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ABSTRACT
In this paper, we introduce an extension of the exponentiated
exponential(EE) distribution which offers a more flexible model
for lifetime data. This model is generated by compound distribu-
tion with mixing exponential model. Several statistical and relia-
bility properties of the proposed distribution are explored as the
geometric extreme stability, sufficient conditions for the shape be-
havior of the density and hazard rate functions, the moments and
mean residual life time. Estimation of unknown parameters using
the maximum likelihood are obtained. Moreover, an application to
a real data set is presented for illustrative purposes.

Keywords
Exponentiated Exponential Distribution, Compound distribution,
Geometric extreme stability, AIC, BIC, Likelihood ratio test, P-P
plot, mean residual life

1. INTRODUCTION
The two parameter EE distribution introduced by Ahuja and Nash
[2] and further, studied by Gupta and Kundu[6]. This distribution
has shape and scale parameters like Gamma and Weibull distribu-
tions. Moreover it has better fit than Weibull and Gamma in many
cases, Raja and Mir[15]. The applications of the EE distribution
have been widespread, we mention: models to determine bout cri-
teria for analysis of animal behavior, Yeates et al. [21]; software
reliability growth models for vital quality metrics, Subburaj et al.
[11]; models for episode peak and duration for eco-hydro-climatic
applications, Biondi et al.[5]; and cure rate modeling, Kannan et al.
[8]. An absolutely continuous random variable (rv) is said to have
TheEE distribution if its survival function (sf) and its probability
density function (pdf ) are given by,

F̄ (x) = 1− (1− e−βx)α, (1)

f(x) = αβe−βx(1− e−βx)
α−1

(2)

respectively, for x > 0, α > 0 and β > 0 . We write X ∼
EE(α, β), here α is the shape parameter and β is the scale pa-
rameter. In the particular case α = 1, it represents the exponential
family. therefore, all three families, Gamma, Weibull and the EE
are generalization of the exponential family but in different ways.

Many authors derived other properties of the (EE) distribution,
Gupta and Kundu [7], Raqab [16], Zheng [22], Shirke et al. [18],9
Abdel-Hamid and Al-Hussaini [1], Kundu and Pradhan [10] and
Aslam et al. [4]. Some generalizations of the EE distribution are
discussed in Nadarajah and Kotz [13]. On the other hand, Marshall-
Olkin [12] defined a technique of generalization for a given proba-
bility distribution increasing the number of parameters by one. The
new parameter results a flexibility in the distribution and known as
the Marshall-Olkin extended distribution.
Assume that X is a rv with a given a survival function (sf ) F̄ (x),
the Marshall-Olkin extension of the original family is defined to be
the family of distributions with sf as:

Ḡ(x) =
λF̄ (x)

1− λ̄F̄ (x)
, −∞ < x <∞, λ > 0, λ̄ = 1−λ. (3)

In this article, we introduce a new variant of the Marshall-Olkin ex-
tended family of distributions by selecting in 3 the EE distribution
with sf 1 which yields

Ḡ(x) =
λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α
, x > 0, α > 0, λ > 0, β > 0. (4)

We refer to the distribution with sf given by 4 as Marshall-Olkin
extendedEE distribution with parameters (α, β, λ) and will be de-
noted by MOEEE distribution. The aim of this article is to reveal
some statistical properties of the MOEEE distribution. These
properties include: (i) expressing this proposed distribution as a
compounding process with exponential mixing model; (ii) shapes
of the density function; (iii) moments and quantiles; (iv) shapes of
the hazard rate function; finally, (v) utilizing maximum likelihood
estimation, the proposed distribution is fitted to random real data.

2. COMPOUNDING
Let Ḡ(x|θ) be the conditional sf of a continuous rv X given a
continuous rv Θ. Let Θ follows a distribution with the pdf m(θ).
A distribution with the sf

Ḡ(x) =

∫ ∞
−∞

Ḡ(x|θ)m(θ)dθ, −∞ < x <∞

is called a compound distribution with mixing density m(θ). Com-
pound distributions provide a useful tool to get new class of distri-
butions in terms of existing ones. The following theorem shows that
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the MOEEE distribution can be expressed by the compounding
distribution.

THEOREM 1. Suppose that the conditional sf of a continuous
rv X given a continuous rv Θ = θ is given by:

Ḡ(x|θ) = exp(θ(1− 1

1− (1− e−βx)α
))

and let Θ have an exponential distribution with the pdf ,

m(θ) = θe−λθ

then the compound distribution of X is the MOEEE (α, β, λ).

PROOF. For all x > 0, β, θ, λ > 0, the unconditional sf of X
is given by

Ḡ(x) =

∫ ∞
−∞

Ḡ(x|θ)m(θ)dθ

= λ

∫ ∞
0

exp(−θ( 1

1− (1− e−βx)α
− λ̄)dθ

=
λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α

which is the sf of the MOEEE(α, β, λ) distribution.

In the next section we will show that the MOEEE distribution is
geometric extreme stable.

3. GEOMETRIC EXTREME STABLE
For independent identical distributed (iid) rv’s X1,X2, ...,XN
with sf(4) and N is independent of the X ′is with geomet-
ric (p) distribution, then UN = min(X1,X2, ...,XN ), VN =
max(X1,X2, ...,XN ), have the distribution in the same family
with 0 < α = p ≤ 1 and α = 1/p ≥ 1 respectively. The fol-
lowing theorem shows that MOEEE distribution geometric min-
imum and maximum stable.

THEOREM 2. The MOEEE distribution is geometric extreme
stable

PROOF. let X1,X2, ...,XN be a sequence of iid rv′s. Suppose
N is independent of the X ′is with geometric distribution :

Pr(N = n) = (1− p)n−1p, n = 1, 2, ...

and let

UN = min(X1,X2, ...,XN ), VN = max(X1,X2, ...,XN ),

then

Ḡ(x) = Pr(UN > x)

= Pr(X1 > x,X2 > x, ...,XN > x)

=

∞∑
n=1

F̄n(x)(1− p)n−1p

=
pF̄ (x)

1− (1− p)F̄ (x)
, −∞ < x <∞

and

H(x) = Pr(VN < x)

= Pr(X1 < x,X2 < x, ...,XN < x)

=

∞∑
n=1

F̄n(x)(1− p)n−1p

=
pF (x)

1− (1− p)F (x)
,

so that

H̄(x) =
F̄ (x)

1− (1− p)F̄ (x)
.

Now suppose that

F̄ (x) =
λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α
,

which is thesf of the MOEEE, then

Ḡ(x) =
pλ(1− (1− e−βx)α)

pλ+ (1− pλ)(1− e−βx)α
.

So UN is geometric minimum stable. Also we have ,

H̄(x) =
λ/p(1− (1− e−βx)α)

λ/p+ (1− λ/p)(1− e−βx)α
.

Hence VN is geometric maximum stable. Therefore the family of
MOEEE distribution with sf(4) is geometric extreme stable.

4. DENSITY, QUANTILES, MOMENTS
The pdf of the MOEEE with sf(4) is given by

g(x) =
αβλ(1− e−βx)α−1e−βx

(λ̄(1− e−βx)α + λ)2
, x > 0. (5)

TheMOEEE distribution having exponential, EE and Marshall-
Olkin extended exponential (MOEE) distributions as sub-models:

(1) If α = 1, we have the MOEE distribution, Singh et al [19].
(2) If λ = 1 we get the EE distribution, Gupta and Kundu [6].
(3) If λ = 1, α = 1 we get the exponential distribution.

The following theorem gives simple conditions under which the
pdf(6) is decreasing or unimodal.

THEOREM 3. The pdf of theMOEEE (α, β, λ) is decreasing
(unimodal) if 0 < α < 1 (α > 1) independent for λ, β.

PROOF. The first derivative of g(x) is given by,

g′(x) =
αλβ2(1− e−βx)α

(eβx − 1)2(λ̄(1− e−βx)α + λ)2
φ(x) , x > 0 (6)

where

φ(x) =
eβx(−λ̄(1− e−βx)α − λ) + α(−λ̄(1− e−βx)α + λ)

(λ̄(1− e−βx)α + λ)
.

If φ(0) = (−λ + λα)/λ = (α − 1) ≤ 0, and α ∈ (0, 1] then
φ(x) ≤ 0 for all x > 0, and hence, g′(x) ≤ 0 for all x > 0
i.e., g(x) is decreasing. For α > 1, φ(0) = (α − 1) ≥ 0, then
φ(x) ≥ 0 for all x > 0, and hence, g′(x) ≥ 0 for all x > 0 i.e.,
g(x) is increasing. Since limx→0 g(x) = 0 and limx→∞ g(x) = 0,
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therefore the pdf of MOEEE first increase and then decreases to
zero and hence it has a mode given by,

α(λ− 1)uα+1 − (λ− 1)(1 + α)uα + αλu+ λ(1− α) = 0

where u = 1− e−βxmode .

Figure 1 below shows the pdf curves for theMOEEE distribution
for selected values of the parameters α, β and λ.
If X has MOEEE distribution then the rth moment of X can be
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Fig. 1: The pdf of the MOEEE distribution for selected values of
the parameters λ, α andβ .

written as

E(Xr) = r

∫ ∞
0

xr−1Ḡ(x)dx

= r

∫ ∞
0

xr−1 λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α
dx

=
r(−1)r−1

βr

∫ 1

0

(ln(1− u))r−1 1− uα

(1− λ−1
λ
uα)(1− u)

du

Since (1− t)−1 =
∑∞
i=0 t

i for |t| < 1, then for λ > 1 we have

E(Xr) =
r(−1)r−1

βr

∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)k

×
∫ 1

0

ukα+j(1− uα)(ln(1− u))r−1du

=
r(−1)r−1

βr

∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)k

×
∫ 1

0

(ukα+j − ukα+α+j)(ln(1− u))r−1du

=
r

βr

∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)k

×
∫ ∞

0

((1− e−y)kα+j − (1− e−y)kα+α+j)yr−1e−ydu

using the fact that (1 − e−y)i =
∑∞
m=0

(−(i))m
m!

(e−y)m where,
(−(i))m = (−1)m(i− l+ 1)l and (n)l = n(n+ 1)...(n+ l− 1)
then we get,

E(Xr) =
1

βr

∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)k
{ ∞∑
m=0

(−(αj + k))m
m!(m+ 1)r

−
∞∑
l=0

(−(αj + α+ k))l
l!(l+ 1)r

Γ(r + 1)
}

(7)

Now, the median Xmedian and the qth quantile Xq of the
MOEEE distribution are given respectively by :

G(x) = 1− λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α
= 1/2,

then Xmedian = 1/β ln ( 1

1−( λ
1+λ )1/α

), to get the Xq , we have,

G(x) = 1− λ− λ(1− e−βx)α

λ+ λ̄(1− e−βx)α
= q,

then Xq = 1
β

ln

(
1

1−( λq
λq−q+1 )

1/α

)
Also, we can obtain the

quantiles and the median of the MOEE, EE and the exponential
distributions as special cases of that of the MOEEE distribution
as follows,

(1) For α = 1, we have the median and the quantiles of the
MOEE distribution as
Xmedian = 1/β ln (1 + λ) and Xq = 1/β log

(
1− λq

q−1

)
,

Singh et al[19].

(2) For λ = 1, we have the median and the quantiles of the EE
distribution as,
Xmedian = 1/β ln ( 1

1−( 1
2 )1/α

) and Xq = 1/β ln ( 1

1−q1/α ),
Gupta and Kundu [6].

(3) For α = λ = 1, we have the median and the quantiles of the
exponential distribution as, Xmedian = 1/β ln 2 and Xq =
1/β ln ( 1

1−q ).

3



International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 5, July 2015

5. HAZARD RATE FUNCTION AND MEAN
RESIDUAL LIFE

A basic quantity, foundational in survival analysis, is the hazard
function. this function is particularly useful in determining the
appropriate failure distributions utilizing qualitative information
about the mechanism of failure and for describing the way in which
the chance of experiencing the event changes with time. The hazard
rate function (hrf ) of the MOEEE distribution is given by

r(x) =
αβ(1− e−βx)α−1e−βx

[(1− e−βx)α − 1][(λ− 1)(1− e−βx)α − λ]
(8)

Note that for all α > 0, we have,

r(0) =

{ ∞ 0 < α < 1, for all λ,
β α = 1, λ = 1,
0 α > 1, for all λ

and,
r(∞) = β for all λ > 0, α > 0
The following theorem describe the behavior of r(x).

THEOREM 4. For any β, λ theMOEEE distribution has uni-
modal hrf if α > 1 and decreasing hrf if 0 < α < 1. Also, if
α = 1 then the hrf is decreasing for λ < 1 , increasing λ > 1
and constant for λ = 1 for all x > 0.

PROOF. The proof is similar to that of theorem 3.

Figure 2 shows the hrf curves for the MOEEE distribution for
selected values of the parameters α, β and λ.

Another ageing property for MOEEE distribution is the mean
residual life (mrl), was introduced by Watson and Wells [20] to
analyse burn-in problems, has been studied by reliabilists, statis-
ticians, survival analysts and others. Its defined simply as the ex-
pected value of the remaining lifetime beyond an age t. If X is
MOEEE rv with sf(4), The residual life rv at age t, denoted by
Xt = X − t|X > t. The mrl is defined formally as,

µ(t) = E(X − t|X > t) =
1

Ḡ(t)

∫ ∞
t

Ḡ(x)dx

=
1 + λ̄

λ
(1− e−βt)α

1− (1− e−βt)α

∫ ∞
t

1− (1− e−βx)α

1− λ−1
λ

(1− e−βx)α
dx

= 1/β
1 + λ̄

λ
(1− e−βt)α

1− (1− e−βt)α

∫ 1

1−e−βt

1− uα

(1− λ−1
λ
uα)(1− u)

du

=
1 + λ̄

λ
(1− e−βt)α

β(1− (1− e−βt)α)

∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)k

×
∫ 1

1−e−βt
ukα+j(1− uα)du

= 1/β
1 + λ̄

λ
(1− e−βt)α

1− (1− e−βt)α
∞∑
k=0

∞∑
j=0

(
λ− 1

λ
)kψkj(t)

where,

ψkj(t) =
α

(kα+ j + 1)(kα+ α+ j + 1)

+
(1− e−βt)kα+α+j+1

kα+ α+ j + 1
− (1− e−βt)kα+j+1

kα+ j + 1
(9)
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Fig. 2: The hrf of the MOEEE distribution for selected values of
the parameters α, β and λ.

6. MAXIMUM LIKELIHOOD ESTIMATION
Suppose thatX1,X2, ...,Xn is a random sample of size n from the
MOEEE distribution then the likelihood function is given by,

Ln(α, β, λ) =

n∏
i=1

g(xi, α, β, λ) =

n∏
i=1

αβλ(1− e−βxi)α−1e−βxi

(λ̄(1− e−βxi)α + λ)2

and the log-likelihood function is

ln =

n∑
i=1

(α− 1)(log(1− e−βxi))− βxi − 2 log((λ̄(1− e−βxi)α + λ))

+ n log(αβλ).

The Maximum Likelihood Estimation (mle ) of α, β and λ are ob-
tained as the solution of

∂l

∂α
= 0,

∂l

∂β
= 0,

∂l

∂λ
= 0.

Testing the add parameter λ in MOEEE distribution : To test
the null hypothesis H0 : λ = 1 (EE distribution ), we use the
likelihood ratio test (lrt). Under H0 the lrt statistic is

XL = 2[ln(α̂, β̂, λ̂)− ln(α̂, β̂, 1)]
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which has an asymptotic chi-square distribution with 1 degree of
freedom.H0 is rejected at a significance level of α ifXL > χ2

(1,α).
In addition, for model selection, we use the Akiake Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) de-
fined as:

AIC = loglikelihood− 2k

BIC = loglikelihood− k

2
log(n)

where k is the number of parameters in the model and n is the
sample size. For more details about the AIC and BIC, see Akiake
[3] and Schwarz et al [17], respectively. The model with higher AIC
(BIC) is the one that better fits the data.

7. APPLICATION
In this section, we fit theMOEEE distribution to a real data set.
This data set is an uncensored data set from Nichols and Padgett
[14]consisting of 100 observations on breaking stress of carbon
fibers (in Gba) given in table 1.

Table 1. : 100 observations on breaking stress of carbon fibers (in Gba)

3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 3.11 4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.9 3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22
3.15 2.35 2.55 2.59 2.38 2.81 4.2 3.33 2.55 3.39 3.31 3.31 2.85 2.56 3.56
2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59
2.17 1.17 5.08 2.48 1.18 3.19 1.57 0.81 5.56 1.73 1.59 2 1.22 1.12 1.71
1.84 3.65 2.05 0.39 3.68 2.48 0.85 1.61 2.79 4.7 3.51 2.17 1.69 1.25 4.38
2.03 1.8 1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82

The following table gives a comparison between the mles, Log-
likelihood, AIC and BIC for the fitted MOEEE and EE distri-
butions to the observations on breaking stress of carbon fibers.

Table 2. : a comparison between the mles, Log-likelihood, AIC and BIC
for the fitted MOEEE and EE distributions

Model Parameters mle Log-likelihood AIC BIC
α 4.42

MOEEE β 1.58 -141.279 -147.279 -148.186
λ 12.66
α 7.78

EE -146.182 -150.182 -150.787
β 1.01

The results of table 2 show that the fitted MOEEE distribution
should be selected based on either the BIC or AIC procedure for
the given data under H0, ln(α̂, β̂, 1) = −146.182, thus

XL = 2[−141.279− (−146.182)] = 9.806 > χ2
(1,0.05) = 3.84,

therefore, we cannot accept the null hypothesis, i.e. the lrt rejects
the assumption that the EE model is suitable for the given data.
Let n be the total number of breaking stress of carbon fibers whose
survival times, uncensored data, are available. Retable the n sur-
vival times in order of increasing magnitude such that t1 ≤ t2 ≤
... ≤ tn. The Kaplan-Meier estimator (KME) [9], also known as
the product limit estimator, of a sf is defined as:

Ḡn(t) =
∏
t:ti≤t

1− δ(i)

n− i+ 1
, t > 0.

Figure 3 show the p−p plot of the EE versus the fittedMOEEE
sf for the given data. Visually, the depicted points for fitted

Fig. 3: The p − p plot of the EE versus the fitted MOEEE sf for the
given data.

MOEEE survival function are very near the 45o line, indicat-
ing very good fit as compared with the fitted EE survival function.
The estimated hrf r(x) of the MOEEE distribution with the es-
timated parameters α̂ = 4.42, β̂ = 1.58 and λ̂ = 12.66, and since
α = 4.42 > 1 then, by theorem 4, the estimated r(x) is increasing
as shown in figure 4.

8. CONCLUSION AND FUTURE WORKS
The generalization of EE distribution is proposed. The new
model, named Marshall-Olkin extend exponentiated exponential
(MOEEE) distribution, includes MOEE, the EE and the ex-
ponential distributions as sub-models. Some reliability properties
of the distribution are discussed. The proposed model parameters
are estimated by the maximum likelihood method. A real survival
data set is analyzed and the results showed that the proposed model
was flexible and appropriate.
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