
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.10, July 2015

17

A Study of Various Static and Dynamic Metrics for Open

Source Software

Ankush Vesra
Department of Computer Science

Guru Nanak Dev University
Amritsar

Rahul
Department of Computer Science

Guru Nanak Dev University
Amritsar

ABSTRACT

Software metrics is developed and utilized by the different

software organizations for evaluating and assuring software code

quality, operation, and maintenance. Software metrics measure

various kinds of software complexity like size metrics, control

flow metrics and data flow metrics. These software complexities

must certainly be continuously calculated, followed, and

controlled. Among the main objectives of software metrics is

that pertains to a procedure and product metrics. It is definitely

considered that high level of complexity in a component is bad

compared to a low level of complexity in a module. Software

metrics may be used in various phases of software development

lifecycle. In this paper, a survey on various software metrics has

been done. Moreover they are categorized into static and

dynamic metrics. The paper ends with in conclusion and the near

future scope to overcome some issues for the software metrics.

Keywords
 Software Metrics, Static Metrics, Dynamic Metrics.

1. INTRODUCTION
Software metrics could be classified into three categories:

product metrics, process metrics, and project metrics. Product

metrics describe the characteristics of the product such as for

instance size, complexity, design features, performance, and

quality level. Process metrics may be used to enhance software

development and maintenance. Examples include the potency of

defect removal during development, the pattern of testing defect

arrival, and the response time of the fix process. Project metrics

describe the project characteristics and execution. Examples

include the amount of software developers, the staffing pattern

over the life cycle of the software, cost, schedule, and

productivity. Some metrics participate in multiple categories. As

an example, the in process quality metrics of a task are generally

process metrics and project metrics.

 Software quality metrics are a part of software metrics that

concentrate on the product quality areas of the product, process,

and project. Generally, software quality metrics are far more

closely related to process and product metrics than with project

metrics. Nonetheless, the project parameters such as for instance

the amount of developers and their skill levels, the schedule, the

size, and the corporation structure certainly affect the caliber of

the product. Software quality metrics could be divided further

into end-product quality metrics and in-process quality metrics.

The essence of software quality engineering would be to

investigate the relationships among in-process metrics, project

characteristics, and end-product quality, and, on the basis of the

findings, to engineer improvements in both process and product

quality. Moreover, we ought to view quality from the whole

software life-cycle perspective and, in this regard, we will

include metrics that measure the standard degree of the

maintenance process as another group of software quality

metrics. In this chapter we discuss several metrics in all of three

categories of software quality metrics: product quality, in-

process quality, and maintenance quality.

1.1 Software Metrics
Software metrics is one consistent topic of research in software

engineering. The role of software metrics is to locate significant

estimates for software products and directs us in intriguing

managerial and technical decisions. Software metrics have

grown to be an important section of software development and

are utilized during every phase of the software development life

cycle. The name software metric [1][2] is connected with varied

measurements of computer software and its development.

Research in the region of software metrics tends to concentrate

predominantly on static metrics which can be obtained by static

analysis of the program artifact. To raised understand the impact

of code changes and track complexity issues in addition to along

with code quality software metrics are frequently utilized in the

program development life cycle. Ideally, software metrics must

certianly must be computed continuously through the

development process to allow the perfect tracking. Moreover,

software metrics must certanly be should really be definable by

development teams not to only cover general factors, but to

measure company, project or team specific goals.

 1.1.1 General Uses of Software Metrics
Software metrics are accustomed to obtain objective

reproducible measurements that may be helpful for quality

assurance, performance, debugging, management, and

estimating costs.

Finding defects in code (post release and just before release),

predicting defective code, predicting project success, and

predicting project risk

 There's still some debate around which metrics matter and what

they mean, the utility of metrics is limited by quantifying one of

many following goals: Schedule of a computer software project,

Size/complexity of development involved, cost of project,

quality of software

2. TYPES OF SOFTWARE METRICS
There are different types of software metrics defined under two

categories. They are static and dynamic software metrics.

2.1 Static Metrics
 Static metrics are obtainable at the early phases of software

development life cycle (SDLC). These metrics deals with the

structural feature of the software system and easy to gather.

Static complexity metrics estimate the amount of effort needed

to develop, and maintain the code. First static metric [3]

(LOC/KLOC) was used to measure the productivity of a

program. The most commonly used complexity metric before

1990 was cyclomatic [4] complexity that was measured by

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.10, July 2015

18

McCabe. He uses the flow graph and some mathematical

equations to compute software complexity. This metric was used

in code development risk analysis, change risk analysis in

maintenance and in test planning.

Table 1. Static Metric

Serial

No..

Static

Software

Metric

Description

1 AHF This metric is used to measure

the invisibilities of attributes in

classes. The attributed

invisibility is defined as the

percentage of the total classes

from which the attribute is not

visible.

2 AIF Attribute inheritance factor

3 AVPATHS Average Depth of Paths is

calculated by counting the

number and size of all paths

from all methods, and then

dividing that number by the

number of methods which had

other method calls. In other

words, the average depth of

paths from methods that have

path at all.

4 ACLOC Average lines per class: This

metric gives the average Class

size in terms of LOC.

5 AMLOC Average lines per method: This

metric gives the average Method

size in terms of LOC.

6 PDIT Depth of Inheritance tree: The

Depth of Inheritance Tree for a

Project is the deepest or

maximum of all inheritance trees

within the project

7 LOC Lines of code: Number of Lines

in the project, including source,

whitespace and comments.

8 MHF Method Hiding Factor is one of

the important metrics of object

oriented programming that is

calculated by summing the

visibility of each method in

respect to the other classes in the

project. It is used to measures

the invisibilities of methods in

classes. The invisibility of a

method is the percentage of the

total classes from which the

method is not visible.

9 MIF Method inheritance factor [5]

gives the information about the

impact of inheritance in your file

or program. It is calculate as

ratio of inherited methods to the

total number of methods

10 NCLASS It is another static metrics that

count the number of classes in a

program.

11 SEIMI SEI Maintainability Index is one

of the important measures of

maintenance. SEIMI is a

measure of the maintainability

of the project, as described by

the Software Engineering

Institute

12 SLOC Source lines of Code are an

important measure of source line

of code. Counting lines is used

for estimating the amount of

upholding or maintenance

required and it can be used to

normalize other software

metrics.

2.2 Dynamic Metric
 Dynamic metrics are accessible at the late stage of the software

development life cycle (SDLC). These metrics capture the

dynamic behavior of the system and very hard to obtain and

obtained from traces of code. Dynamic metrics are derived from

an analysis of code while it is executing. Software metrics for

the qualitative and quantitative assessment is the combination of

static and dynamic metrics for software's [6]. They provide an

indication of what calls are actually taking place, the number of

statements executed and what paths are being executed.

Since software maintainability is an important attribute

of software quality, accurate prediction of it can help to improve

overall software quality[7]. Dynamic metrics include both

complexity measures and measures useful in reliability

modeling. Dynamic metric values are dependent on the input or

test data with which system software is run.

Table 2. Dynamic Metrics

Serial

No.

Dynamic

Metric

Description

1 Bug Counting error, flaw in a computer

program that causes it to produce

an incorrect or unexpected result,

or to behave in unintended ways

2 Halstead

complexity

 identify measurable properties of

software, and the relations between

them

3 function point It is a unit of measurement to

express the amount of business

functionality an information system

provides to a user

4 Cyclomatic

complexity

Indicate the complexity of a

program

3. LITERATURE SURVEY
Mertoguno, J. S. et al. [8] deal with the look and modeling of a

neuro-expert (NE) system for the prediction of software metrics.

The NE includes two neural networks and a specialist system

with fuzzy reasoning is to be able to achieve a much better

evaluation of software metrics. More specifically, the

significance of using both neural networks and a specialist

system is to mix the adaptive nature of neural networks on

different sets of data, with the high-level reasoning supplied by

the expert system, for a much better overall evaluation. In this

paper the very first stage modeling of the NE system is

presented.

Gray, Andrew R., and Stephen G. MacDonell [9] examined the

implications of using these methods and provides some

recommendations concerning when they might be an

appropriate. The utilization of regression analysis to derive

predictive equations for software metrics has recently been

complemented by increasing variety of studies using non-

traditional methods, such as for example neural networks, fuzzy

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.10, July 2015

19

logic models, case-based reasoning systems, and regression

trees.There's also had been an increasing degree of

sophistication in the regression-based techniques used, including

robust regression methods, factor analysis, and more efficient

and better validation procedures. A contrast of the different

techniques can also be made when it comes with regards to their

modelling capabilities with specific mention of the software

metrics.

Subramanian, Girish, and William Corbin [10] centered on

analyzing certain software metrics in a object-oriented (OO)

environment. The metrics collected and analyzed includes

size,quantity of message (NOM) sends, reuse, inherited

methods, and hierarchical nesting level. The website used could

be the factory systems department of a big sizable

manufacturing company. This department uses SmallTalk whilst

because the OO programming language to implement the OO

design paradigm. Using automated tools developed in

SmallTalk, these metrics were collected from three domain

applications comprising 600 classes. Four propositions are

empirically tested and the outcomes provided in this study.

Olague, Hector M. et al. [11] explored the power of those

three metrics suites to predict fault-prone classes using defect

data for six versions of Rhino, an open-source implementation of

JavaScript written in Java. They figured the CK and QMOOD

suites contain similar components and produce statistical models

which can be effective in detecting error-prone classes. In

addition they conclude that the class components in the

MOOD metrics suite are negative class fault-proneness

predictors. Analyzing multivariate binary logistic regression

models across six Rhino versions indicates these models might

be useful in assessing quality in OO classes produced using

modern highly iterative or agile software development

processes.

Shatnawi, Raed, and Wei Li [12] examined three releases of the

Eclipse project and discovered that however while some others

metrics can still predict class error proneness in three error-

severity categories, the accuracy of the prediction decreased

from release to release. Furthermore, they discovered that the

prediction can't be used to construct a metrics model to

recognize error-prone classes with acceptable accuracy. These

findings claim that as something evolves, the utilization of some

commonly used metrics to recognize which classes are far more

susceptible to errors becomes increasingly difficult and they

need to seek alternative methods (to the metric-prediction

models)to discover error-prone classes should they want high

accuracy.

 Honglei et al. [13] gave , software metrics definition and the

real history of and the types of software metrics were

overviewed. Software complexity measuring may be the

important constituent of software metrics and it's concerning the

price of software development and maintenance. To be able to

improve the software quality and the project controllability, It's

necessary to manage the software complexity by measuring the

related aspects. This paper respectively expounds McCabe

methods and C&K metric method for types of

complexity metrics.

Mohsin, Shaikh, and Zeeshan Kaleem [14] suggested an

approach which explores effective code comprehension by

combining Software metrics and technique called Program

Slicing. Program slicing is static program analysis process for

code automation which could develop efficient measures for

coupling, cohesion, complexity. Such novel design

of software metrics with analytical approach can insure reliable

development of software system.

Catal, Cagatay et al. 15[] centered on case studies of five public

NASA datasets and details the construction of Naive Bayes-

based software fault prediction models both before and after

applying the proposed noise detection algorithm. Experimental

results show this noise detection approach is quite effective for

detecting the class noise and that the performance of fault

predictors utilizing a Naive Bayes algorithm with a logNum

filter improves if the class labels of identified noisy modules are

corrected.

Takai, Yasunari et al. [16] centered on latent faults detected

by static analysis techniques. The coding checker is popular|to

locate coding standards violations which are strongly associated

with latent faults. In this paper, they proposed

new software metrics centered on coding standards violations to

fully capture latent faults in a development. They analyzed two

open source projects by utilizing proposed metrics and discuss

the effectiveness.

Debbarma, Mrinal Kanti et al. [17] discussed the

different metrics and comparison between both static and

dynamic metrics. They tried to judge and analyze different

aspects of software static and dynamic metrics in regression

testing that provides of estimating the time and effort required

for testing.

Suresh, Yeresime et al. [18] evaluated software like ATM using

available subset of metrics from traditional and object-oriented

methodology. The standard metrics such as for instance

cyclomatic complexity, size and comment percentage are

accustomed to compute the software complexity. This paper also

analyses a popular subset of object-oriented metrics like the

Chidamber and Kemerer metric suite to compute the system

reliability. The metric values are evaluated for a actual life

application, which supports us to understand the complexity and

the reliability of the ATM software.

 Ors, Kilyen Attila, and Barabas Laszlo [19] presented an

interpreter framework created for measuring static and dynamic

characteristics of a Scade model. Though some of

the software metrics have grown to be industrial standards

in software development and for popular languages there's an

assortment of software measurement tools, for Scade you will

find no such tools. The main achievement is they developed an

interpreter for metrics, and they provided quick access for the

information gained from these measurements. Additionally they

implemented a few of the canonical software metrics like

Cyclomatic complexity and Halstead's Software Science.

Singh, Pradeep Kumar, and Om Prakash Sangwan [20]

emphasized on a new framework to gain access to the Aspect

Oriented Software's (AOS) using

software metrics. Software metrics for the qualitative and

quantitative assessment may be the combination of static and

dynamic metrics for software's. It is located from the literature

survey that till date most the framework only considered

the static metrics based assessment for aspect

oriented software's. Within their work they've mainly considered

the set of static metrics along side dynamic software metrics

specific to AspectJ. This framework may give a new research

direction while predicting the software attributes because earlier

dynamic metrics were neglected while evaluating the standard

attributes like maintainability, reliability, understandability for

AO software's. Centered on basic fundamentals

of software engineering dynamic metrics are equally important

as well as static metrics for software analysis. An identical

concept is borrowed to use on aspect oriented software

development by the addition of dynamic software metrics.

Presently they've only proposed a construction and model using

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.10, July 2015

20

the static and dynamic metrics for the assessment of aspect

oriented system but nonetheless the proposed approach have to

be validated.

Yadav, Harikesh Bahadur, and Dilip Kumar Yadav [21]

proposed a fuzzy logic based model for predicting software

defect density indicator at each phase of the SDLC. The

predicted defects of twenty different software projects are

observed very close to the particular defects detected during

testing. The predicted defect density indicators are very useful to

analyze the defect severity in various artifacts of SDLC of a

software project.

Yadav, Harikesh Bahadur, and Dilip Kumar Yadav [22]

discussed that the quantity of the program defect prediction

model using software metrics has been proposed in last two

decades. However, predicting software defect by taking all the

software metrics (traditional, object oriented and process) is

computationally complex. Therefore, an intelligent choice of

metrics plays an important role in improving the program

quality. In the first phases of the program development life

cycle, software metrics are related to uncertainty and could be

assessed in linguistic terms. Construction of membership

function is essential because the success of a technique depends

upon the membership functions used. Therefore, in this paper, a

methodology has been proposed to create the membership

functions of software metrics.

4. CONCLUSION AND FUTURE SCOPE
In this paper, a survey on various software metrics has been

done. The metrics has also been divided into static and dynamic

metrics. Static metrics are obtainable at the early phases of

software development life cycle (SDLC). These metrics deals

with the structural feature of the software system and easy to

gather. Static complexity metrics estimate the amount of effort

needed to develop, and maintain the code. Dynamic metrics are

accessible at the late stage of the software development life

cycle (SDLC). These metrics capture the dynamic behavior of

the system and very hard to obtain and obtained from traces of

code. The various types of the metrics has also been mentioned

in this paper under these two different categories.

5. ACKNOWLEDGEMENTS
I would like to thanks to God, all my teachers, family and

friends who guide and support me to write this paper. They

always stand with me and always help me to do the work.

6. REFERENCES
[1] H F Li, W K Cheung “An Empirical Study of Software

Metrics” Software Engineering IEEE Transactions on

(1987) Volume: SE-13, Issue: 6, Pages: 697-708.

[2] N E Fenton “Software Metrics” Conference Proceedings of

on the future of Software engineering ICSE 00(2000)

Volume: 8, Issue: 2, Publisher: ACM Press [3] Kuljit Kaur

Chahal, Hardeep Singh “Metrics to study

[3] Li, H.F., Cheung, W.K. “An Experimental investigation of

software metric and their relationship to software

development effort”, IEEE Transaction on software

engineering 649-653, Piscataway, NJ, USA.

[4] Thomas J McCabe, “A Complexity Measure”, IEEE

Transaction on Software Engineering, Vol. SE-2 No. 4

[308-320]

[5] KP Srinavan, Dr. T Devi, “Design and Development of

procedure for new object oriented design metrics’, IJCA,

Vol. 24, No. 8, Jun 2011

[6] Singh, Pradeep Kumar, and Om Prakash Sangwan. "Aspect

Oriented Software Metrics Based Maintainability

Assessment: Framework and Model." (2013): 1-07.

[7] Kaur, Arvinder, Kamaldeep Kaur, and Kaushal Pathak.

"Software maintainability prediction by data mining of

software code metrics." In Data Mining and Intelligent

Computing (ICDMIC), 2014 International Conference on,

pp. 1-6. IEEE, 2014.

[8] Mertoguno, J. S., R. Paul, N. G. Bourbakis, and C. V.

Ramamoorthy. "A neuro-expert system for the prediction of

software metrics." Engineering Applications of Artificial

Intelligence 9, no. 2 (1996): 153-161.

[9] Gray, Andrew R., and Stephen G. MacDonell. "A

comparison of techniques for developing predictive models

of software metrics." Information and software

technology 39, no. 6 (1997): 425-437.

[10] Subramanian, Girish, and William Corbin. "An empirical

study of certain object-oriented software metrics." Journal

of Systems and Software 59, no. 1 (2001): 57-63.

[11] Olague, Hector M., Letha H. Etzkorn, Sampson Gholston,

and Stephen Quattlebaum. "Empirical validation of three

software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile

software development processes." Software Engineering,

IEEE Transactions on 33, no. 6 (2007): 402-419.

[12] Shatnawi, Raed, and Wei Li. "The effectiveness of software

metrics in identifying error-prone classes in post-release

software evolution process."Journal of systems and

software 81, no. 11 (2008): 1868-1882.

[13] Honglei, Tu, Sun Wei, and Zhang Yanan. "The research on

software metrics and software complexity metrics."

In Computer Science-Technology and Applications, 2009.

IFCSTA'09. International Forum on, vol. 1, pp. 131-136.

IEEE, 2009.

[14] Mohsin, Shaikh, and Zeeshan Kaleem. "Program Slicing

Based Software Metrics towards Code Restructuring."

In Computer Research and Development, 2010 Second

International Conference on, pp. 738-741. IEEE, 2010.

[15] Catal, Cagatay, Oral Alan, and Kerime Balkan. "Class noise

detection based on software metrics and ROC

curves." Information Sciences 181, no. 21 (2011): 4867-

4877.

[16] Takai, Yasunari, Takashi Kobayashi, and Kiyoshi Agusa.

"Software Metrics based on Coding Standards Violations."

In Software Measurement, 2011 Joint Conference of the

21st Int'l Workshop on and 6th Int'l Conference on

Software Process and Product Measurement (IWSM-

MENSURA), pp. 273-278. IEEE, 2011.

[17] Debbarma, Mrinal Kanti, Nirmalya Kar, and Ashim Saha.

"Static and dynamic software metrics complexity analysis

in regression testing." In Computer Communication and

Informatics (ICCCI), 2012 International Conference on,

pp. 1-6. IEEE, 2012.

[18] Suresh, Yeresime, Jayadeep Pati, and Santanu Ku Rath.

"Effectiveness of software metrics for object-oriented

system." Procedia Technology 6 (2012): 420-427.

[19] Ors, Kilyen Attila, and Barabas Laszlo. "Scade interpreter

for measuring static and dynamic software metrics."

In Intelligent Systems and Informatics (SISY), 2013 IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.10, July 2015

21

11th International Symposium on, pp. 123-128. IEEE,

2013.

[20] Singh, Pradeep Kumar, and Om Prakash Sangwan. "Aspect

Oriented Software Metrics Based Maintainability

Assessment: Framework and Model." (2013): 1-07.

[21] Yadav, Harikesh Bahadur, and Dilip Kumar Yadav. "A

fuzzy logic based approach for phase-wise software defects

prediction using software metrics."Information and

Software Technology 63 (2015): 44-57.

[22] Yadav, Harikesh Bahadur, and Dilip Kumar Yadav.

"Construction of Membership Function for Software

Metrics." Procedia Computer Science 46 (2015): 933-940.

IJCATM : www.ijcaonline.org

