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ABSTRACT 

Today’s important task is to clean data in data warehouses 

which has complex hierarchical structure. This is possibly 

done by detecting duplicates in large databases to increase the 

efficiency of data mining and to make it effective. Recently 

new algorithms are proposed that consider relations in a single 

table; hence by comparing records pairwise they can easily 

find out duplications. But now a day the data is being stored in 

more complex and semi-structured or hierarchical structure 

and the problem arose is how to detect duplicates on XML 

data. Also due to differences between various data models, the 

algorithms which are for single relations cannot be applied on 

XML data. The objective of this project is to detect duplicates 

in hierarchical data which contain textual data and multimedia 

data like images, audio and video. It also focuses on 

eliminating the duplicates by using elimination technique such 

as delete. Here Bayesian network is used with modified 

pruning algorithm for duplicate detection, and experiments are 

performed on both artificial and real world datasets. The new 

XMLMultiDup method is able to perform duplicate detection 

with high efficiency and effectiveness on multimedia datasets. 

This method compares each level of XML tree from root to 

the leaves computing probabilities of similarity by assigning 

weights. It goes through the comparison of structure, each 

descendant of both datasets and find duplicates despite 

difference in data. 

General Terms 

Duplicate detection, Data cleaning. 
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1. INTRODUCTION 
XML is popular for data storage in data warehouses, but it 

comes with errors and inconsistencies to real-world data [1], 

hence, there is a need of XML data cleansing [2]. By 

recognizing and eliminating duplicates in XML data [3] could 

be the solution; thus strategy based on Bayesian Network to 

detect duplicates and the method to eliminate that duplicates 

can be used with pruning technique. 

Various algorithms [4] and techniques have been proposed 

and implemented for duplicate detection [1] on single 

relations. But XML data [5] has complex and hierarchical 

structure therefore the techniques which are being used for 

single relations cannot be applied on XML data. Although 

there is a long line of work on identifying duplicates in 

relational data, only a few solutions focuses on duplicate 

detection in more complex structures [6], like XML databases. 

Moreover hierarchical data which contain multimedia data 

like images and videos has very difficult structure and 

detecting duplication in such a data become complicated. The 

proposed method is a novel method for duplicate detection in 

XML data. Detecting duplicates[7] in hierarchical multimedia 

data is more challenging than detecting duplicates in relational 

and simple XML data, because comparing tuples and 

computing probabilities has no ambiguity of text but the data 

such as images and videos is more difficult because of its need 

of space on web for publishing and structural diversity. On the 

other hand, XML duplicate detection allows exploiting the 

hierarchical structure for efficiency in addition to 

effectiveness, which is not the case when detecting duplicates 

in simple data. Consider the two XML elements shown with 

hierarchical structure in Fig. 1. Both represent films objects 

and are labeled Films. These elements have three attributes, 

namely the name of film, release date and country where the 

film is released. These are tags within XML trees and they 

nest further XML elements representing the contents of film. 

As film contains series of several images or posters and 

audios, the <film1> tag contains the paths of all these contents 

where the images and audios are being stored. All leaf 

elements have a text which may be simple value or the path of 

any multimedia file which stores the actual multimedia data. 

For instance, Poster1.jpg in both trees may be same posters of 

film or may not be. Again audio1.mp3 may be different in 

second tree if the film is found not duplicate of film in first 

tree. 

In this example, the goal of duplicate detection is to detect that 

both Films are duplicates, even if values within tree are 

different. To do this, first compare the corresponding 

structure, values and contents of both objects. In this work, 

this paper proposes that if structure is found similar first then 

next step is to find similarity of the values and further proceed 

for the duplicate detection in multimedia data. Also if 

multimedia data in both trees found similar then there is 

elimination to the trees so as to minimize size of memory 

space within data warehouses or databases.  

Contributions 
This proposed method, present a probabilistic duplicate 

detection method for hierarchical multimedia data called 

XMLMultiDup. This method considers all parameters and 

aspects for comparison of XML datasets which contain 

multimedia database like images, audio and videos. The 

algorithm presented here extends work in [1] significantly 

improving level of detecting duplication and efficiency. 

The main contribution compared to previous work and 

objectives of proposed system are 1) to detect duplicates in 

hierarchical data which contain multimedia data e.g. images, 

audio and video using XMLMultiDup method. 2) To compare 
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datasets according to user choice and display results e.g. only 

structure or contents to be compared. 3) To increase efficiency 

and effectiveness of duplicate detection in comparison of 

multimedia databases. 4) To eliminate duplicates, to reduce 

size of databases in data warehouses. 5) To consider all 

probabilities of XML trees for comparison for example part of 

tree, structure of trees, levels of tree, values and contents 

within trees  and complete subtrees to find duplications. 

Structure 

This paper is organized as follows: Section 2 presents related 

work. Section 3 summarizes methodology of the proposed 

system. The strategy of proposed system is presented in 

Section 4. Working environment and results of proposed 

system over existing system using artificial and real world 

dataset are presented in Section 5. Finally, Section 6 and 7 

concludes and presents suggestions for future work 
respectively. 

 

 

 
 

Figure 1: Two XML elements U and U’ that represent a 

same Film. Nodes in circle are labeled by their XML tag 

name. 

2. RELATED WORK 
In [8] Ananthakrishna has  exploited  dimensional  hierarchies  

typically associated  with  dimensional  tables  in  data  

warehouses  to develop  duplicate  elimination algorithm  

called  Delphi,  which  significantly  reduces  the number of 

false positives without missing out on detecting duplicates.  

He  rely  on  hierarchies  to  detect  an  important class of  

equivalence  errors  in  each  relation,  and  to efficiently 

reduce the number of false positives. 

Carvalho and Silva proposed a similarity-based approach in 

[9] to identifying similar identities among objects from 

multiple Web sources. This approach works like the join 

operation in relational databases. In the traditional join 

operation, the equality condition identifies tuples that can be 

joined together. In this approach, a similarity function that is 

based on information retrieval techniques takes the place of 

the equality condition. This paper presents four different 

strategies to define the similarity function using the vector 

space model and describes experimental results that show, for 

Web sources of three different application domains, this 

approach is quite effective in finding objects with similar 

identities, achieving precision levels above 75%. 

DogmatiX[10] is a generalized framework for duplicate 

detection, dividing the problem into three components: 

candidate definition defining which objects has to be 

compared, duplicate definition defining when two duplicate 

candidates are actually duplicates, and duplicate detection 

means how to efficiently find those duplicates. The algorithm 

is very effective in the first scenario: Edit distance should 

compensate typos, and similarity measure is specifically 

designed to identify duplicates despite missing data. On the 

other hand, synonyms, although having the same meaning, are 

recognized as contradictory data and the similarity decreases. 

They are more difficult to detect without additional 

knowledge, such as a thesaurus or a dictionary. Thus, second 

scenario yields poorer results. 

Milano Propose a novel distance measure for XML data, the 

structure aware XML distance [11] that copes with the 

flexibility which is usual for XML files, but takes into proper 

account the semantics implicit in structural schema 

information. The structure aware XML distance treats XML 

data as unordered. The edit distance between tokens t1 and t2 

is the minimum number of edit operations (delete, insert, 

transpose, and replace) required to change t1 to t2; and 

normalize this value with the sum of their lengths 

In [12] author has proposed a novel method for detecting 

duplicates in XML which has structural diversity. This 

method uses a Bayesian network to compute the probability of 

any two XML objects being duplicates. Here author has 

considered not only children elements but also complete 

subtrees. Computing all probabilities, this method performs 

accurately on various datasets. Figure 1 shows two XML trees 

which contain duplicate data although value represented 

differently. 

Base for proposed system presented in [1], has extended work 

done in [12] by adding pruning algorithm to improve the 

efficiency of the network evaluation. This pruning technique 

is used to reduce the no. of comparisons where the pairs which 

are incapable of reaching a given duplicate probability 

threshold are discarded.  It requires user to give input, since 

the user only needs to provide the attributes to be compared, 

their respective default probability values, and a similarity 

value. However, the system worked in good manner that it 

allows to use different similarity measures and different 

combinations of probabilities.  

3. METHODOLOGY 
A method described in [1], the author has extended his 

previous work by increasing efficiency and effectiveness for 
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duplicate detection in hierarchical data, but proposed system 

will be useful for both simple and multimedia data. Here the 

input will be two XML trees or datasets; for this real world 

data and artificial dataset is used.  The first phase of this 

XMLMultiDup method is to input XML data for comparison 

and duplicate detection. The choice of user will be taken for 

comparison i. e. whether to compare structures of tree, values 

of tree or contents of the tree. The second contribution of 

proposed system is to input dataset which contain any type of 

multimedia data which contain images, audio or videos. The 

system first computes prior, computational and final 

probabilities using Bayesian Network. Algorithm 1 is used for 

this whole recursive process and shown in figure 3, but there 

is an issue of complexity of O (n X n’). Hence a pruning 

technique is used which reduces no. of comparisons using 

pruning algorithm. If structure and values found duplicate, the 

contents of multimedia data will be later compared by MD5 

hash Key algorithm, which can be replaced by any signature 

based algorithm to compare multimedia data. Figure 2 shows 

the architecture of proposed system, which includes 

combination of three algorithms.  

1. Bayesian network  

2. Proposed Pruning Algorithm 

3. MD5 Hash key Algorithm  

Here the proposed system uses all these algorithms but needs 

small user intervention. User has to provide the parameter by 

which comparison will perform. And second the action to be 

performed after duplicate detection which is elimination 

operation. Next section will describe all algorithms and 

example which show how the original trees shown in figure 1 

will be converted to Bayesian network. 

4. DESIGN AND SPECIFICATION 

4.1 Bayesian network Construction 
This algorithm assumes that two trees can only be duplicates 

if they are of the same type. Also, two nodes can be compared 

only if they are of the same type. In example of figure 1, the 

real-world types are Tfilms = movie, Timage = posters, 

Taudio= audioclip. For simplicity, in the subsequent 

definitions, it is necessary to assume that nodes with the same 

real world type also have the same tag. That is, a relabeling 

step has preceded the construction of the BN. To illustrate this 

idea, consider the goal of detecting that both films shown in 

Fig. 1 are same. This means that the two movies objects, 

represented by nodes tagged films, are duplicates depending 

on whether or not their children nodes, tagged name, date, 

film and country and their values are same. Furthermore, the 

nodes tagged image and audio are duplicates depending on 

whether or not their contents are duplicates. Here the path 

represents value and the file contained in path has the content 

of node.  

 
Figure 2: Architecture of Proposed System 

 

Algorithm 1 BNGen(XTreeSet U, XTreeSet U’) 

Input: U = {(t1, V1, C1), (t2, V2, C2), . . . }, 

            U’ = {(t’1, V’1, C’1), (t’2, V’2, C’2), . . } 

Output: A directed graph G = (N, E) 

/* -------------- Initialization --------------- */ 

/* Root node tags of all XML trees in U and U’*/ 

1. S ← {t1, t2, . . .}; 

2. S’ ← {t’1, t’2 , . . .}; 

/* Tags in S and S’ representing real-world type r */ 

3. Sr = {ti ∈ S|Tti 3 = r}; 

4. S’r = {t’i∈ S’|Tt’i = r}; 

/* -------------- BN Construction --------------- */ 

5. foreach type r ∈ S ∪ S’  do 

        /* Nodes with single occurrence */ 

6. if |Sr| ≤ 1 and |S’r | ≤ 1 then 

7. Insert into N a node tii; 

8. if Vi ∪ V’i ≠ Ø  then 

9. Insert into N a node Vtii  ; 

10. Insert into E an edge from this node to node tii; 

11. if Ci ∪ C’i ≠ Ø    then 

12. Insert into N a node Ctii ; 

13. Insert into E an edge from this node to node tii; 

14. if node Vtii  was created then 

15. foreach attribute a ∈ Vi ∪ V’i  do 

16. Create a node tii[a]; 

17. Insert an edge from this node to node Vtii; 

18. if node Ctii was created then 

19. G’ = (N’,E’) ← BNGen(Ci,C’i); 

20. foreach node n ∈ N’  do 

21. Insert n into N; 

22. foreach edge e ∈ E’ do 

23. Insert e into E;  

24. foreach node n ∈ N’  without outgoing edges do 

25. Insert an edge in E from n to node Ctii ; 

        /* Nodes with multiple occurrences */ 

26. else if Sr or S’r contain more than one tag each then 

27. Insert into N a node t∗∗; 

28. foreach tag ti ∈ Sr do 

29. Insert into N a node ti∗; 

30. Insert into E an edge from this node to node t∗∗; 

31. foreach tag t’j ∈ S’r do 

32. Insert into N a node tij ; 
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33. Insert into E an edge from this node to node ti∗; 

34. foreach newly created node tij do 

35. Similar to processing of node tii (lines 8-25),  

second subscript i is replaced by j… 

        In summary 

1.   Input: Two sets of xml trees u and u’. 

      u contains (t,v,c) and u’ contains(t’,v’,c’)                       

      where t-root,v-(attribute,value),c-sub tree 

5 If t has value node then create a node of label V and    

      place it as left child of t. 

6 Place the attributes value as a child of node V 

7 If t has children, create a node of label c and repeat step 1 

8 If nodes are of same type, create a node ac and create  

      children as equal to number of same type in left tree.    

      Repeat the step 1. 

9 Bayesian Network is constructed. 

Therefore there is next step to verify path and contents of the 

specified multimedia database. This process goes on 

recursively until the leaf nodes are reached. In following 

trees U and U’ of Fig. 1, this process can be represented 

by the Bayesian Network of Fig. 2. 

Figure 3: BN to compute similarity of trees in Fig. 1. 

While the system finds any path for multimedia data then it 

will be compared by using MD5 Hashkey algorithm. To 

construct the above tree, the system will use following 

probabilities: 

Four types of conditional probabilities:  

(1) The probability of the values of the tags being duplicates, 

given that each individual pair of values contains duplicates 

data;  

(2) The probability of the descendant tags being duplicates, 

given that each individual pair of descendants is duplicates;  

(3) The probability of two tags being duplicates given that 

their values and their descendant are same; and  

(4) The probability of a set of nodes of the same type being 

duplicates given that each pair of individual tags in the set are 
same.  

4.2 Proposed Pruning Technique 
To improve the efficiency and effectiveness of algorithm 1, 

following algorithm is used which uses some factors which 

effects on time of execution of algorithm 1. Such as order of 

nodes on pruning, features such as uniqueness, content length, 

format, absence and occurrence features.  

Algorithm for Proposed Pruning Method 

Algorithm: XMLMulDup(N) 

Input: The node or subtree N for which algorithm will detect 

duplicates. 

Output: Exact and Partial Matching Pair(s) of N’ with N and 

their count. 

1. WN ← 0 {Initially Weight of selected node N} 

2. if N is Value or N is Value Node then 

3. WN ← getSimilarityScore(N) {Similarity Value of N} 

4. else if N is a Sub Tree then 

5. P ← getParents(N) {collect all Parents P of node N) 

6. for each parent pi ∈ P do 

7. if pi is value node then 

8. WN ← WN + pi’s similarity Value. 

9. else if it’s value is a Multimedia Data then 

10. calculate Hash Key matching status and 

11. WN ← WN+Status value. 

12. else 

13. go to step 5. and calculate WN 

14. end if 

15. end for 

16. end if 

17. P(N) ← WN/No. of parents.{ calculate probability of N} 

18. if P(N) = 1 then 

19. Show Matching Pair as Exactly matched. 

20. else if P(N) ≥ 0.6 then 

21. Show Matching Pair as Partially matched. 

22. else 

23. End network evaluation. 

24. end if 

25. return count of Exact and Partial or none matched pairs. 

4.3 MD5 Hash key Algorithm 
The proposed system will use this algorithm for comparing the 

contents of multimedia path contained in both the trees. All 

previous methods just detect the textual and structural 
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duplications. But the proposed method extends the duplicate 

detection within the multimedia databases, which are included 

in datasets. In construction of Bayesian network tree, there will 

be computation of probabilities of node values being 

duplicates. Next the pruning algorithm is used for increasing 

the efficiency and effectiveness of the Bayesian network 

algorithm. But while doing this some datasets may contain the 

multimedia databases and it is needed to compare them for 

finding duplicate.  

MD5 is specifically used to generate hash keys of both files 

each present in individual tree. It then compares tree and check 

for duplication. Means even if path are different may the files 

are same. Hence by using MD5, duplicates within multimedia 

files which are included in XML datasets are detected.. 

The main advantage of using this algorithm is it finds hash key 

for given four conditions 1) the path of multimedia is same but 

contents are different, 2) the path of multimedia is different but 

contents are same and 3) the path of multimedia is different 

and contents are also different. 

5. EXPERIMENTS ON DATASETS 

5.1 Datasets  
Tests were performed using two different data sets, having 

simple text and having multimedia data representing different 

data domains. The first two data sets, CD2 and Cora consist of 

XML objects taken from a real database and remaining two 

artificially polluted by inserting multimedia data. One more 

dataset i.e. CD which is artificially polluted and different 

types of errors, such as typographical errors, missing data, and 

duplicate erroneous data [6]. The data sets vary in size from 

9,763 objects (CD 2) through 1878 (Cora). All data sets 

contained objects nested in a hierarchy of up to three levels. 

The Cora and CD data sets are available at the Hasso Plattner 

Institute website.  

5.2 Experimental Setup  

In previous method the author has considered all attribute 

values as textual strings but proposed system will consider the 

attribute values as path of any multimedia database such as 

path of image, path of video or path of audio. Thus, the XML 

datasets which contain multimedia data is necessary as input 

for this system and it can be artificial dataset or real world 

dataset which contain multimedia data. The proposed system 

is implemented in integrated development environment of 

Microsoft Visual Studio 2010 and Dot Net Framework 4.0 

with windows platform and on Intel dual core CPU at          

1.9 GHz , 2 GB of RAM and 40 GB HDD. 

 

5.3 Results 
The precision and recall measures are applied to evaluate 

effectiveness. And for efficiency measure both XMLDup and 

XMLMultiDup algorithms are compared with respect to their 

runtime. The precision of both methods is high for the datasets 

which contain only textual data but XMLDup drops its 

precision when datasets contain any type of Multimedia data. 

While the proposed XMLMulDup method shows high 

precision for the same dataset with multimedia data. Fig. 3 

and fig. 4 shows the Precision/Recall results obtained for each 

experiment.  

When proposed system is used on Real datasets CD2 and 

Cora, the precision and recall graph curves are near 100 

percent as shown in fig. 3 and fig. 4. Both figures shows the 

precision/recall results obtained by proposed and existing 

method on real and artificially polluted dataset by adding 

multimedia data. The proposed system shows 100 percent of 

precision on multimedia data while this facility is not 

contributed by existing system.  

Table 1 presents the average precision on each dataset which 

is above 95 for proposed system and suddenly drops for 

existing system as it operate on multimedia data. R-precision 

is the precision taken at cut off R, where R is no. of duplicates 

in dataset. It shows the high precision when the path of value 

is same and contents are different and vice versa. 

 

Table 1. Performance Achieved Using Proposed Method on Real and Artificial Dataset 

Dataset 
Average Precision R-Precision Maximum Recall 

XMLDup XMLMulDup XMLDup XMLMulDup XMLDup XMLMulDup 

CD 2 96 99 82 82 99 99 

Cora 87 98 75 75 80 80 

MultiCD2 68 99 64 82 71 99 

MultiCora 52 98 56 75 68 80 

 

 
Figure 3: Comparison Result for XMLDup and 

XMLMulDup representing precision and recall values for 

CD2 Datasets. 

 

Table 2. Performance Achieved Using Proposed Method 

Dataset 
XMLDup 

(pf=1) 

XMLDup 

(pf=0.4) 
XMLMulDup 

Cora 00:02:41 00:02:04 00:01:06 

CD 2 02:07:17 00:48:32 00:03:38 

MultiCora 00:02:52 00:02:09 00:01:15 

MultiCD2 01:25:06 00:42:22 00:03:53 
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Table 3. Performance Achieved on Artificial Dataset CD 

after using proposed pruning algorithm 

Sorting strategy 
Time 

XMLDup XMLMulDup 

Unsorted 00:00:43 00:00:30 

Depth 00:00:43 00:00:32 

AvgSS 00:03:12 00:01:52 

Depth+ AvgSS 00:00:43 00:00:39 

 

 
Figure 4: Comparison Result for XMLDup and 

XMLMulDup representing precision and recall values for 

CORA Datasets. 

Table 2 shows the time performance values with respect to 

pruning factor of existing system and proposed system. It 

shows that if pruning factor is increased the runtime also 

increases but in proposed system there is no user intervention 

to provide pruning factor. Hence there is lossless strategy used 

for proposed system. It also shows the maximum recall 

achieved for each dataset which slightly drop for CD2 dataset 

when it contains multimedia data.  

Table 3 shows the runtime of both methods on CD which is 

artificial dataset polluted by some dirty data. It shows result 

on unsorted CD dataset and also compares with the result if 

test performed on dataset with respect to depth and average 

string size. When depth is considered, the node having more 

important information is kept nearer to the root, hence it is 

evaluated first. And average string size means the value 

having smaller string size is kept first so as to evaluate first 

i.e. cheaper comparison first and fast. Thus in both cases it 

shows the small improvement as compared to unsorted detests 

using both methods.   

6 CONCLUSION AND FUTURE WORK 
The new method XMLMultiDup presents a procedure for 

XML duplicate detection which contains various types of 

multimedia databases. Using a Bayesian network model, this 

method is able to accurately determine the probability of two 

XML objects in a given database being duplicates. This model  

is derived from the structure of the XML objects being 

compared and all probabilities are computed taking into 

account not only the values contained in the objects but also 

their internal structure. To improve the runtime efficiency of 

XMLMultiDup, a network pruning strategy is also used as 

basis. This XMLMultiDup can be applied in two ways. Direct 

on the XML datasets and Relational database. Second 

approach will need conversion of relations to the XML data 

and then go for first approach and further apply above 

discussed algorithms. 

The proposed method can be extended to avoid user 

intervention with high accuracy, effectiveness and efficiency. 

The use of domain dependent similarity measures for prior 

probabilities, extend the BN model construction algorithm to 

compare XML objects with different structures, experiment 

with more collections and different network configurations, 

and apply machine learning methods to derive the conditional 

probabilities, based on multimedia data. 
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