
International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Micro Bat Algorithm for High Dimensional Optimization
Problems

Ali Osman Topal
Epoka University

Tiran, Albania

Oguz Altun
Yildiz Technical University

Istanbul, Turkey

Yunus Emre Yildiz
Epoka University

Tiran, Albania

ABSTRACT
Very recently bat inspired algorithms have gained increasing at-
tention as a powerful technique for solving optimization problems.
Bat algorithm (BA) is the first one in this group. It is based on the
echolocation behavior of bats. BA is very good at exploitation how-
ever it is generally poor at exploration. Dynamic Virtual Bats Algo-
rithm (DVBA) is another bat inspired algorithm, which is proposed
lately. Although the algorithm is fundamentally inspired from BA,
it is conceptually very different. DVBA employs just two bats and
uses role based search mechanism. It is very efficient in exploration
but relatively poor in exploitation, when it comes to high dimen-
sional problems. In this paper, a novel micro-bat algorithm (µBA)
is proposed which possess the advantages of both algorithms. µBA
employs a very small population compared to its classical version.
It combines the swarming technique of bats in Bat Algorithm with
the role based search in Dynamic Virtual Bats Algorithm. Our em-
pirical results demonstrate that the proposed µBA achieves a good
balance between exploration and exploitation. And it exhibits a
better overall performance than the standard BA with larger and
smaller populations on high dimensional problems.

Keywords
Micro Bat Algorithm, Dynamic Virtual Bat Algorithm, nature-
inspired algorithms, metaheuristics, optimization

1. INTRODUCTION
Many nature-inspired algorithms such as Particle Swarm Optimiza-
tion (PSO), Ant Colony Optimization (ACO), Genetic Algorithm
(GA), and Artificial Bee Colony (ABC) have been intensively stud-
ied and applied to various optimization problems. In recent years, a
new and rapidly growing nature-inspired algorithm - Bat Algorithm
(BA), which is inspired by the behavior of bats searching for food
by echolocation, attracts more and more attention due to its sim-
plicity and effectiveness [1]. BA has been applied to many kinds of
real world optimization problems, such as combined economic loan
and emission [2], design of skeletal structures [3], grey economics
dynamic system [4], parameter estimation in nonlinear dynamic bi-
ological systems [5], and speed reducer design [6]. Although BA
has outstanding and encouraging performance in exploitation, it
needs improvements in exploration. The exploration and exploita-
tion trade off problem is a real challenge for researchers. To handle
this problem efficiently, many strategies have been developed; one

of these strategies is the use of reduced populations and another one
is the hybridization of algorithms.
Micro-Genetic algorithms (Micro-GA) [7], Micro- Particle Swarm
Optimization (µPSO) [8], Micro-Bacterial Foraging Algorithm
(Micro-BFA) [9], and Micro-Differential Evolution (Micro-DE)
[10] are examples of reduced population solutions. However, this
solution can render algorithms to search stagnation which is the
main-drawback of micro-approaches. Small population results in
rapid premature convergence on multimodal high dimensional
problems. This deficiency is addressed by different particle dis-
tribution techniques on search space and combined with multiple
restarts that prevent convergence to the same solution.
In 2014, another bat inspired algorithm DVBA [11] is proposed.
DVBA is inspired by bat’s ability to manipulate frequency and
wavelength of sound waves emitted during their hunt, hence a suc-
cessor of the Bat Algorithm. It differs from the Bat Algorithm in
terms of populations. In DVBA, a role based search is developed
by using two bats: explorer and exploiter bat. So it can be said
that, it is a kind of micro algorithm. Although DVBA is a micro
algorithm, it handles the exploration effectively by its dynamic role
exchange characteristic between the bats. While the exploiter bat
makes intensive search around the best found solution, the explorer
bat explores the search space.
In this work we propose a micro Bat Algorithm with a Dynamic
Virtual Bats Algorithm named micro-BA. µBA uses different tech-
niques from other micro algorithms to handle the search stagnation
problem. In µBA, the exploitation ability of BA and the exploration
ability of DVBA are combined to improve the accuracy and the pre-
cision of both algorithms. The performance of the proposed µBA is
extensively evaluated on a suite of 10 high dimensional optimiza-
tion problems and compared favorably with DVBA and BA with
different population sizes.
The rest of this paper is organized as follows. Section 2 summarizes
BA. The DVBA is overviewed in Section 3. The proposed µBA
is presented in Section 4. Section 5 presents simulation results on
the use of µBA for solving high dimensional problems. Finally,
conclusions are drawn in Section 6.

2. BAT ALGORITHM OVERVIEW
Bat algorithm was introduced by Yang in 2010 [1]. It is a popu-
lation based algorithm which uses bat’s echolocation ability to get
optimum solution for tough optimization problems. Echolocation
is a typical sonar system which bats use to detect prey, avoid ob-
stacles, and locate bats’ roosting crevices in the dark. Bat emits

1

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

sound pulses and listens to the returning echoes by using the delay
time, loudness of the response and the time difference between its
ears, it can tell the shape, size, and the velocity of the prey. Bat
has also the ability to change the way it emits the sound pulses. If
it emits the sound pulses with high frequency, they will not travel
longer but give detailed information about its close environment
which helps bat to detect the prey position precisely. When bat
emits sound pulses with low frequency, they will travel farther, and
give rough information about its surroundings. Another feature of
bat’s echolocation is the loudness; when bat close to prey, it emits
sound pulses very quietly but during the exploration it is very loud
[12] [13]. Bats hunting strategies can be idealized or approximated
as follows:

(1) Bats can detect the distance between the prey and the obstacles
by using echolocation.

(2) During the search for prey, bats fly randomly with velocity Vi,
with fixed sound pulse frequency fi, varying wavelength λ,
and loudness A0.

(3) Loudness can change from large value A0 to minimum con-
stant value Amin . Beside these rules bat algorithm also as-
sumes that the frequency f varies in a range [fmin, fmax].

The algorithm starts by placing n bats randomly in the search space.
Velocity Vi, frequency fi, pulse rate ri, and loudnessAi are initial-
ized for each bat at the beginning. In each iteration of the main loop,
by using Eq. (1, 2, and 3) bat’s position and velocity are updated.

fi = fmin + (fmax − fmin)β, (1)

V t
i = V t−1

i + (xti − x∗)fi, (2)

xti = xt−1i + V t
i , (3)

where β ∈ [0, 1].
Then the algorithm evaluates the finesses (solutions) and chooses
the current best position x∗. After these updates, if the bat’s pulse
rate ri is low (it means the bat is far away from the prey), with a
high probability (rand() > ri) it will fly near to the current best
bat and make a random short fly there. If its pulse rate is high then
it should be near the prey and it will just make a random fly around
its current position. New position xnew is obtained by Equation (4).

xnew = xold + εAt, (4)

where ε ∈ [−1, 1] a random number,At = 1
n

∑n

i=1
At

i is the aver-
age loudness of all the bats at this time step, and n is the number of
bats. After the random fly, if the bats position is better than the cur-
rent global best and its loudness is loud enough to be greater than
a random number (rand() < Ai), the bat will fly to this position
and current global best will be updated with the new one. The bats
pulse rate ri will be increased and loudnessAi will be decreased as
shown in Eq. (5). Then again bats will be evaluated and the current
best x∗ will be updated.

At+1
i = αAt

i, rt+1
i = r0i [1− exp(−γt)], (5)

A pseudo-code of the bat algorithm is given in Algorithm 1.

Algorithm 1 BAT algorithm pseudo code

Objective function f(x), x = (x1, ..., xd)
T

Initialize the bat population xi, vi(i = 1, 2, ..., n)
Define pulse frequency (fi) at xi
Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations) do
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions
[equations (1) to (3)]
if (rand > ri) then

Select a solution among the best solutions
Generated a local solution around the
selected best solution

end if
Generate a new solution by flying randomly
if (rand < Ai&f(xi) < f(x∗)) then

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗

end while
Post process results and visualization

3. DYNAMIC VIRTUAL BAT ALGORITHM (DVBA)
OVERVIEW

Dynamic Virtual Bats Algorithm (DVBA) [11] is a recently intro-
duced optimization algorithm which imitates the bats echolocation
behavior in nature. Bat emits sound pulses with long wavelength
λ and low frequency f during the search for prey. So bat can scan
a large area. When it detects prey, it emits the sound pulses with
short wavelength and high frequency that helps bat to locate the
prey precisely. In DVBA, two bats are used to imitate this hunting
behavior. Each bat has its own role in the algorithm and during the
search they exchange these roles according to their positions. These
bats are referred as explorer bat and exploiter bat. The bat that is in a
better position becomes the exploiter meanwhile the other becomes
the explorer. While the exploiter bat increases the intensification of
the search around the best solution, the explorer bat will continue
to explore other solutions.
In Fig. 1 and Fig. 2, the hunting strategy of a bat is simulated. Here,
the black triangle represents the bat and the plus represents the prey.
The black dots are the positions on the waves which are going to
be scrutinized for a better solution. During the search for prey, the
explorer bat’s search scope gets in its widest shape; the distance
between the search points and the angle between the wave vectors
gets larger (Fig. 1), and if it detects prey, search scope gets smaller
gradually. On the contrary, if the bat becomes the exploiter bat, its
search scope gets in its narrowest shape (Fig. 2) so it can locate the
prey precisely.
An overview of the Dynamic Virtual Bats Algorithm is given be-
low.

3.1 Initialization of bat population
The bat population X = (xi,j) is generated as in Equation (6):

xi,j = xminj + rand(0, 1)(xmaxj − xminj) (6)

where i = 1, 2 denotes the bats and, j = 1, 2, ..., d denotes
search space dimensions. xminj and xmaxj are the lower and up-
per bounds of the search space for the dimension j, respectively.

2

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

+

Vi : Flying direction

h11

h12
h13

h14 h44

h43

h42
h41

Wavelength (λ)

Fig. 1. Exploration: Explorer bat is searching for prey with a wide search
scope.

Vi : Flying direction

Wavelength (λ)

+

Fig. 2. Exploitation: Exploiter bat is chasing prey with a narrow search
space.

DVBA uses only 2 bats, so i takes only values 1 and 2. The random
number generator, rand(0,1), returns uniformly distributed random
number from within the range [0, 1]. Also for each bat a flying di-
rection Vi is generated randomly. Initially, each bat starts with a
default wavelength λi and frequency fi like in Fig. 1 to start the
search as the explorer bats.

3.2 Search scope of the bats
In Fig. 1, the distribution of the search points are shown in details.
The search scope is simulated by using wave direction vectors Vir

and search points hrk on the vectors. Here, r denotes the number
of wave vectors and k is the number of search points on a wave
vector. So rk gives us the total number of search points on a search
scope. The wideness of the search scope is inversely proportional
with the frequency of the sound pulses fi. The distance between
search points are equal to the wavelength λi of the sound pulses.

3.3 Deciding the roles of the bats
Both bats are looking for a better position (h∗) in their search
scopes as explorer bats at the beginning. If there is a better posi-
tion than its current position, the bat will fly to it. After that, the
positions of the bats will be compared to decide the roles. The bat
which has a better solution will become the exploiter bat (2) and the

other one will be the explorer bat (1). The roles will be exchanged
according to this rule till termination condition is reached.

3.4 Changing the size of the bat’s search scope
If a bat becomes the explorer bat, its search scope will be expanded
by increasing the wavelength and decreasing the frequency Eq.78.
This will increase the space between the search points hrk and ex-
pand the search scope of the bat as in Fig. 1. For the exploiter bat,
the search scope size will be shrunk to increase the exploitation by
decreasing wavelength and increasing frequency as shown in Fig. 2.

λt+1
i = λt

i ± ρ (7)

f t+1
i = f t

i ± ρ (8)

ρ = mean(
xmax − xmin

β
), {β ∈ < : β > 0}, (9)

where β is positive real constant which is used as increment rate
divisor in [11].

3.5 Position and direction update
As long as, a bat has better solution in its search scope, it will keep
updating its position with the better one. Unless there is no better
solution than its current position in its search scope, the bat will turn
around randomly and keep scanning its nearby surrounding space.
It will keep spinning in this position and expanding its search scope
until it finds a better solution.

3.6 Pseudo code of the Dynamic Virtual Bats
Algorithm

Based on the virtual bat’s behavior, the basic steps of the algorithm
for minimizing an objective function f(x) are shown in Algorithm
2.

4. MICRO BAT ALGORITHM
µBA is developed using the ideas from the Bat Algorithm and Dy-
namic Virtual Bats Algorithm. In this combination, the weaknesses
of the algorithms are avoided and the advantages are used. The
weaknesses and the advantages of the BA and the DVBA can be
summarized as follows.
In Bat Algorithm, the bats repeat three main steps as the iterations
proceed.

(1) Bats move towards the best found position.
(2) Bats, with a probability of rand() < r, fly near to the best

position.
(3) Bats fly randomly either near to the best bat or any position in

the search space.

Here, r is the sound impulse rate and it increases exponentially
as the iterations proceeds (Eq 5). It is clear that, the possibility of
flying near to the best position will increase rapidly for each bat
after some iterations [14]. In another word, Bat Algorithm loses its
exploration capability rapidly and increases its exploitation capa-
bility at the following iterations. That can cause Bat Algorithm to
converge prematurely [15].
In DVBA, there are two roles which are exchanged between the
bats according to their positions during the search. This dynamic

3

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Algorithm 2 DVBA pseudo code. fgbest is the global best solution
and d is the number of dimensions.[11]

Objective function f(x), x = (x1, ..., xd)
T

Initialize the bat population xi(i = 1, 2) and vi
Initialize wavelength λi and frequency fi
Initialize the number of the waves
while (t < Max number of iterations) do

for each bat do
Create a sound waves scope
Evaluate the solutions on the waves
Choose the best solution on the waves, h∗

if (f(h∗) < f(xi)) then
Move to new solution
Decrease λi and increase fi78

else if (f(xi) > fgbest) then
Change the direction randomly
Increase λi and decrease fi

else if (f(xi) = fgbest) then
Minimize λi and maximize fi
Change the direction randomly

end if
Rank the bats and find the current best xgbest

end while

role exchange gives DVBA higher diversity capability but slower
convergence [11] [16]. The size of the bats’ search scope has a ma-
jor affect on DVBA’s performance. The search scope size is limited
by the wavelength which might not be long enough to detect bet-
ter solutions near its surrounding space. Thus, it is very likely that
the explorer bat will be trapped in local optima. Additionally, the
exploiter bats search scope can become very small during the ex-
ploitation process and it will move very slowly. Therefore it might
not reach the global optima within the bounded computation time.
In the µBA, the position of the prey represents a possible solution to
the optimization problems. To discover the prey, three bats are em-
ployed which are referred as explorer bat, exploiter bat, and scout
bat. The explorer and the exploiter bats show the same characteris-
tics as in DVBA. However, they don’t exchange the roles during the
search and the explorer bat helps the exploiter bat to speed up the
exploitation. The scout bat was added to increase search diversity.
The µBA combined the BA’s fast convergence characteristic with
DVBA’s exploration and dynamic search capabilities. The behavior
of the virtual bats and the outline of the µBA are given below.

4.1 The explorer bat
The explorer bat emits the sound pulses with low frequency and
long wavelength so it can scan a large area (Fig. 1). The explorer
bat checks the solutions on its search scope and flies to the best
solution. Unless there is no better solution than its current position,
the explorer bat will turn around randomly and keep scanning its
nearby surrounding space until it finds a better solution. So it is
clear that it can be trapped easily in local optima like in DVBA. To
avoid this local optima trap, we give the explorer bat a chance to
make a random fly in the vicinity of the exploiter bat (Eq 11). That
will not only help the explorer bat to escape from the trap but also
increase the speed of the exploiter bat through the global optima.
The similar probabilistic approach (rand() > ri) from the Bat
Algorithm is used to give this chance to the explorer bat. In µBA,
ri is switched by P and called the random flight probability. The
probability of random flight P and the new position of the bat are
calculated as follows:

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

R
an

d
o
m

 F
li

g
h
t

P
ro

b
ab

li
ty

P

Number of Unsuccessful Trials

P, σ=4

P, σ=3

P, σ=2

Fig. 3. The effect of σ on P as the unsuccessful attempts increases.

P t+1 = P t[1− exp(−trialσ)], (10)

xt+1
i = xgbest + ρ, (11)

where σ constant. trial denotes the number of unsuccessful at-
tempts to escape from the local optima trap. ρ is calculated as in
Eq. 9. As the explorer bat spins around the local optima trap, the P
will decrease exponentially and the probability of flying near to the
exploiter bat (rand() > P) will increase. In Eq.10, if σ is chosen
very small, the explorer bat will fly near to the exploiter bat too
soon and won’t able to explore its nearby surrounding space. Thus,
σ should be chosen carefully. As the unsuccessful attempts (trial)
increases, the effect of σ on P is shown in Fig.3.

4.2 The exploiter bat
The exploiter bat is used to increase the intensification of the search
on the best found solution. It has very narrow search scope (Fig. 2)
so it can make intense exploitation. If the explorer bat or the scout
bat finds a better solution than the exploiter bat’s current position,
it flies to this solution and starts exploiting there.

4.3 The scout bat
The scout bat has a large search scope like the explorer bat (Fig. 1).
However, unlike the explorer bat, the scout bat doesn’t consider its
current position to make the next move. It simply chooses the best
position from its search scope and flies there. Same as in Simulated
Annealing (SA) [17], it will even fly to worse solution than its cur-
rent solution. The scout bat keeps flying all around the search space
without having any local optima trap problem. That increases the
diversification capability of the µBA.
In a robust search process, exploration and exploitation processes
must be carried out together. In the µBA, while explorer and ex-
ploiter bat carry out the exploitation process in the search space,
the scout bat control the exploration process with the explorer bat.
According to all these approximations and improvements µBA can
be given as in Algorithm 3.
In the next section, experimental results on high-dimensional in-
stances of widely used optimization problems are reported.

4

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Table 1. Description of the benchmark functions. Here D: dimensionality of the functions, C: function characteristics with values -
U: unimodal, M: Multimodal, S: Separable, N: Non-Separable.

No Name Formula D C fmin Search Space

f1 Ackley f1(x) = 20 + e − 20exp(−0.2
√

1
d

∑d

i=1
x2i) −

exp(1d
∑d

i=1
cos(2πxi))

10, 30, 50 MN 0 (−32, 32)d

f2 Bohachevsky f2(x) =
∑d−1

i=1
[x2i + 2x2t+1 − 0.3cos(3πxi) −

0.4cos(4πxi+1) + 0.7]

10, 30, 50 MN 0 (−15, 15)d

f3 Griewangk f3(x) =
∑d

i=1

x2
i

4000 −
∏d

i=1
cos(xi√

i
) + 1 10, 30, 50 MN 0 (−600, 600)d

f4 Rastrigin f4(x) = 10d+
∑d

i=1
[x2i − 10cos(2πxi)] 10, 30, 50 MS 0 (−5.12, 5.12)d

f5 Powell f16(x) =
∑d−2

i=1
(xi−1+10xi)

2+5(xi+1−xi+2)
2+(xi−

2xi+1)
4 + 10(xi−1 − xi+2)

4

10, 30, 50 UN 0 (−4, 5)d

f6 Rosenbrock f5(x) =
∑d−1

i=1
[100(xi+1 − x2i)

2 + (xi − 1)2] 10, 30, 50 MN 0 (−15, 15)d

f7 Sphere f13(x) =
∑d

i=1
x2i 10, 30, 50 US 0 (−5.12, 5.12)d

f8 Shifted Rastrigin f8(x) = f4(z), z = x−o, o = [o1, o2, ..., od]: shifted global
optimum.

10, 30, 50 US 0 (−5.12, 5.12)d

f9 Shifted Rotated
Ackley

f9(x) = f1(z), z = M(x − o), o = [o1, o2, ..., od]: shifted
global optimum

10, 30, 50 UN 0 (−32, 32)d

f10 Shifted Rotated
Griewangs

f10(x) = f3(z), z =M(x− o), o = [o1, o2, ..., od]: shifted
global optimum

10, 30, 50 US 0 (−600, 600)d

5. NUMERICAL EXPERIMENTS AND RESULTS
5.1 Parameter settings for the algorithms
In order to demonstrate the effectiveness of the µBA, a suite of
10 well-known numerical functions were tested with DVBA, BA
with 30 bats, and BA with 3 bats. Each test function was consid-
ered three different dimensions, namely, d = 10, 30, and 50. Max-
imum number of function evaluation (FEs) is set to 100.000 for
10 − D problems, 300.000 for 30 − D problems, and 500.000
for 50 − D problems. Algorithms were tested with 30 indepen-
dent runs for each test functions in order to compile comprehen-
sive data. All the algorithms are developed in the Python envi-
ronment and run on a PC with a 3.20 GHz CPU and 6.00 GB of
RAM. The python codes of BA, DVBA and BA are available at
”http://aotopal.epoka.edu.al/micro-BA”.
The other specific parameters of algorithms are given below:

5.1.1 BA Settings. Parameters are set as follows: α = γ = 0.5,
frequency is in the range [0, 2], the rate of pulse emission r ∈ [0, 1]
and, the loudness A0 = 0.5 [1].

5.1.2 DVBA Settings. Maximum step size divisor is set to β =
250 since the search space exponentially increased in our tests. The
number of search points and the wave vectors are set to r = 6 and
k = 5, respectively. The range of the wavelength and the frequency
are set as follows: [λmin, λmax] = [ρ, 10ρ] and [fmin, fmax] =
[ρ, 10ρ], where ρ is calculated in Eq. 9. Population size is 2.

5.1.3 micro-BA Settings. Same parameters are used from DVBA
to create the search scope of the bats. P is started from 1 and σ = 3.

5.2 Benchmark Functions
To evaluate the performance of the algorithms, a set of 10 stan-
dard benchmark functions is used. The benchmark set include uni-
modal, multimodal, separable, non-separable, shifted, and rotated
optimization functions. In shifted and rotated test functions, the
global optimum is shifted to a random position and the functions
are rotated. By using shifted and rotated functions, we would be
able to test the algorithms on more challenging, real world like
problems [18]. Specifically, functions f1−f4 are multimodal func-
tions, f4 − f7 are unimodal functions, and f8 − f10 are shifted
and rotated functions. We rotated the functions f(z) = f(Mx),
where f(z) is the new function and M is an orthogonal rotation
matrix. The global optimum is shifted to a random position by
f(z) = f(x − onew − oold), where oold is the old global opti-
mum and onew is the new global optimum which is not lying at the
center of the search range [19]. The description of the benchmark
functions are shown in Table 1.

5.3 Experimental results and discussion
In order to test the efficiency of the proposed algorithm, our exper-
iment’s results were compared with the standard BA with 3 bats,
the standard BA with 30 bats, and the standard DVBA. The test re-
sults are shown in Table 2 and 3 in terms of the best fitness values
(BFV), the worst fitness values (WFV), the mean and the standard

5

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Table 2. Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA over 10 test
functions of 10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV Significant

f1 Ackley

10

DVBA 0.0216 4.5465 2.6865 0.9056 +
BA-3bats 2.3247 4.6683 3.5937 0.6870 +

BA-30bats 2.0193 4.0331 2.8221 0.4931 +
µBA 0.0146 3.0281 1.7313 1.0036 -

30

DVBA 3.0604 20.0798 16.6419 6.7907 +
BA-3bats 19.9420 19.9667 19.9568 0.0113 +

BA-30bats 19.9434 19.9566 19.9497 0.0042 +
µBA 3.2660 5.0264 3.8358 0.5119 -

50

DVBA 20.0848 20.2278 20.1788 0.0514 +
BA-3bats 19.9160 19.9660 19.9483 0.0171 +

BA-30bats 3.5297 19.9636 18.3037 4.9246 +
µBA 2.8373 5.4899 4.4476 0.7227 -

f2 Bohachevsky

10

DVBA 1.5428 4.4134 2.9063 0.7375 +
BA-3bats 1.9253 2.9166 2.2136 0.2793 N

BA-30bats 1.7723 2.8279 2.3783 0.3067 N
µBA 0.2317 4.4773 2.3240 1.1738 -

30

DVBA 14.7338 26.1569 19.7721 3.9088 +
BA-3bats 17.4313 20.3219 18.4629 1.0059 N

BA-30bats 17.5538 22.1077 19.3455 1.6834 +
µBA 13.3856 20.0175 17.9844 2.4474 -

50

DVBA 37.6436 44.4501 42.1866 2.5494 +
BA-3bats 38.0999 44.1018 41.5410 2.1463 +

BA-30bats 39.2839 44.8488 42.8278 1.9773 +
µBA 24.4439 38.2343 31.9908 4.8434 -

f3 Griewangk

10

DVBA 1.3576 2.4926 2.1272 0.3303 +
BA-3bats 0.5478 0.9346 0.7585 0.0941 N

BA-30bats 0.5217 0.8826 0.7510 0.1073 N
µBA 0.7075 0.8509 0.7980 0.0434 -

30

DVBA 10.4302 13.7109 12.9437 1.2662 +
BA-3bats 1.3904 1.4195 1.4067 0.0095 +

BA-30bats 1.3501 1.4370 1.4050 0.0296 +
µBA 1.0804 1.1049 1.0928 0.0104 -

50

DVBA 33.3351 38.2587 35.6369 1.7511 +
BA-3bats 2.1307 2.2624 2.2165 0.0471 +

BA-30bats 1.7346 2.1055 1.9677 0.1245 +
µBA 1.2277 1.2935 1.2605 0.0215 -

f4 Rastrigin

10

DVBA 17.2326 41.9676 30.0917 8.6982 N
BA-3bats 56.1000 110.5451 85.3065 19.8476 +

BA-30bats 18.3934 69.8718 50.2790 18.2945 +
µBA 15.2605 58.9553 27.1348 16.3371 -

30

DVBA 141.0519 243.0097 195.9515 33.3322 +
BA-3bats 176.5749 293.3492 235.6283 37.8489 +

BA-30bats 183.9583 245.1114 221.4598 20.2705 +
µBA 183.6387 210.9989 198.0123 9.9362 -

50

DVBA 394.2856 484.7279 444.4586 29.2374 +
BA-3bats 370.7712 497.3180 440.2515 57.1338 +

BA-30bats 349.3720 483.0212 407.0945 53.4919 +
µBA 376.2547 431.6168 406.1995 21.9270 -

f5 Powell

10

DVBA 0.0953 0.1916 0.1400 0.0253 +
BA-3bats 0.0660 0.1715 0.1153 0.0283 +

BA-30bats 0.0682 0.1743 0.1001 0.0301 +
µBA 0.0075 0.0162 0.0114 0.0027 -

30

DVBA 0.9749 1.1569 1.0879 0.0629 +
BA-3bats 1.4853 2.1225 1.8663 0.2397 +

BA-30bats 1.6184 2.0971 1.9913 0.1867 +
µBA 0.0908 0.1183 0.1032 0.0107 -

50

DVBA 2.6277 3.6723 3.1850 0.4118 +
BA-3bats 4.9632 6.3985 5.6586 0.4875 +

BA-30bats 4.8066 6.3320 5.5817 0.4941 +
µBA 0.2807 0.3442 0.3176 0.0239 -

6

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Table 3. Performance comparison of DVBA, BA with 3 bats, BA with 30 bats, and µBA over 10 test functions of
10, 30, and 50 dimensions.

Function Dim Algorithms BFV WFV Mean STDEV Significant

f6 Rosenbrock

10

DVBA 11.3205 166.3953 29.0556 45.8787 +
BA-3bats 10.6727 196.4292 46.6597 68.0033 +

BA-30bats 10.5964 17.4026 13.4332 2.3198 +
µBA 4.1786 10.2598 8.9103 1.6942 -

30

DVBA 85.7328 1072.1944 299.3281 386.9613 +
BA-3bats 96.5783 143.2552 126.3990 16.9769 +

BA-30bats 97.8295 427.0891 238.8529 139.9443 +
µBA 31.3629 87.8815 43.5059 22.2007 -

50

DVBA 240.6517 1269.5626 579.9789 327.6391 +
BA-3bats 298.4399 861.5234 572.4530 176.6554 +

BA-30bats 323.3869 972.9987 450.1929 186.3294 +
µBA 61.4320 314.5447 165.5107 79.8678 -

f7 Sphere

10

DVBA 0.2612 0.5413 0.3739 0.0911 +
BA-3bats 1.3693 3.6073 2.8133 0.6197 +

BA-30bats 1.3021 3.0094 2.3567 0.5229 +
µBA 5.65e-07 0.6860 0.1326 0.2366 -

30

DVBA 0.0553 0.0759 0.0643 0.0077 +
BA-3bats 0.1010 0.1320 0.1133 0.0102 +

BA-30bats 0.1025 0.1232 0.1116 0.0085 +
µBA 0.0111 0.0135 0.0121 0.0009 -

50

DVBA 0.1497 0.2200 0.1832 0.0230 +
BA-3bats 0.2781 0.3822 0.3373 0.0281 +

BA-30bats 0.3020 0.3799 0.3408 0.0216 +
µBA 0.0132 0.0206 0.0175 0.0019 -

f8 Shifted Rastrigin

10

DVBA 28.9949 127.0091 72.8769 22.4583 +
BA-3bats 46.2250 188.3732 103.7364 40.2252 +

BA-30bats 25.0820 92.8895 57.0023 18.4316 +
µBA 11.0428 76.7472 39.8817 17.9924 -

30

DVBA 211.0952 498.3511 368.8925 83.9036 +
BA-3bats 297.7370 653.7204 460.0270 90.4837 +

BA-30bats 250.8744 469.1721 337.1287 65.2766 +
µBA 148.7219 314.5511 232.5197 55.4156 -

50

DVBA 606.4386 821.6168 708.6816 62.4324 +
BA-3bats 692.8852 1009.7283 847.5367 110.5501 +

BA-30bats 644.1346 837.0152 720.2708 68.0795 +
µBA 321.5644 610.9722 462.8984 106.1891 -

f9 Shifted Rotated Ackley

10

DVBA 1.7521 20.3361 7.4764 8.2766 +
BA-3bats 2.2921 20.4352 19.3113 3.2061 +

BA-30bats 1.9483 20.4179 14.8852 8.3534 +
µBA 0.4599 20.2919 5.3013 7.5357 -

30

DVBA 20.8117 21.0153 20.9279 0.0548 N
BA-3bats 20.8161 21.0337 20.9658 0.0595 N

BA-30bats 20.8892 21.0349 20.9639 0.0421 N
µBA 2.8299 20.7155 17.0460 7.1056 -

50

DVBA 21.0451 21.1607 21.1241 0.0308 +
BA-3bats 21.1297 21.1911 21.1597 0.0195 +

BA-30bats 21.0353 21.1986 21.1363 0.0448 +
µBA 20.7314 20.8755 20.7972 0.0491 -

f10 Shifted Rotated Griewangs

10

DVBA 2.2979 3.7364 3.0175 0.4656 +
BA-3bats 0.8388 1.0362 0.9506 0.0630 +

BA-30bats 0.8025 1.0262 0.9003 0.0850 +
µBA 0.4069 0.9148 0.7429 0.1519 -

30

DVBA 7.2322 8.7454 7.3364 1.9442 +
BA-3bats 1.6303 1.9125 1.7939 0.0934 +

BA-30bats 1.6556 1.8832 1.7739 0.0766 +
µBA 1.1605 1.2358 1.2008 0.0221 -

50

DVBA 10.8454 14.9527 11.6678 2.5123 +
BA-3bats 3.2262 3.7766 3.4695 0.1737 +

BA-30bats 3.0935 3.9139 3.4128 0.2344 +
µBA 1.4815 1.6367 1.5713 0.0453 -

7

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

0 50000 100000 150000 200000 250000 300000 350000
FES

21

22

23

24

25

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Ackley

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000
FES

100

101

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Griewangs

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

27

28

29

210

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Rastrigin

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

2-4

2-2

20

22

24

26

28

210

212

214

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Powell

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

25

27

29

211

213

215

217

219

221

223

225

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Rosenbrock

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

2-7

2-5

2-3

2-1

21

23

25

27

29

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Sphere

DVBA
BA - 30 particles
BA - 3 particles
mBA - 3 particles

0 50000 100000 150000 200000 250000 300000
FES

200

300

400

500

600

700

800

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Shifted Rastrigin

DVBA
BA - 30 particles
BA - 3 particles
µBA - 3 particles

0 50000 100000 150000 200000 250000 300000 350000
FES

13

14

15

16

17

18

19

20

21

22

A
v
e
ra

g
e
 f

it
n
e
ss

 v
a
lu

e
 o

f
3

0
 r

u
n
s

Shifted Rotated Ackley

DVBA
BA - 30 particles
BA - 3 particles
µBA - 3 particles

Fig. 4. Convergence characteristics of µBA, BA, and DVBA for the 30-dimensional test functions.

8

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

Algorithm 3 µBA pseudo code where xgbest is the global best po-
sition and d is the number of dimensions.

Objective function f(x), x = (x1, ..., xd)
T

Initialize the bat population xi(i = 1, 2, 3) and velocity vi
Initialize wavelength λi and frequency fi
Initialize the number of the wave vectors and search points (r, k)
while (t < Max number of iterations) do

for each bat do
Create a sound waves scope [11]
Evaluate the solutions on the waves
Choose the best solution on the waves, h∗

if (i = 1) then //Scout Bat
Move to h∗
Maximize λi and minimize fi

end if
if (i = 2) then //Explorer Bat

if f(h∗) < f(xi) then
Fly to h∗
Maximize λi and minimize fi
trial=0

else
trial=trial+1
Change the direction randomly
Update P by using Eq. 10

end if
if (rand() > P) then

Produce a new solution around the exploiter bat
by Eq. 11
trial = 0
P = 1

end if
end if
if (i = 3) then //Exploiter Bat

Fly to xgbest
Minimize λi and maximize fi
Change the direction randomly

end if
Rank the bats and find the current best xgbest

end while

deviation (STDEV) of the results found over the 30 independent
runs by each algorithm. The best results are marked in bold. Fur-
thermore, we used t-tests [17] to compare the means of the results
produced by the µBA and the other algorithms at the 0.05 level
of significance. In the last column of Table 2 and 3 we report the
statistical significance level of the results. There ′+′ indicates that
µBA is significantly more successful than selected one at a 0.05
level of significance by two-tailed test, ′N ′ means the difference
of means is not statistically significant and, ′−′ stands for Not Ap-
plicable, covering cases for which the two algorithms achieve the
same accuracy results.
Fig.4 illustrates the convergence characteristics in terms of the best
fitness value of the median run of each algorithm for the test func-
tions with D = 30. The convergence graphs of the 10 − D and
50−D problems are similar to their 30−D counterparts, so they
are omitted here to save space.
From Table 2 and 3 it can be said that µBA gave the best results for
multimodal test functions. It is known that the complexity of the
problems increases as the dimensionality of the search increases
and local traps become harder to escape for the algorithms. How-
ever, the µBA performed successfully for the multimodal functions

f1, f2, and f3 for all dimensions. For the functions f4, the algo-
rithms didn’t show a significant success but µBA has demonstrated
a better ability of global searching. For the unimodal functions,
the algorithms got the best results but they performed poorly on
f8 (Rosenbrock). Rosenbrock function is grouped as a unimodal
function but it may have multiple minima when the dimension in-
creases and converging to the minimum is difficult [20]. Further-
more, the t-test values show that the performance of the µBA is sig-
nificantly more efficient than other compared algorithms in terms
of the mean. Similar observations can be made for the shifted and
rotated functions. Overall, µBA obtains a smaller mean value than
the other algorithms for all problems.
Additionally, a close inspection of Table 2 and 3 reveals that, BA
doesn’t sensitive to the population size. BA with 3 bats and BA
with 30 bats didn’t show significant difference on most of the test
functions.
The convergence map of algorithms in Fig.4 shows that the µBA
always converges faster than other algorithms on seven problems
(f1, f5, f6, f7, f8, f9, and f10). In Fig.4, it can be seen that, while
other algorithms suffer from premature convergence problem on
the function f1, f5, f7, f8, and f9, the µBA escaped from the lo-
cal optima traps successfully. For the functions f1 and f9, µBA
outperformed the other algorithms significantly. f1 and f9 is char-
acterized by a nearly flat outer region, and a large hole at the center.
The function poses a risk for the algorithms to be trapped in one of
its many local minima and difficulty to reach the global optima in
predefined time. The explorer bat helped the exploiter bat to reach
the global optima faster in these functions.

6. CONCLUSION
In this paper, we proposed a micro Bat Algorithm (µBA) to solve
single objective high dimensional optimization problems. In µBA,
the proposed new search mechanism combines the BA’s fast con-
vergence characteristic with DVBA’s dynamic search capability to
increase the search diversity while pursuing a balance between ex-
ploration and exploitation.
To prove the effectiveness and robustness of the proposed algo-
rithms, the µBA was compared with DVBA and BA on variety
of optimization problems with different complexities. The results
demonstrated that the solution values achieved by µBA are several
orders of magnitude better than those of BA and DVBA in many
cases. Also, µBA appears to be less effected when dimension of the
problem increases significantly. Therefore, it can be said that µBA
achieves a good balance between exploration and exploitation and
has the best universality on different type of problems.

7. REFERENCES
[1] Xin-She Yang. A new metaheuristic bat-inspired algorithm.

In Nature inspired cooperative strategies for optimization
(NICSO 2010), pages 65–74. Springer, 2010.

[2] Bandi Ramesh, V Chandra Jagan Mohan, and VC Veera
Reddy. Application of bat algorithm for combined economic
load and emission dispatch. Int. J. of Electricl Engineering
and Telecommunications, 2(1):1–9, 2013.

[3] A Kaveh and P Zakian. Enhanced bat algorithm for optimal
design of skeletal structures. Asian J Civial Eng, 15(2):179–
212, 2014.

[4] Mo Yuanbin, Zhao Xinquan, and Xiang Shujian. Local mem-
ory search bat algorithm for grey economic dynamic system.
TELKOMNIKA Indonesian Journal of Electrical Engineer-
ing, 11(9):4925–4934, 2013.

9

International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 12, July 2015

[5] Jiann-Horng Lin, Chao-Wei Chou, Chorng-Horng Yang,
Hsien-Leing Tsai, et al. A chaotic levy flight bat algorithm
for parameter estimation in nonlinear dynamic biological sys-
tems. Computer and Information Technology, 2(2):56–63,
2012.

[6] Xin-She Yang and Amir Hossein Gandomi. Bat algorithm:
a novel approach for global engineering optimization. Engi-
neering Computations, 29(5):464–483, 2012.

[7] Mario Köppen, Katrin Franke, and Raul Vicente-Garcia. Tiny
gas for image processing applications. Computational Intelli-
gence Magazine, IEEE, 1(2):17–26, 2006.

[8] Konstantinos E Parsopoulos. Cooperative micro-
particle swarm optimization. In Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Compu-
tation, pages 467–474. ACM, 2009.

[9] Sambarta Dasgupta, Arijit Biswas, Swagatam Das, Bijaya Ke-
tan Panigrahi, and Ajith Abraham. A micro-bacterial foraging
algorithm for high-dimensional optimization. In Evolutionary
Computation, 2009. CEC’09. IEEE Congress on, pages 785–
792. IEEE, 2009.

[10] Mauricio Olguin-Carbajal, Enrique Alba, and Javier
Arellano-Verdejo. Micro-differential evolution with local
search for high dimensional problems. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages 48–54.
IEEE, 2013.

[11] Ali Osman Topal and Oguz Altun. Dynamic virtual bats algo-
rithm (dvba) for global numerical optimization. In Intelligent
Networking and Collaborative Systems (INCoS), 2014 Inter-
national Conference on, pages 320–327. IEEE, 2014.

[12] C Chandrasekar et al. An optimized approach of modified bat
algorithm to record deduplication. International Journal of
Computer Applications, 62(1), 2013.

[13] Matti Airas. Echolocation in bats. In Proceedings of spa-
tial sound perception and reproduction. The postgrad seminar
course of HUT Acoustics Laboratory, pages 1–25, 2003.

[14] Md Wasi Ul Kabir, Nazmus Sakib, Syed Mustafizur Rahman
Chowdhury, and Mohammad Shafiul Alam. A novel adap-
tive bat algorithm to control explorations and exploitations
for continuous optimization problems. International Journal
of Computer Applications, 94(13):15–20, 2014.

[15] S Yılmaz, E Ugur Kucuksille, and Y Cengiz. Modified bat
algorithm. Elektronika ir Elektrotechnika, 20(2):71–78, 2014.

[16] Ali Osman Topal, Oguz Altun, and Erisa Terolli. Dynamic
virtual bats algorithm (dvba) for minimization of supply chain
cost with embedded risk. In Proceedings of the 2014 Eu-
ropean Modelling Symposium, pages 58–64. IEEE Computer
Society, 2014.

[17] Swagatam Das, Ajith Abraham, Uday K Chakraborty, and
Amit Konar. Differential evolution using a neighborhood-
based mutation operator. Evolutionary Computation, IEEE
Transactions on, 13(3):526–553, 2009.

[18] JJ Liang, BY Qu, PN Suganthan, and Q Chen. Problem defini-
tions and evaluation criteria for the cec 2015 competition on
learning-based real-parameter single objective optimization.
Technical Report201411A, Computational Intelligence Lab-
oratory, Zhengzhou University, Zhengzhou China and Tech-
nical Report, Nanyang Technological University, Singapore,
2014.

[19] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan.
Differential evolution algorithm with strategy adaptation for
global numerical optimization. Evolutionary Computation,
IEEE Transactions on, 13(2):398–417, 2009.

[20] Yun-Wei Shang and Yu-Huang Qiu. A note on the extended
rosenbrock function. Evolutionary Computation, 14(1):119–
126, 2006.

10

	Introduction
	Bat Algorithm Overview
	Dynamic Virtual Bat Algorithm (DVBA) Overview
	Initialization of bat population
	Search scope of the bats
	Deciding the roles of the bats
	Changing the size of the bat's search scope
	Position and direction update
	Pseudo code of the Dynamic Virtual Bats Algorithm

	Micro Bat Algorithm
	The explorer bat
	The exploiter bat
	The scout bat

	Numerical Experiments and Results
	Parameter settings for the algorithms
	BA Settings
	DVBA Settings
	micro-BA Settings

	Benchmark Functions
	Experimental results and discussion

	Conclusion
	References

