kernel and

an application is of medium risk if it charges money from the

user or upload any private information and other credentials of

the user on the remote server. In second order risk analysis,

further investigation is performed to uncover any suspicious

behaviour of an application. In this phase, analysis will be

performed to detect an application that remains hidden in first

phase or any application that might be encrypted. Portokalidis

et al.[13] introduced a framework in which all analysis and

computations related to security are moved to cloud that is on

the remote server. That server has multiple copies of mobile

phones that run on emulators. A tracer is located in the

smartphone of user that records all the important information

which is required to replay that particular application on the

server. The recorded information is sent to the replayer, which

is located on cloud. Replayer replays whole application in the

emulator. During replay of an application various security

checks can be deployed such as dynamic analysis can be done

there, antivirus scanning, system call anomaly detection or

memory scanners. Su et al. [14] collected two sets of features

by dynamically analyzing new applications. These two sets of

features are system calls and network traffic traces. For system

call monitoring Strace was used and it restricted itself to 15

activities that were associated with process, input and output

activities and memory. To capture network traffic they used

tcpdump tool. The accuracy rate of their method was 94.2%

for J48 and 99.2% for RandomForest.

3. DATASET
The authenticity of any malware detection system depends

upon the dataset quality which is being used to test the system.

We have collected total 219 applications from various sources.

Benign applications are taken from official android market

and malicious are taken from a public source.

3.1.1 Benign dataset
Benign applications are taken from Google PlayStore[3]. They

are mixture of applications from various categories of games,

music, news, entertainment, Image Viewers, Maps and

Recorders. There are total 107 benign applications. Efforts are

being made to maintain the diversity among the applications

collected.

3.1.2 Malicious dataset
Malicious applications are taken from publically available

repository of all malwares for android phones - Contagio

Mobile Malware MiniDump[4]. These malwares belong to

Virus, Bots, Worms, Trojans, Rootkits, Spyware, Backdoors,

Adware categories. There are total 112 malicious applications.

Malicious applications are taken in large quantity for better

training and detection so that more accurate results can be

obtained. Most of the malicious applications consists of Trojan

horses/Viruses.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.17, July 2015

24

4. FRAMEWORK
For detecting malicious applications, both static analysis and

dynamic analysis will be used and then features will be

extracted by using both of these techniques and lastly will use

WEKA(Waikato Environment for Knowledge Analysis)[15]
to train machine learning classifiers and to validate our result

using k-fold cross validation. First step will be of extracting

features using static analysis then in second step we will use

dynamic analysis and lastly machine learning will be used.

4.1 Static Analysis
In this step, permissions of an application will be extracted.

Permissions will be extracted from Manifest file by using

aapt(Android Asset Packaging Tool). When user downloads

application from any of the application store he is presented

with a list of permissions during installation of that

application. It is upto him whether to accept those permissions

or decline them. If user accepts those permissions then

application will be installed and if user decline those

permissions application will not install. Mostly users accepts

all permission without even looking what that permission list

includes. Moreover if user find any permission suspicious he

has no other option to remove that permission from the list of

given permissions, user only can either accept whole list or

decline whole list of permissions.

In static analysis, we will extract permissions from Android

Manifest.xml file by using aapt and figure out following

things:

i. Number of permissions used by each application

ii. List of permissions that are asked by an application

Permissions can be extracted from an application package

without executing that application. During static analysis we

are finding number of permissions that are used by both

benign applications and malicious applications and if there is

any difference in the number of permissions they ask. Number

of permissions that are asked by both benign applications and

malicious applications does not vary that much as shown in

Figure 2.

Secondly, we will analyse the list of permissions asked by an

application and will find out the difference between

permissions asked by a benign application and by a malicious

application. We will find out which extra permissions

malicious applications will ask. There is also not much

difference in the permission list that is used by malicious

applications and benign applications. Both use almost same

set of permissions but there are some malicious applications

that use only single permission.

We used following command to extract features from an

application package:

./aapt dump permissions <sample file location>

Figure 2: Number of permissions for benign and malicious

applications

4.2 Dynamic Analysis
Dynamic Analysis will be done by tracing system calls.

Whenever an application executes it makes use of various

system calls to perform its functions. Things that will

differentiate between benign applications and malicious

applications are:

i. Number of system calls that are used by both benign

and malicious applications?

ii. List of system calls used by both malicious and

benign applications

System calls for both benign and malicious applications are

extracted by using Strace (System Tracer) tool[16]. By tracing

system calls with the help of Strace we will get list of all the

system calls used by a particular application. Then the

unnecessary system calls are filtered out and all the necessary

system calls will be recorded. Then comparison of those

system calls will be made based on above points to find out

which system calls benign applications use and which system

calls malicious applications use. Figure 3 shows the number

of system calls that are being used by both benign and

malicious applications.

4.3 Machine Learning
Once all the features are extracted by using both static and

dynamic analysis, next step is to provide input of these

features to a machine learning tool that will use different

classifiers and will validate our method. We will use

supervised machine learning for this purpose. Tool that we

will use for all this purpose is WEKA. WEKA will be trained

first by providing all the extracted features.

Figure 3: No of system calls used by benign and malicious

applications

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.17, July 2015

25

4.3.1 Classifiers used
We will use following four machine learning classifiers for

supervised machine learning:

i. SimpleLogistic

ii. NaiveBayes

iii. SMO

vi. RandomTree

Firstly, we will validate all the permissions that were

extracted by static analysis and will check accuracy with each

classifier, then all system calls will be validated and their

accuracy is checked individually, then as a last step we will

combine both of these features and will compare all results.

k-fold cross validation: To check the performance of all the

classifiers, k-fold cross validation is used and we took k =10.

So, whole dataset is divided 10 times into 10 different

learning sets which means 90% of total dataset will be used

for training and 10% of total data will be used for testing.

With each classifier mentioned in the above table we tested k-

fold cross validation with k =10.

4.4 Results Obtained
Once all data is given as input to WEKA, we will use all

classifiers one by one to check results.

4.4.1 Validating data obtained from static analysis

First of all, dataset of all the permissions obtained by static

analysis is made. Two attributes are taken to make dataset of

permissions, those attributes are:

i. Number of permissions that are asked by each application.

ii. Permission's name.

Results that are obtained using all the above classifiers are

shown in Table 1.

4.4.2 Validating Data Obtained from Dynamic Analysis:

Firstly, dataset of all the system calls which are obtained

through dynamic analysis is made. Two attributes that are

used to make dataset of system calls are:

i. System call name.

ii. Number of system calls used by each file.

Results that are obtained by using all the above classifiers are

shown in Table 2.

Table 1: Comparing results of all classifiers for static

analysis

 Results

classifiers

Accuracy True

Positive

Rate

False

Positive

Rate

SimpleLogistic 68.94% 0.68 0.29

NaiveBayes 59.81% 0.59 0.41

SMO 69.86% 0.69 0.28

RandomTree 54.79% 0.54 0.47

Table 2: Comparing results of all classifiers for dynamic

analysis

Results

Classifier

Accuracy True

Positive

Rate

False

Positive

Rate

SimpleLogistic 57.07% 0.57 0.44

NaiveBayes 60.27% 0.60 0.39

SMO 60.73% 0.60 0.40

RandomTree 62.10% 0.62 0.39

In the above steps, we have analysed permissions and system

calls separately on machine learning classifiers, now we will

combine both of these parameters and will validate them in a

single run on above mentioned classifiers. Table 3 will

combine all the results which we obtained after validating

permissions and system calls solely and then after combining

them.

After comparing all the results, we obtained maximum

accuracy when we combined both parameters that is system

calls and permissions except in case of SimpleLogistic

classifier where maximum accuracy is 68.94% in case of

static analysis when we validated permissions solely.

Table 3: Comparing all results

Results

Classifiers

Accuracy

Static

Analysis

Dynamic

Analysis

Combined

results

SimpleLogistic 68.94% 57.07% 65.29%

NaiveBayes 59.81% 60.27% 65.29%

SMO 69.86% 60.73% 70.31%

RandomTree 54.79% 62.10% 54.79%

5. CONCLUSION
We have come across various malware detection techniques

that uses either static detection techniques that can be easily

obfuscated or those that use only dynamic detection

techniques, which are also not a complete solution and then

made this model which combine features of both static

analysis and dynamic analysis and machine learning

algorithm. All these techniques are combined so to obtain

maximum accuracy in detecting malicious samples.

6. FUTURE WORK
Malware detection techniques should be improved as

polymorphic malwares are increasing day by day. As a future

work for this model of malware detection, some more

dynamic features can be extracted to improve correctness of

the system. More samples will be taken and tested so to

improve the accuracy of given model. Instead of machine

learning classifier various techniques of data mining and

artificial intelligence can be used to differentiate between

benign and malicious applications. This approach can also be

made light weight, so that it can execute on real smartphone

and use minimum resources.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.17, July 2015

26

7. REFERENCES

[1] IDC data. Available:

http://www.idc.com/prodserv/smartphone-os-market-

share.jsp

[2] Cabir, Smartphone Malware. Available: http://www.f-

secure.com/v-descs/cabir.shtml

[3] Google PlayStore. Available:

https://play.google.com/store

[4] Malware Repository,

http://contagiominidump.blogspot.com

[5] Thomas Zefferer, Peter Teufl, David Derler, Klaus

Potzmader Alexander Oprisnik, Hubert Gasparitz and

Andrea Hoeller "Power Consumption-based Application

Classification and malware Detection on Android Using

Machine-Learning Techniques" in FUTURE

COMPUTING 2013

[6] Hahnsang Kim, Joshua Smith, Kang G. Shin "Detecting

energy greedy anomalies and mobile malware variants"

in MobiSys'08

[7] Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther

Schmidt, Jan Clausen, Osman Kirazy, Kamer Ali

Y¨uksely, Seyit Ahmet Camtepe, and Sahin Albayrak

"Static analysis of executables for collaborative malware

detection on android" in Communications, 2009. ICC

'09. IEEE International Conference

[8] Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe,

Karsten Raddatz, Aubrey-Derrick Schmidt, and Sahin

Albayrak "Using Static Analysis for Automatic

Assessment and Mitigation of Unwanted and Malicious

Activities Within Android Applications" in Malicious

and Unwanted Software (MALWARE), 2011 6th

International Conference

[9] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-

Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez.

"PUMA: Permission Usage to Detect Malware in

Android", in International Joint Conference CISIS’12-

ICEUTE´12-SOCO´12 Special Sessions.

[10] Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.,

McDaniel, P., Sheth, A.N.: "TaintDroid: An Information-

Flow Tracking System for Realtime Privacy Monitoring

on Smartphones" in: Proceedings of the 9th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI) (Oct 2010).

[11] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011).

"Crowdroid: Behavior-based malware detection system

for Android" in 2011 ACM CCS Workshops on Security

and Privacy in Smartphones and Mobile Devices

(SPSM’11), 17-21 October 2011, Chicago, Illinois, USA.

[12] Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X.

(2012). "RiskRanker: scalable and accurate zero-day

Android malware detection." in The 10th International

Conference on Mobile Systems, Applications, and

Services (MobiSys’12), Low Wood Bay, Lake District,

United Kingdom

[13] Portokalidis, G., Homburg, P., Anagnostakis, K., and

Bos, H.: "Paranoid Android: Versatile protection for

smartphones" in ACSAC'10, Dec. 2010.

[14] Su, X., Chuah, M., Tan, G."Smartphone dual defense

protection framework: Detecting malicious applications

in android markets" in: Mobile Ad-hoc and Sensor

Networks (MSN), 2012 Eighth International Conference

on, pp. 153-160 (2012).

[15] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, Ian H. Witten (2009); The

WEKA Data Mining Software: An Update; SIGKDD

Explorations, Volume 11, Issue 1.

[16] Strace, Available: http://en.wikipedia.org/wiki/Strace

IJCATM : www.ijcaonline.org

