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ABSTRACT 

Mobile Phones have become an important need of today. The 

term mobile phone and smart phone are almost identical now -

a-days. Smartphone market is booming with very high speed. 

Smartphones have gained such a huge popularity due to wide 

range of capabilities they offer. Currently android platform is 

leading the smartphone market. Android has gained an 

overnight popularity and became the top OS among its 

competitor OS. This eminence attracted malware authors as 

well. As android is an open source platform, it seems quite 

easy for malware authors to fulfill their illicit intentions. In 

this paper a new technique will be introduced to detect 

malware. This technique detects malware in android 

applications through machine learning classifier by using both 

static and dynamic analysis. This technique does not rely on 

malware signatures for static analysis but instead android 

permission model is used. Under dynamic analysis, system 

call tracing is performed. Using both static and dynamic 

techniques along with machine learning provides all in one 

solution for malware detection.  The technique used by us is 

tested on various benign samples collected from official 

android market (Google Play Store) and on various malicious 

applications. 
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1. INTRODUCTION 
Smartphones are used worldwide. Smartphones provide so 

many features now a days that they are almost equivalent to 

mini computers. Smartphones facilitate us in many areas like 

short message service, multimedia messaging service, email, 

video calling, GPS navigation, voice dictation, voice activated 

personal assistant and now they take care of our health as 

well, by containing various applications and sensors that helps 

us in keeping track of our health related problems. There are 

many operating systems present in the smartphone market but 

android leads them. Android platform was launched by 

Google and Open Handset Alliance in September 23, 2008 

and since then it got an overnight popularity because of its 

user friendliness and ease of developing and publishing 

applications in android market. Android has total share of 

78% in smartphone market in first quarter of 2015 as per 

reports of International Data Corporation(IDC)[1](Figure 1). 

Open source availability and popularity of android pleased 

malware authors as well. As android has largest share in 

smartphone market, number of attacks on android platform 

are also very large as compare to other platforms. One reason 

for the increase in number of android malware is that  any 

developer can develop his application and publish it in 

android market. Though official android market Google 

PlayStore is still very much secure as compare to other third 

party markets. 

 

Figure 1: Android market share in first quarter of 2015 

Most of the malware come when user unknowingly install 

applications from third party application stores and many 

applications in these unofficial stores are the repackaged 

version of original applications that are present in Google 

PlayStore. First mobile malware Cabir[2] was detected in 

2004 for Symbian mobile operating system. Since then there 

was gradual increase in number of malwares in mobile market. 

Various techniques have been used so far to detect malware on 

mobile platform. Techniques that are used for detecting 

android malware can be classified into static techniques and 

dynamic techniques. Static techniques does not execute an 

application and detects if an application is malicious or not by 

checking various parameters like signature verification, 

permission analysis etc. Static techniques alone can be easily 

obfuscated. Dynamic techniques include analyzing the 

behavior of an application by executing it in a confined 

environment like in sandbox. In dynamic analysis some 

features of an application are extracted to find out if that 

application is benign or malicious. These features can be api 

tracing and network monitoring but they are also not all in one 

solution. Machine learning techniques have been used widely 

for malware detection.  

With all these details, our method for detecting malware on 

android platform use static analysis by analyzing permissions 

of an application and then that application is forwarded for 

dynamic analysis where its system calls are monitored. When 

both these features are extracted from 219 applications, then 

machine learning classifiers will be trained with the mentioned 

list of samples. Once those classifiers are trained, accuracy of 

our results will be validated . Benign applications are taken 

from Google's official android market that is Google 

PlayStore[3] and malicious applications are taken from 

publically available collection of android malware website, 

Contagio Mobile Malware Mini Dump[4]. 
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Rest of the work is organized as follows. Section 2 contains 

related work done in the field of malware detection. Section 3 

tells about the dataset that is collected from various sources. 

Section 4 includes framework used in this paper for malware 

detection. Section 5 concludes whole paper and section 6 

discusses future work that can be done to improve techniques 

of malware detection. 

2.  RELATED WORK 
Initial techniques that were used for detection of malware in 

android based phones were those of power consumption and 

battery usage. Application that uses maximum battery power 

and CPU resources was seen as malicious application[5]. 

Mentioned in [6] a power aware malware detection framework 

that monitors, detects and analyses previously unknown 

energy depletion threats.  But these techniques are not suitable 

for current scenario as today's mobile devices perform 

functions almost equivalent to computers so they consume lot 

of power. So, techniques that were used to detect malware by 

the amount of power a particular application consumes are 

obfuscated now. 

After that there were some researches that used static 

techniques for malware detection. Technique used in [7] 

extracts function calls from Android environment using 

command readelf. This function call list is then compared with 

malwares and classified with three algorithms and then 

collaborative malware detection approach was used to extend 

the results. Leonid Batyuk et al.[8] proposes a service that 

access android market applications via static analysis and 

provide detail reports to the user and then they describe a 

means to mitigate security and privacy threats by applying 

automated reverse engineering techniques and refactoring 

binary application packages. Sanz et al. [9] extracted 

permissions from applications and used machine learning 

techniques to detect malware. They used Waikato 

Environment for Knowledge Analysis(WEKA) and k-fold 

cross validation to evaluate the performance of machine 

learning classifiers. 

There are other researches that used dynamic techniques to 

detect malicious behaviour in an application. Enck et al.[10] 

proposed a system called TaintDroid, that provided system 

wide taint tracking. In this, applications are passed to Dalvik 

VM where they are further processed and tracking is done at 

four levels: variable-level, method-level, message-level, file-

level. These tracking techniques record any data that 

originates from taint sources like from camera, location and 

from other identifiers. Untrusted applications cannot execute 

native methods directly as all native libraries are called from 

virtual machine. At taint sink, all events that are marked as 

taint are logged. False positives and false negative may occur 

in taintdroid. Burguera et al.[11] used dynamic analysis for the 

detection of malicious applications in their framework. 

Framework consists of many components which complement 

each other. Their main approach was to make a framework 

that can easily distinguish between applications with same 

name and versions but those behave differently(Trojan Horse). 

Main component of this framework is a client application 

named as "Crowdroid". This application monitors all the 

system calls at kernel level. This framework uses 

crowdsourcing system to obtain behaviour of applications. 

Logs are created by using a tool Strace after behaviour of 

application is analyzed. Strace collects all the system calls and 

then these system calls are forwarded to remote server which 

will then parse data and record information regarding these 

system calls, as number of times each system call is used. By 

using this information, a dataset of benign applications will be 

created. The detection component uses K- means clustering 

algorithm for all system calls dataset and will detect any 

anomalous behaviour. Grace et al. (2012) [12] analyzed 

applications both from official marketplace and unofficial 

marketplace. Their main focus was to process maximum 

number of applications in minimum number of time and to 

distinguish them as malicious or benign. They performed 

Two-Order risk analysis. In first order risk analysis, they 

directly identify applications in high and medium risk 

categories. During first order analysis, an application is of 

high risk if it exploit platform level vulnerability in kernel and 

an application is of medium risk if it charges money from the 

user or upload any private information and other credentials of 

the user on the remote server. In second order risk analysis, 

further investigation is performed to uncover any suspicious 

behaviour of an application. In this phase, analysis will be 

performed to detect an application that remains hidden in first 

phase or any application that might be encrypted. Portokalidis 

et al.[13] introduced a framework in which all analysis and 

computations related to security are moved to cloud that is on 

the remote server. That server has multiple copies of mobile 

phones that run on emulators. A tracer is located in the 

smartphone of user that records all the important information 

which is required to replay that particular application on the 

server. The recorded information is sent to the replayer, which 

is located on cloud. Replayer replays whole application in the 

emulator. During replay of an application various security 

checks can be deployed such as dynamic analysis can be done 

there, antivirus scanning, system call anomaly detection or 

memory scanners. Su et al. [14] collected two sets of features 

by dynamically analyzing new applications. These two sets of 

features are system calls and network traffic traces. For system 

call monitoring Strace was used and it restricted itself to 15 

activities that were associated with process, input and output 

activities and memory. To capture network traffic they used 

tcpdump tool. The accuracy rate of their method was 94.2% 

for J48 and 99.2% for RandomForest. 

3. DATASET 
The authenticity of any malware detection system depends 

upon the dataset quality which is being used to test the system. 

We have collected total 219 applications from various sources. 

Benign applications are taken from official android market 

and malicious are taken from a public source.  

3.1.1 Benign dataset  
Benign applications are taken from Google PlayStore[3]. They 

are mixture of applications from various categories of games, 

music, news, entertainment, Image Viewers, Maps and 

Recorders. There are total 107 benign applications. Efforts are 

being made to maintain the diversity among the applications 

collected.  

3.1.2 Malicious dataset  
Malicious applications are taken from publically available 

repository of all malwares for android phones - Contagio 

Mobile Malware MiniDump[4]. These malwares belong to 

Virus, Bots, Worms, Trojans, Rootkits, Spyware, Backdoors, 

Adware categories. There are total 112 malicious applications. 

Malicious applications are taken in large quantity for better 

training and detection so that more accurate results can be 

obtained. Most of the malicious applications consists of Trojan 

horses/Viruses. 
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4.  FRAMEWORK 
For detecting malicious applications, both static analysis and 

dynamic analysis will be used and then features will be 

extracted by using both of these techniques and lastly will use 

WEKA(Waikato Environment for Knowledge Analysis)[15] 
to train  machine learning classifiers and to validate our result 

using k-fold cross validation. First step will be of extracting 

features using static analysis then in second step we will use 

dynamic analysis and lastly machine learning will be used.  

4.1 Static Analysis 
In this step, permissions of an application will be extracted. 

Permissions will be extracted from Manifest file by using  

aapt(Android Asset Packaging Tool). When user downloads 

application from any of the application store he is presented 

with a list of permissions during installation of that 

application. It is upto him whether to accept those permissions 

or decline them. If user accepts those permissions then 

application will be installed and if user decline those 

permissions application will not install. Mostly users accepts 

all permission without even looking what that permission list 

includes.  Moreover if user find any permission suspicious he 

has no other option to remove that permission from the list of 

given permissions, user only can either accept whole list or 

decline whole list of permissions. 

In static analysis, we will extract permissions from Android 

Manifest.xml file  by using aapt and figure out following 

things: 

i. Number of permissions used by each application 

ii. List of permissions that are asked by an application 

Permissions can be extracted from an application package 

without executing that application. During static analysis we 

are finding number of permissions that are used by both 

benign applications and malicious applications and if there is 

any difference in the number of permissions they ask. Number 

of permissions that are asked by both benign applications and 

malicious applications does not vary that much as shown in 

Figure 2.  

Secondly, we will analyse the list of permissions asked by an 

application and will find out the difference between 

permissions asked by a benign application and by a malicious 

application. We will find out which extra permissions 

malicious applications will ask. There is also not much 

difference in the permission list that is used by malicious 

applications and benign applications. Both use almost same 

set of permissions but there are some malicious applications 

that use only single permission. 

We used following command to extract features from an 

application package: 

./aapt dump permissions <sample file location>  

 

 

Figure 2:  Number of permissions for benign and malicious 

applications 

4.2 Dynamic Analysis 
Dynamic Analysis will be done by tracing system calls. 

Whenever an application executes it makes use of various 

system calls to perform its functions. Things that will 

differentiate between benign applications and malicious 

applications are: 

i. Number of system calls that are used by both benign 

and malicious applications? 

ii. List of system calls used by both malicious and 

benign applications 

System calls for both benign and malicious applications are 

extracted by using Strace (System Tracer) tool[16]. By tracing 

system calls with the help of Strace we will get list of all  the 

system calls used by a particular application. Then the 

unnecessary  system calls are filtered out and all the necessary 

system calls will be recorded. Then comparison of those 

system calls will be made based on above points to find out 

which system calls benign applications use and which system 

calls malicious applications use. Figure 3 shows the number 

of system calls that are being used by both benign and 

malicious applications. 

4.3 Machine Learning 
Once all the features are extracted by using both static and 

dynamic analysis, next step is to provide input of these 

features to a machine learning tool that will use different 

classifiers and will validate our method. We will use 

supervised machine learning for this purpose. Tool that we 

will use for all this purpose is WEKA. WEKA will be trained 

first by providing all the extracted features. 

 

Figure 3: No of system calls used by benign and malicious 

applications 
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4.3.1 Classifiers used 
We will use following four machine learning classifiers for 

supervised machine learning:  

i. SimpleLogistic  

ii. NaiveBayes  

iii. SMO 

vi. RandomTree  

Firstly, we will validate all the permissions that were 

extracted by static analysis and will check accuracy with each 

classifier, then all system calls will be validated and their 

accuracy is checked individually, then as a last step we will 

combine both of these features and will compare all results. 

k-fold cross validation: To check the performance of all the 

classifiers, k-fold cross validation is used and we took k =10. 

So, whole dataset is divided 10 times into 10 different 

learning sets which means 90% of total dataset will be used 

for training and 10% of total data will be used for testing. 

With each classifier mentioned in the above table we tested k-

fold cross validation with k =10. 

4.4 Results Obtained 
Once all data is given as input to WEKA, we will use all 

classifiers one by one to check results.  

4.4.1 Validating data obtained from static analysis  

First of all, dataset of all the permissions obtained by static 

analysis is made. Two attributes are taken to make dataset of 

permissions, those attributes are:  

i. Number of permissions that are asked by each application.  

ii. Permission's name.  

Results that are obtained using all the above classifiers are 

shown in Table 1. 

4.4.2 Validating Data Obtained from Dynamic Analysis: 

Firstly, dataset of all the system calls which are obtained 

through dynamic analysis is made. Two attributes that are 

used to make dataset of system calls are:  

i. System call name.  

ii. Number of system calls used by each file.  

Results that are obtained by using all the above classifiers are 

shown in Table 2. 

Table 1: Comparing results of all classifiers for static 

analysis 

           Results  

classifiers 

Accuracy True 

Positive 

Rate 

False 

Positive 

Rate 

SimpleLogistic 68.94% 0.68 0.29 

NaiveBayes 59.81% 0.59 0.41 

SMO 69.86% 0.69 0.28 

RandomTree 54.79% 0.54 0.47 

 

Table 2: Comparing results of all classifiers for dynamic 

analysis 

Results 

Classifier 

Accuracy True 

Positive 

Rate 

False 

Positive 

Rate 

SimpleLogistic 57.07% 0.57 0.44 

NaiveBayes 60.27% 0.60 0.39 

SMO 60.73% 0.60 0.40 

RandomTree 62.10% 0.62 0.39 

 

In the above steps, we have analysed permissions and system 

calls separately on machine learning classifiers, now we will 

combine both of these parameters and will validate them in a 

single run on above mentioned classifiers. Table 3 will 

combine all the results which we obtained after validating 

permissions and system calls  solely and then after combining 

them. 

After comparing all the results, we obtained maximum 

accuracy when we combined both parameters that is system 

calls and permissions except in case of SimpleLogistic 

classifier where maximum accuracy is 68.94% in case of 

static analysis when we validated permissions solely. 

Table 3: Comparing all results 

Results 

Classifiers 

Accuracy 

Static 

Analysis 

Dynamic 

Analysis 

Combined 

results 

SimpleLogistic 68.94% 57.07% 65.29% 

NaiveBayes 59.81% 60.27% 65.29% 

SMO 69.86% 60.73% 70.31% 

RandomTree 54.79% 62.10% 54.79% 

5. CONCLUSION 
We have come across various malware detection techniques 

that uses either static detection techniques that can be easily 

obfuscated or those that use only dynamic detection 

techniques, which are also not a complete solution and then 

made this model which combine features of both static 

analysis and dynamic analysis and machine learning 

algorithm. All these techniques are combined so to obtain 

maximum accuracy in detecting malicious samples.  

6. FUTURE WORK 
Malware detection techniques should be improved as 

polymorphic malwares are increasing day by day. As a future 

work for this model of malware detection, some more 

dynamic features can be extracted to improve correctness of 

the system. More samples will be taken and tested so to 

improve the accuracy of given model. Instead of machine 

learning classifier various techniques of data mining and 

artificial intelligence can be used to differentiate between 

benign and malicious applications. This approach can also be 

made light weight, so that it can execute on real smartphone 

and use minimum resources. 
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