
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

15

Efficient Duplicate Detection and Elimination in
Hierarchical Multimedia Data

Manjusha R. Pawar

Department of Computer Engg.
Late G. N. Sapkal College of Engg.

Nashik,
Savitribai Phule Pune University, Pune, India.

J. V. Shinde
Department of Computer Engg.

Late G. N. Sapkal College of Engg.
Nashik,

Savitribai Phule Pune University, Pune, India.

ABSTRACT

Today’s important task is to clean data in data warehouses

which has complex hierarchical structure. This is possibly

done by detecting duplicates in large databases to increase the

efficiency of data mining and to make it effective. Recently

new algorithms are proposed that consider relations in a single

table; hence by comparing records pairwise they can easily

find out duplications. But now a day the data is being stored in

more complex and semi-structured or hierarchical structure

and the problem arose is how to detect duplicates on XML

data. Also due to differences between various data models, the

algorithms which are for single relations cannot be applied on

XML data. The objective of this project is to detect duplicates

in hierarchical data which contain textual data and multimedia

data like images, audio and video. It also focuses on

eliminating the duplicates by using elimination technique such

as delete. Here Bayesian network is used with modified

pruning algorithm for duplicate detection, and experiments are

performed on both artificial and real world datasets. The new

XMLMultiDup method is able to perform duplicate detection

with high efficiency and effectiveness on multimedia datasets.

This method compares each level of XML tree from root to

the leaves computing probabilities of similarity by assigning

weights. It goes through the comparison of structure, each

descendant of both datasets and find duplicates despite

difference in data.

General Terms

Duplicate detection, Data cleaning.

Keywords

XML Data, Bayesian network, Pruning.

1. INTRODUCTION
XML is popular for data storage in data warehouses, but it

comes with errors and inconsistencies to real-world data [1],

hence, there is a need of XML data cleansing [2]. By

recognizing and eliminating duplicates in XML data [3] could

be the solution; thus strategy based on Bayesian Network to

detect duplicates and the method to eliminate that duplicates

can be used with pruning technique.

Various algorithms [4] and techniques have been proposed

and implemented for duplicate detection [1] on single

relations. But XML data [5] has complex and hierarchical

structure therefore the techniques which are being used for

single relations cannot be applied on XML data. Although

there is a long line of work on identifying duplicates in

relational data, only a few solutions focuses on duplicate

detection in more complex structures [6], like XML databases.

Moreover hierarchical data which contain multimedia data

like images and videos has very difficult structure and

detecting duplication in such a data become complicated. The

proposed method is a novel method for duplicate detection in

XML data. Detecting duplicates[7] in hierarchical multimedia

data is more challenging than detecting duplicates in relational

and simple XML data, because comparing tuples and

computing probabilities has no ambiguity of text but the data

such as images and videos is more difficult because of its need

of space on web for publishing and structural diversity. On the

other hand, XML duplicate detection allows exploiting the

hierarchical structure for efficiency in addition to

effectiveness, which is not the case when detecting duplicates

in simple data. Consider the two XML elements shown with

hierarchical structure in Fig. 1. Both represent films objects

and are labeled Films. These elements have three attributes,

namely the name of film, release date and country where the

film is released. These are tags within XML trees and they

nest further XML elements representing the contents of film.

As film contains series of several images or posters and

audios, the <film1> tag contains the paths of all these contents

where the images and audios are being stored. All leaf

elements have a text which may be simple value or the path of

any multimedia file which stores the actual multimedia data.

For instance, Poster1.jpg in both trees may be same posters of

film or may not be. Again audio1.mp3 may be different in

second tree if the film is found not duplicate of film in first

tree.

In this example, the goal of duplicate detection is to detect that

both Films are duplicates, even if values within tree are

different. To do this, first compare the corresponding

structure, values and contents of both objects. In this work,

this paper proposes that if structure is found similar first then

next step is to find similarity of the values and further proceed

for the duplicate detection in multimedia data. Also if

multimedia data in both trees found similar then there is

elimination to the trees so as to minimize size of memory

space within data warehouses or databases.

Contributions
This proposed method, present a probabilistic duplicate

detection method for hierarchical multimedia data called

XMLMultiDup. This method considers all parameters and

aspects for comparison of XML datasets which contain

multimedia database like images, audio and videos. The

algorithm presented here extends work in [1] significantly

improving level of detecting duplication and efficiency.

The main contribution compared to previous work and

objectives of proposed system are 1) to detect duplicates in

hierarchical data which contain multimedia data e.g. images,

audio and video using XMLMultiDup method. 2) To compare

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

16

datasets according to user choice and display results e.g. only

structure or contents to be compared. 3) To increase efficiency

and effectiveness of duplicate detection in comparison of

multimedia databases. 4) To eliminate duplicates, to reduce

size of databases in data warehouses. 5) To consider all

probabilities of XML trees for comparison for example part of

tree, structure of trees, levels of tree, values and contents

within trees and complete subtrees to find duplications.

Structure

This paper is organized as follows: Section 2 presents related

work. Section 3 summarizes methodology of the proposed

system. The strategy of proposed system is presented in

Section 4. Working environment and results of proposed

system over existing system using artificial and real world

dataset are presented in Section 5. Finally, Section 6 and 7

concludes and presents suggestions for future work
respectively.

Figure 1: Two XML elements U and U’ that represent a

same Film. Nodes in circle are labeled by their XML tag

name.

2. RELATED WORK
In [8] Ananthakrishna has exploited dimensional hierarchies

typically associated with dimensional tables in data

warehouses to develop duplicate elimination algorithm

called Delphi, which significantly reduces the number of

false positives without missing out on detecting duplicates.

He rely on hierarchies to detect an important class of

equivalence errors in each relation, and to efficiently

reduce the number of false positives.

Carvalho and Silva proposed a similarity-based approach in

[9] to identifying similar identities among objects from

multiple Web sources. This approach works like the join

operation in relational databases. In the traditional join

operation, the equality condition identifies tuples that can be

joined together. In this approach, a similarity function that is

based on information retrieval techniques takes the place of

the equality condition. This paper presents four different

strategies to define the similarity function using the vector

space model and describes experimental results that show, for

Web sources of three different application domains, this

approach is quite effective in finding objects with similar

identities, achieving precision levels above 75%.

DogmatiX[10] is a generalized framework for duplicate

detection, dividing the problem into three components:

candidate definition defining which objects has to be

compared, duplicate definition defining when two duplicate

candidates are actually duplicates, and duplicate detection

means how to efficiently find those duplicates. The algorithm

is very effective in the first scenario: Edit distance should

compensate typos, and similarity measure is specifically

designed to identify duplicates despite missing data. On the

other hand, synonyms, although having the same meaning, are

recognized as contradictory data and the similarity decreases.

They are more difficult to detect without additional

knowledge, such as a thesaurus or a dictionary. Thus, second

scenario yields poorer results.

Milano Propose a novel distance measure for XML data, the

structure aware XML distance [11] that copes with the

flexibility which is usual for XML files, but takes into proper

account the semantics implicit in structural schema

information. The structure aware XML distance treats XML

data as unordered. The edit distance between tokens t1 and t2

is the minimum number of edit operations (delete, insert,

transpose, and replace) required to change t1 to t2; and

normalize this value with the sum of their lengths

In [12] author has proposed a novel method for detecting

duplicates in XML which has structural diversity. This

method uses a Bayesian network to compute the probability of

any two XML objects being duplicates. Here author has

considered not only children elements but also complete

subtrees. Computing all probabilities, this method performs

accurately on various datasets. Figure 1 shows two XML trees

which contain duplicate data although value represented

differently.

Base for proposed system presented in [1], has extended work

done in [12] by adding pruning algorithm to improve the

efficiency of the network evaluation. This pruning technique

is used to reduce the no. of comparisons where the pairs which

are incapable of reaching a given duplicate probability

threshold are discarded. It requires user to give input, since

the user only needs to provide the attributes to be compared,

their respective default probability values, and a similarity

value. However, the system worked in good manner that it

allows to use different similarity measures and different

combinations of probabilities.

3. METHODOLOGY
A method described in [1], the author has extended his

previous work by increasing efficiency and effectiveness for

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

17

duplicate detection in hierarchical data, but proposed system

will be useful for both simple and multimedia data. Here the

input will be two XML trees or datasets; for this real world

data and artificial dataset is used. The first phase of this

XMLMultiDup method is to input XML data for comparison

and duplicate detection. The choice of user will be taken for

comparison i. e. whether to compare structures of tree, values

of tree or contents of the tree. The second contribution of

proposed system is to input dataset which contain any type of

multimedia data which contain images, audio or videos. The

system first computes prior, computational and final

probabilities using Bayesian Network. Algorithm 1 is used for

this whole recursive process and shown in figure 3, but there

is an issue of complexity of O (n X n’). Hence a pruning

technique is used which reduces no. of comparisons using

pruning algorithm. If structure and values found duplicate, the

contents of multimedia data will be later compared by MD5

hash Key algorithm, which can be replaced by any signature

based algorithm to compare multimedia data. Figure 2 shows

the architecture of proposed system, which includes

combination of three algorithms.

1. Bayesian network

2. Proposed Pruning Algorithm

3. MD5 Hash key Algorithm

Here the proposed system uses all these algorithms but needs

small user intervention. User has to provide the parameter by

which comparison will perform. And second the action to be

performed after duplicate detection which is elimination

operation. Next section will describe all algorithms and

example which show how the original trees shown in figure 1

will be converted to Bayesian network.

4. DESIGN AND SPECIFICATION

4.1 Bayesian network Construction
This algorithm assumes that two trees can only be duplicates

if they are of the same type. Also, two nodes can be compared

only if they are of the same type. In example of figure 1, the

real-world types are Tfilms = movie, Timage = posters,

Taudio= audioclip. For simplicity, in the subsequent

definitions, it is necessary to assume that nodes with the same

real world type also have the same tag. That is, a relabeling

step has preceded the construction of the BN. To illustrate this

idea, consider the goal of detecting that both films shown in

Fig. 1 are same. This means that the two movies objects,

represented by nodes tagged films, are duplicates depending

on whether or not their children nodes, tagged name, date,

film and country and their values are same. Furthermore, the

nodes tagged image and audio are duplicates depending on

whether or not their contents are duplicates. Here the path

represents value and the file contained in path has the content

of node.

Figure 2: Architecture of Proposed System

Algorithm 1 BNGen(XTreeSet U, XTreeSet U’)

Input: U = {(t1, V1, C1), (t2, V2, C2), . . . },

 U’ = {(t’1, V’1, C’1), (t’2, V’2, C’2), . . }

Output: A directed graph G = (N, E)

/* -------------- Initialization --------------- */

/* Root node tags of all XML trees in U and U’*/

1. S ← {t1, t2, . . .};

2. S’ ← {t’1, t’2 , . . .};

/* Tags in S and S’ representing real-world type r */

3. Sr = {ti ∈ S|Tti 3 = r};

4. S’r = {t’i∈ S’|Tt’i = r};

/* -------------- BN Construction --------------- */

5. foreach type r ∈ S ∪ S’ do

 /* Nodes with single occurrence */

6. if |Sr| ≤ 1 and |S’r | ≤ 1 then

7. Insert into N a node tii;

8. if Vi ∪ V’i ≠ Ø then

9. Insert into N a node Vtii ;

10. Insert into E an edge from this node to node tii;

11. if Ci ∪ C’i ≠ Ø then

12. Insert into N a node Ctii ;

13. Insert into E an edge from this node to node tii;

14. if node Vtii was created then

15. foreach attribute a ∈ Vi ∪ V’i do

16. Create a node tii[a];

17. Insert an edge from this node to node Vtii;

18. if node Ctii was created then

19. G’ = (N’,E’) ← BNGen(Ci,C’i);

20. foreach node n ∈ N’ do

21. Insert n into N;

22. foreach edge e ∈ E’ do

23. Insert e into E;

24. foreach node n ∈ N’ without outgoing edges do

25. Insert an edge in E from n to node Ctii ;

 /* Nodes with multiple occurrences */

26. else if Sr or S’r contain more than one tag each then

27. Insert into N a node t∗∗;

28. foreach tag ti ∈ Sr do

29. Insert into N a node ti∗;

30. Insert into E an edge from this node to node t∗∗;

31. foreach tag t’j ∈ S’r do

32. Insert into N a node tij ;

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

18

33. Insert into E an edge from this node to node ti∗;

34. foreach newly created node tij do

35. Similar to processing of node tii (lines 8-25),

second subscript i is replaced by j…

 In summary

1. Input: Two sets of xml trees u and u’.

 u contains (t,v,c) and u’ contains(t’,v’,c’)

 where t-root,v-(attribute,value),c-sub tree

5 If t has value node then create a node of label V and

 place it as left child of t.

6 Place the attributes value as a child of node V

7 If t has children, create a node of label c and repeat step 1

8 If nodes are of same type, create a node ac and create

 children as equal to number of same type in left tree.

 Repeat the step 1.

9 Bayesian Network is constructed.

Therefore there is next step to verify path and contents of the

specified multimedia database. This process goes on

recursively until the leaf nodes are reached. In following

trees U and U’ of Fig. 1, this process can be represented

by the Bayesian Network of Fig. 2.

Figure 3: BN to compute similarity of trees in Fig. 1.

While the system finds any path for multimedia data then it

will be compared by using MD5 Hashkey algorithm. To

construct the above tree, the system will use following

probabilities:

Four types of conditional probabilities:

(1) The probability of the values of the tags being duplicates,

given that each individual pair of values contains duplicates

data;

(2) The probability of the descendant tags being duplicates,

given that each individual pair of descendants is duplicates;

(3) The probability of two tags being duplicates given that

their values and their descendant are same; and

(4) The probability of a set of nodes of the same type being

duplicates given that each pair of individual tags in the set are
same.

4.2 Proposed Pruning Technique
To improve the efficiency and effectiveness of algorithm 1,

following algorithm is used which uses some factors which

effects on time of execution of algorithm 1. Such as order of

nodes on pruning, features such as uniqueness, content length,

format, absence and occurrence features.

Algorithm for Proposed Pruning Method

Algorithm: XMLMulDup(N)

Input: The node or subtree N for which algorithm will detect

duplicates.

Output: Exact and Partial Matching Pair(s) of N’ with N and

their count.

1. WN ← 0 {Initially Weight of selected node N}

2. if N is Value or N is Value Node then

3. WN ← getSimilarityScore(N) {Similarity Value of N}

4. else if N is a Sub Tree then

5. P ← getParents(N) {collect all Parents P of node N)

6. for each parent pi ∈ P do

7. if pi is value node then

8. WN ← WN + pi’s similarity Value.

9. else if it’s value is a Multimedia Data then

10. calculate Hash Key matching status and

11. WN ← WN+Status value.

12. else

13. go to step 5. and calculate WN

14. end if

15. end for

16. end if

17. P(N) ← WN/No. of parents.{ calculate probability of N}

18. if P(N) = 1 then

19. Show Matching Pair as Exactly matched.

20. else if P(N) ≥ 0.6 then

21. Show Matching Pair as Partially matched.

22. else

23. End network evaluation.

24. end if

25. return count of Exact and Partial or none matched pairs.

4.3 MD5 Hash key Algorithm
The proposed system will use this algorithm for comparing the

contents of multimedia path contained in both the trees. All

previous methods just detect the textual and structural

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

19

duplications. But the proposed method extends the duplicate

detection within the multimedia databases, which are included

in datasets. In construction of Bayesian network tree, there will

be computation of probabilities of node values being

duplicates. Next the pruning algorithm is used for increasing

the efficiency and effectiveness of the Bayesian network

algorithm. But while doing this some datasets may contain the

multimedia databases and it is needed to compare them for

finding duplicate.

MD5 is specifically used to generate hash keys of both files

each present in individual tree. It then compares tree and check

for duplication. Means even if path are different may the files

are same. Hence by using MD5, duplicates within multimedia

files which are included in XML datasets are detected..

The main advantage of using this algorithm is it finds hash key

for given four conditions 1) the path of multimedia is same but

contents are different, 2) the path of multimedia is different but

contents are same and 3) the path of multimedia is different

and contents are also different.

5. EXPERIMENTS ON DATASETS

5.1 Datasets
Tests were performed using two different data sets, having

simple text and having multimedia data representing different

data domains. The first two data sets, CD2 and Cora consist of

XML objects taken from a real database and remaining two

artificially polluted by inserting multimedia data. One more

dataset i.e. CD which is artificially polluted and different

types of errors, such as typographical errors, missing data, and

duplicate erroneous data [6]. The data sets vary in size from

9,763 objects (CD 2) through 1878 (Cora). All data sets

contained objects nested in a hierarchy of up to three levels.

The Cora and CD data sets are available at the Hasso Plattner

Institute website.

5.2 Experimental Setup

In previous method the author has considered all attribute

values as textual strings but proposed system will consider the

attribute values as path of any multimedia database such as

path of image, path of video or path of audio. Thus, the XML

datasets which contain multimedia data is necessary as input

for this system and it can be artificial dataset or real world

dataset which contain multimedia data. The proposed system

is implemented in integrated development environment of

Microsoft Visual Studio 2010 and Dot Net Framework 4.0

with windows platform and on Intel dual core CPU at

1.9 GHz , 2 GB of RAM and 40 GB HDD.

5.3 Results
The precision and recall measures are applied to evaluate

effectiveness. And for efficiency measure both XMLDup and

XMLMultiDup algorithms are compared with respect to their

runtime. The precision of both methods is high for the datasets

which contain only textual data but XMLDup drops its

precision when datasets contain any type of Multimedia data.

While the proposed XMLMulDup method shows high

precision for the same dataset with multimedia data. Fig. 3

and fig. 4 shows the Precision/Recall results obtained for each

experiment.

When proposed system is used on Real datasets CD2 and

Cora, the precision and recall graph curves are near 100

percent as shown in fig. 3 and fig. 4. Both figures shows the

precision/recall results obtained by proposed and existing

method on real and artificially polluted dataset by adding

multimedia data. The proposed system shows 100 percent of

precision on multimedia data while this facility is not

contributed by existing system.

Table 1 presents the average precision on each dataset which

is above 95 for proposed system and suddenly drops for

existing system as it operate on multimedia data. R-precision

is the precision taken at cut off R, where R is no. of duplicates

in dataset. It shows the high precision when the path of value

is same and contents are different and vice versa.

Table 1. Performance Achieved Using Proposed Method on Real and Artificial Dataset

Dataset
Average Precision R-Precision Maximum Recall

XMLDup XMLMulDup XMLDup XMLMulDup XMLDup XMLMulDup

CD 2 96 99 82 82 99 99

Cora 87 98 75 75 80 80

MultiCD2 68 99 64 82 71 99

MultiCora 52 98 56 75 68 80

Figure 3: Comparison Result for XMLDup and

XMLMulDup representing precision and recall values for

CD2 Datasets.

Table 2. Performance Achieved Using Proposed Method

Dataset
XMLDup

(pf=1)

XMLDup

(pf=0.4)
XMLMulDup

Cora 00:02:41 00:02:04 00:01:06

CD 2 02:07:17 00:48:32 00:03:38

MultiCora 00:02:52 00:02:09 00:01:15

MultiCD2 01:25:06 00:42:22 00:03:53

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

20

Table 3. Performance Achieved on Artificial Dataset CD

after using proposed pruning algorithm

Sorting strategy
Time

XMLDup XMLMulDup

Unsorted 00:00:43 00:00:30

Depth 00:00:43 00:00:32

AvgSS 00:03:12 00:01:52

Depth+ AvgSS 00:00:43 00:00:39

Figure 4: Comparison Result for XMLDup and

XMLMulDup representing precision and recall values for

CORA Datasets.

Table 2 shows the time performance values with respect to

pruning factor of existing system and proposed system. It

shows that if pruning factor is increased the runtime also

increases but in proposed system there is no user intervention

to provide pruning factor. Hence there is lossless strategy used

for proposed system. It also shows the maximum recall

achieved for each dataset which slightly drop for CD2 dataset

when it contains multimedia data.

Table 3 shows the runtime of both methods on CD which is

artificial dataset polluted by some dirty data. It shows result

on unsorted CD dataset and also compares with the result if

test performed on dataset with respect to depth and average

string size. When depth is considered, the node having more

important information is kept nearer to the root, hence it is

evaluated first. And average string size means the value

having smaller string size is kept first so as to evaluate first

i.e. cheaper comparison first and fast. Thus in both cases it

shows the small improvement as compared to unsorted detests

using both methods.

6 CONCLUSION AND FUTURE WORK
The new method XMLMultiDup presents a procedure for

XML duplicate detection which contains various types of

multimedia databases. Using a Bayesian network model, this

method is able to accurately determine the probability of two

XML objects in a given database being duplicates. This model

is derived from the structure of the XML objects being

compared and all probabilities are computed taking into

account not only the values contained in the objects but also

their internal structure. To improve the runtime efficiency of

XMLMultiDup, a network pruning strategy is also used as

basis. This XMLMultiDup can be applied in two ways. Direct

on the XML datasets and Relational database. Second

approach will need conversion of relations to the XML data

and then go for first approach and further apply above

discussed algorithms.

The proposed method can be extended to avoid user

intervention with high accuracy, effectiveness and efficiency.

The use of domain dependent similarity measures for prior

probabilities, extend the BN model construction algorithm to

compare XML objects with different structures, experiment

with more collections and different network configurations,

and apply machine learning methods to derive the conditional

probabilities, based on multimedia data.

7 REFERENCES
[1] Luis Leitao, Pavel Calado and Melanie Herschel,

“Efficient and Effective Duplicate Detection in

Hierarchical Data,” IEEE Trans. on Knowledge and Data

Engineering, Vol. 25, No. 5, May 2013.

[2] E. Rahm and H.H. Do, “Data Cleaning: Problems and

Current Approaches,” IEEE Data Eng. Bull., vol. 23, no.

4, pp. 3-13, Dec. 2000.

[3] Joe Tekli, Richard Chbeir, Kokou Yetongnon “An

overview on XML similarity: Background, current trends

and future directions”,Computer Science Review,

Volume 3, Issue 3, August 2009, Pages 151173

[4] S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava, and T.

Yu, “Approximate XML Joins,” Proc. ACM SIGMOD

Conf. Management of Data, 2002.

[5] M.A. Hernandez and S.J. Stolfo, “The Merge/Purge

Problem for Large Databases,” Proc. ACM SIGMOD

Conf. Management of Data, pp. 127-138, 1995.

[6] K.-H. Lee, Y.-C. Choy, and S.-B. Cho, “An efficient

algorithm to compute differences between structured

documents,” IEEE Transactions on Knowledge and Data

Engineering (TKDE), vol. 16, no. 8, pp. 965979, Aug.

2004.

[7] L. Leitao and P. Calado, “Duplicate Detection through

Structure Optimization,” Proc. 20th ACM Intl Conf.

Information and Knowledge Management, pp. 443-452,

2011.

[8] R. Ananthakrishna, S. Chaudhuri, and V. Ganti,

“Eliminating Fuzzy Duplicates in Data Warehouses,”

Proc. Conf. Very Large Databases (VLDB), pp. 586-597,

2002.

[9] J.C.P. Carvalho and A.S. da Silva, “Finding Similar

Identities among Objects from Multiple Web Sources,”

Proc. CIKM Workshop Web Information and Data

Management (WIDM), pp. 90-93, 2003.

[10] M. Weis and F. Naumann, “Dogmatix Tracks Down

Duplicates in XML,” Proc. ACM SIGMOD Conf.

Management of Data, pp. 431-442, 2005.

[11] D. Milano, M. Scannapieco, and T. Catarci, “Structure

Aware XML Object Identification,” Proc. VLDB

Workshop Clean Databases (CleanDB), 2006.

[12] L. Leitao, P. Calado, and M. Weis, “Structure-Based

Inference of XML Similarity for Fuzzy Duplicate

Detection,” Proc. 16th ACM Intl Conf. Information and

Knowledge Management, pp. 293-302, 2007.

[13] F. Naumann and M. Herschel, “An Introduction to

Duplicate Detection. Morgan and Claypool, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

21

[14] A.M. Kade and C.A. Heuser, “Matching XML

Documents in Eng. Highly Dynamic Applications,” Proc.

ACM Symp. Document Eng.

[15] M. Weis and F. Naumann. Duplicate detection in xml. In

SIGMOD Workshop on Information Quality in

Information Systems (IQIS), pages 10–19, Paris, France,

2004.

[16] http://www.hpi.uni-

potsdam.de/naumann/projekte/repeatability/.

[17] http://www.cs.utexas.edu/users/ml/riddle/data.html.

[18] https://www.hpi.uni-

potsdam.de/fileadmin/hpi/FG_Naumann/

[19] http://www.researchgate.net/publication/225867479_An_

Overview_of_XML_Duplicate_Detection_Algorithms

[20] http://se-pubs.dbs.uni-

leipzig.de/files/Weis2006ADuplicateDetectionBenchmar

k.pdf

[21] http://www.morganclaypool.com/doi/abs/10.2200/S0026

2ED1V01Y201003DTM003

[22] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.70.8263&rep=rep1&type=pdf#page=14

[23] http://www2.cs.uni-paderborn.de/cs/ag-

boettcher/lehre/SS05/sem-ss05/SIGMOD05

IJCATM : www.ijcaonline.org

