
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

21

Automated Identity based Approach to verify Data

Possession in Public Cloud

Pooja G. Natu

Department of Computer Engineering
AISSMS COE, Pune

Pune, India

Shikha Pachouly
Department of Computer Engineering

AISSMS COE, Pune
Pune, India

ABSTRACT

Cloud-based outsourced storage relieves the client’s load of

storage management and preservation by providing an

equivalently flexible, inexpensive, location-independent

platform. As clients no longer have physical control of data,

outsourced data integrity checking is of crucial importance in

cloud storage. It allows the clients to verify data intactness

and correctness without downloading the entire data. As the

verification is to be done at client end, the integrity checking

protocol must be efficient to save client’s time. Another

aspect of the protocol is flexibility, which improves the

quality of integrity checking by allowing user specific block

partition size. Moreover in case of company oriented scenario,

maintaining log records of each verification request can help

in security analysis. Taking these three points into

consideration, we have proposed the flexible, automated and

log based RDPC model as: Auto ID-RDPC model for single-

cloud storage. The proposed model is based on bilinear

pairings and RDPC technique. The approach eliminates

certification management with the help of Identity

management and additionally provides log management

towards data integrity. The model makes client free from

initiating verification request and keeps track of previous

records which reduces client’s time. The principle concept

here is to make data integrity checking a painless job for any

client. Our results demonstrate the effectiveness of our

approach.

General Terms
Cloud Computing; Cloud Storage Security; Data Integrity

checking

Keywords

Remote data Possession Checking; Identity Based

Management; MD5 Technique;

1. INTRODUCTION
The cloud computing facilitates many straight benefits to

clients as on demand service, location independence,

elasticity, network based model, resource pooling and so on.

The cloud storage provisioning is one of the important

services of cloud computing. The cloud storage facilitates

massive amount of data storage which magnetize small and

medium scale organizations to utilize remote storage for

efficient and economic storage management. It is a model of

data storage where the data is stored in logical pool, the

physical storage spans multiple servers and the physical

environment is actually owned and managed by a hosting

entity. The tasks like keeping the data available and

accessible, and the physical environment protected and

running is done by cloud storage providers. Though the cloud

storage is grabbing the market, many security issues hinder

the client to move their data on remote server. The critical

issue of data integrity comes whenever client uploads data on

un-trusted servers. In such scenarios, clients need to

implement strategies to prove originality of data. Also the

client must not need to retrieve entire data to check integrity

in order to have reduced network and computational

overhead. The central problem of remote data security is

ensuring integrity of remotely located data which is out of

client reach. The companies are moving their sensitive data

over cloud in order to gain economic and operational benefits.

Ensuring cloud users that their data is intact is especially

important when users are companies. The remote data

possession checking (RDPC) is a primarily designed to

address the data integrity checking issue in company

environment.

1.1 Motivation
Storing the data in cloud environment becomes natural and

essential too. But, security is one of the major concerns for all

entities in cloud services. The data owners need to worry

about misuse of data, unauthorized access to the data and data

loss. Moreover, the cloud service providers (CSP) may be

untruthful and they may discard the data which has not been

accessed or rarely accessed to save the storage space or hide

considerable data loss caused during migration or for any

other reason to maintain good reputation in market. As a

result, data owners need to be convinced that their data are

correctly stored in the Cloud. The previous studies considered

many parameters but lacking in reducing client interaction and

logging.

1.2 Related Work
In cloud computing, remote data integrity checking is an

important security issue in today’s taxonomy. The client’s

massive data is not in local environment and outside control.

The malicious cloud server may damage the client’s data in

order to gain more benefits and to maintain their reputation.

Many researchers proposed the equivalent system model and

security model to work on security issue. Latest work was

proposed by Wang H. which was an ID based RDPC

approach for multi cloud storage [1]. In 2007, provable data

possession (PDP) paradigm was proposed by Ateniese et al.

[2], where the verifier can check remote data integrity with a

high probability. Based on the RSA technique, they provided

two provably secure PDP schemes. As a continuation,

Ateniese et al. proposed dynamic PDP model and concrete

scheme [3] which failed in providing a support for insert

operations. Taking this limitation in consideration, in 2009,

Erway et al. proposed a full-dynamic PDP scheme based on

the authenticated flip table [4]. Then F. Seb´e et al. did the

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

22

similar work in [5]. The central idea of PDP is it allows a

verifier to verify the remote data integrity even with no

retrieving or downloading the complete data. It is based on

probabilistic proof of possession by sampling random set of

blocks from the server, which reduces I/O costs considerably.

The verifier which may be the client needs to preserve small

metadata to carry out the integrity checking tasks. The novel

approach towards PDP was proposed by Wang in 2012 which

was the concrete scheme of proxy PDP in public clouds [6].

As the era was moving towards multi cloud environment, Zhu

et al. proposed the cooperative PDP in the multi-cloud storage

which is for hybrid cloud [7]. The multiple replica PDP

approach was then proposed by Ateniese et al [8].

In reference with the Ateniese et al.’s revolutionary effort,

many remote data integrity checking models and protocols

have been proposed [9], [10], [11], [12], [13]. Shacham

presented the first proof of retrievability (POR) scheme with

provable security in 2008 [14]. The idea of POR is, the

verifier can check the remote data integrity and even can

retrieve the remote data at any time. The state of the art can be

found in [15], [16], [17], [18]. In some scenarios, the client

can delegate the remote data integrity checking job to the third

party which is commonly referred as the third party auditing

in cloud computing [19], [20], [21], [22].

One of benefits of cloud storage is to enable global access to

data with location independence. This implies that the end

devices may be mobile and limited in computation and

storage. We have presented the comparison on currently

available PDP systems in [33] along with advantages and

disadvantages of the schemes.

1.3 Our Contribution
In data integrity checking tasks, the preprocessing of file,

generation of challenges and verification of proof are key

activities. This paper focuses on providing highly flexible

security provisioning approach for company oriented

surroundings where client may need to check integrity of data

on timely basis. We recommend the novel RDPC model as

AutoID-RDP. With the help of Identity management the

protocol is ended fairly efficient. Additionally, the protocol is

automated and produces and maintains log file in order to

preserve verification records for an organization. The protocol

provides flexibility in data preprocessing phase where user

can select the size of file blocks to have projected security

over the file.

1.4 Paper Organization
The rest of the paper is organized as follows. Section 2

formalizes the Auto ID-RDPC model. Section 3 presents our

Auto ID-RDPC protocol with a detailed description of

techniques used in the model. Section 4 presents the results of

the proposed model. Finally, Section 5 concludes the paper.

2. SYSTEM ARCHITECTURE AND

MODELING
The Auto ID-RDPC system model and the detailed

description of the protocol are presented in this section. The

model comprises of various entities and these entities perform

required operations. The entities of system are shown in

Figure 1 and can be given as:

1. Client: an entity, which has massive data to be

stored on the single-cloud for maintenance and

computation, in our scenario, the client is any

employee of an organization.

2. CSS (Cloud Storage Server): an entity, which is

remotely located and managed by cloud service

provider. It has significant storage space and

computation resource to manage the client’s data.

More specifically these are un-trusted and remotely

located entities.

3. PKG (Private Key Generator): an entity, when

receiving the identity, it outputs the corresponding

private key to the client. It reduces certification

management overhead drastically.

Figure 1: System Model of ID RDPC

In the cloud paradigm, clients can be relieved from the burden

of storage and computation by putting the large data files on

the remote cloud servers. As the clients no longer possess

their data locally, it is of critical importance for them to

ensure that their data are being correctly stored and will not

get altered or damaged. That is, clients should be equipped

with efficient security means so that they can periodically

verify the correctness of the remote data even with no

existence of local copies. We next formally define an Auto

IDRDPC scheme. We have then specified a security definition

to capture security requirements of the model.

Definition 1(Auto IDRDPC): An Auto IDRDPC protocol is a

set of six polynomial time algorithms (Setup, Extract,

FileBreak, TagGen, GenProof, CheckProof) which run as

follows:

1. (params, mpk, msk) ← Setup(1k) is the parameter-

generation algorithm. It accepts the security

parameter k as input and outputs three things: the

system public parameters params, the master public

key mpk and the master secret key msk. This action

is performed by PKG in order to generate security

parameters.

2. (pkID, skID) ← Extract(1k , params, mpk, msk, ID) is

a probabilistic key-extraction algorithm that is run

by PKG to extract the client’s private key. It takes

three inputs as: the public parameters params, the

master public key mpk, the master secret key msk,

and the identity ID of a client. As a consequence,

Extract(.) output the private key skID equivalent to

the client with identity ID.

3. F ← FileBreak(F,n) is an algorithm that is run by

client to break the file into required number of

blocks which depends on expected data security.

The function takes a file and factor n as parameter

and gives a set of file blocks as an output. This is an

improvement which makes the model more flexible.

4. Tm ← TagGen(m,t) is an algorithm that is run by the

client to produce the verification metadata. It takes

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

23

two input parameters: a file block m, and a time

factor t and returns the verification tag Tm which is

retained by client for data integrity verification.

5. V ← GenProof(F, chal) is run by the CSS to

produce a proof of data possession. It receive as

inputs the prearranged collection F of file blocks, a

challenge chal. The function returns a proof of data

possession V for the blocks in F that are determined

by the challenge chal.

6. { “success”, “failure”} ← CheckProof(chal, V) is

run by the client to validate a proof of data

possession. It takes inputs: a challenge chal and a

proof of data possession V . Following verification

process it returns “success” or “failure”,

representing that V is a correct proof or not. This

entry is upholded in the log which is addition over

standard ID RDPC approach.

There are two variations of data integrity checking policy:

Public verifiability and Private verifiability. In the

CheckProof, if the private key skID is necessary, the ID-RDPC

protocol is considered as a Private AutoID-RDPC. As we are

considering company oriented environment, the ID-RDPC we

propose in this paper belongs to this type.

In accumulation to communication and computation

overheads as low as possible, an Auto ID-RDPC protocol

should satisfy the following requirements:

1. The verifier should not be required to keep an entire

copy of the file(s) to be verified on local machines.

It would be impractical and infeasible for a verifier

to replicate the whole content. Also, the cost will be

improved. Storing a reduced-size digest of the data

at the verifier should be adequate for verification of

the CSS-generated proof.

2. The protocol has to stay protected even if the prover

is malicious. A malicious prover is interested in

proving awareness of some data that he does not

entirely know. Here, security means that such a

prover will fail in convincing the verifier on his

authenticity.

3. It must to be possible to run the verification an

limitless number of times as employees may check

the data any number of times.

In order to record above specified security requirements, we

define here the security of an Auto ID-RDPC protocol as

follows:

Definition 2 (Unforgeability): We can say an ID-RDPC

protocol is safe and sound if for any (probabilistic

polynomial) adversary A there is negligible probability that A

wins the ID-RDPC game on a set of file blocks i. The ID-

RDPC game among the adversary A and the challenger C can

be illustrated as follows:

 Setup: The challenger executes (params, mpk, msk)

← KeyGen(1k), throws (params, mpk) to the

adversary A and keeps the master secret key msk

confidential.

 First-Phase Queries: The adversary A adaptively

makes a number of diverse queries to the challenger

C. Each query can be one of the following:

 Extract queries: The adversary can ask for the

private key of any false identity ID. The challenger

obtains the private key skID by executing

Extract(params, mpk, ID) and sends skID to the

adversary. And denote the extracted identity set by

S1.

 Hash queries: The adversary adaptively formulates

hash function queries. The challenger responds with

the hash values to the adversary.

 Tag queries: The adversary makes block-tag pair

queries adaptively. For a query m acknowledged

from the adversary, the challenger calculate the tag

Tm ← TagGen(m,t) and sends it back to the

adversary. Without defeat of generality, let {(mi, Ti):

i Є I1} be the set of queried block-tag pair.

 Challenge: The challenger generates a challenge

chal which describe a ordered collection {ID*, i1,

i2,… , ic}, where ID* not in S1 is the identity of a

non-corrupted client, {i1, i2,… , ic} not a subset of I1,

and c is an positive integer. The adversary is

essential to offer a proof of data possession

checking for the blocks as mi1 ,..,mic .

 Second-Phase Queries: Similar to the First-Phase

Queries. Suppose that the Extract query identity set

is S2 and {(mi, Ti): I not in I2} is the set of queried

block tag pairs in this next phase. The restriction is

that {i1, i2,…,ic} is not subset of I1 ∪ I2 and ID* not

in S1∪ S2.

 Forge: The adversary A computes a proof of data

possession examination V for the blocks indicated

by chal and returns V.

In this security identification, we say that the adversary A

wins in the Auto IDRDPC game if CheckProof(chal, V)

=”success”. And in this protocol the chances of getting result

as success are negligible.

Definition 2 states that, for the challenged blocks, an untrusted

PCS cannot construct a proof of data possession if the blocks

have been modified or deleted. As the definition does not

affirm clearly the status of the blocks that are not challenged,

this is not sufficient for the Auto IDRDPC protocol.

Practically, a secure RDPC protocol even needs to guarantee

that after validating the PCS-generated proof, a client can be

convinced that all of his outsourced data have been kept

unbroken with a high probability. This observation gives the

following security definition.

Definition 3 ((ρ, δ) security): We can say the protocol is (ρ, δ)

secure if, given a fraction ρ of PCS corrupted blocks, the

probability that the corrupted blocks are detected is at least δ.

The notations used throughout this paper along with the

descriptions are listed in Table 1.

Table 1: Notations and meanings

Notation Description

G1 Cyclic Multiplicative group with order q

G2 Cyclic Multiplicative group with order q

Zq
* {1,2,3,4,5,...,q-1}

G Generator of group G1

D Generator of group G2

h(x) Cryptographic hash function

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

24

(x,Y) Master secret/ Public key pair

(ID,skID) User’s Identity/Private key Pair

(R,σ) User’s Private Key skID=(R, σ)

N Total Number of blocks

F=(f1,f2,..fn) File F divided into n blocks

CSP Cloud Storage Provider

∑ Tag metadata created per block

Tcl User side table to store metadata

C Client (here an employee)

3. PROPOSED AUTO IDRDPC

PROTOCOL
The Auto IDRDPC approach is presented in this section. The

model is based on bilinear pairings, which are reviewed

below.

3.1 Bilinear Pairing
Let G1 and G2 be two cyclic multiplicative groups with

the same prime order q, i.e., |G1| = |G2| = q.

Let e : G1 × G1 → G2 be a bilinear map [24], which

satisfies the following properties:

1. Bilinearity:

∀g1, g2, g3 Є G1 and a, b Є Zq,

e(g1, g2g3) = e(g2g3, g1) = e(g2, g1)e(g3, g1)

e(g1
a, g2

b) = e(g1, g2)
ab

2. Non-degeneracy:

Ǝ g4, g5 Є G1 such that e(g4, g5) ≠ 1G2 .

3. Computability:

∀g6, g7 Є G1, there is an efficient algorithm to

calculate e(g6, g7).

A bilinear map e can be constructed with the modified Weil or

Tate pairings on elliptic curves. Our Auto IDRDPC scheme is

constructed on the gap Diffie-Hellman group, where the

computational Diffie-Hellman (CDH) difficulty is hard while

the decisional Diffie-Hellman (DDH) problem is easy.

3.2 Auto IDRDPC Protocol Construction
This protocol comprises the procedures Setup, Extract,

FileBreak, TagGen, SetTimer, GenProof, CheckProof and

LogRecord. The protocol architecture is described as follows:

1. Initially PKG creates the public and private key for

the client along with public parameters. In Extract

phase, client sends the ID (unique identity) to PKG.

2. The PKG then generates the secret key skID and

sends back to client.

3. The client generates the file blocks along with

corresponding block tag pairs and uploads them to

PCS. Client then deletes all data from local machine

and keeps only related metadata.

4. The client starts the timer for specific milliseconds.

5. The verifier who can be the client generates

challenge and forwards the challenge to PCS on

timer off event.

6. PCS then creates the appropriate possession proof

for requested file block.

7. PCS sends the possession proof to the verifier or

client.

8. The verifier checks the possession proof and logs

the particular entry to log file.

The architecture of proposed model is illustrated in figure 2

below:

Figure 2: Architecture of our Auto IDRDPC

Approach

Suppose that the number of file blocks is n. It is described

below the procedures of the Auto IDRDPC scheme.

 Setup: PKG chooses a random number x Є Zq
*
 and

sets Y = gx, where g is a generator of the group G1.

PKG chooses a random item u Є G1
*
. Define two

cryptographic hash functions as: H : {0, 1}* → Zq* ,

h : Zq*→ G1* . Let f be a pseudo-random function

and let π be a pseudo-random permutation as given

in equation (1):

 f : Zq* × {1, 2,. . . , n} → Zq
*

 π : Zq
*× {1, 2,. . . , n} → {1, 2, . . . , n} (1)

Finally, PKG publishes

{G1, G2, e, q, g, Y, u,H, h, f, π} and keeps x as the

master key.

 Extract. A client submits his identity ID to PKG.

PKG picks r Є Zq
*
 and computes equation (2) as:

R = gr, σ = r + xH(ID,R) mod q

 (2)

PKG sends the private key skID = (R, σ) to the client

by a secure channel.

 FileBreak(F,n): This function uses a simple iterative

algorithm to break the file in given number of

blocks. The boundary of a block is fixed and must

not be overloaded. The factor, that is how many

blocks are to be generated is taken as n and F is

actual file to be loaded on CSP. The set F can be

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

25

defined as {f1,f2,..,fn} where n is number of blocks

generated from single file F.

 TagGen(skID, F, i): For simplicity one must consider

that the client generates the tags successively

according to the counter i. That is, the client

generates a tag for a message block m2 after m1,

which imply that the client maintains the latest

value of the counter i. For mi, the client performs

MD5 hashing along with time stamp and the

TagGen procedure is as follows in equation (3):

1) Compute

Ti = (h(i)).t (3)

2) Output Ti and send (mi, Ti) to the PCS.

 GenProof(F = (m1,m2,. . . ,mn), chal,): In this

procedure, the verifier who can be the client herself

queries the PCS through local server for a proof of

data possession of c file blocks whose indices are

randomly selected using a pseudo-random

permutation keyed with a fresh randomly-chosen

key for each challenge. Let chal = (c, k1). Then, the

PCS does:

1) For 1 ≤ j ≤ c, compute the indices of the blocks

for which the proof is generated: ij = πk1(j).

In this step, the challenge chal defines an ordered

set as {c, i1,…,ic,}.

2) Compute the tag for the selected file block with

same equation used in Tag Generation phase.

3) Output V = (T, m) and send V to the client as the

response to the chal query.

 CheckProof(mpk, skID, chal, V): Upon receiving

the response V, the verifier (who can be the client

herself) does confirmation of challenge and received

verification.

 Log entry is saved in log file for as file block id,

time and result as success or failure.

4. SYSTEM PERFORMANCE

ANALYSIS
The model needs to get analyzed based on two major

parameters: Computational cost and communication overhead.

Initially, we analyze the performance of our proposed Auto

ID-DPDP protocol from the computation and communication

overhead. Afterwards, we examine our proposed model with

ID-DPDP protocol’s properties of flexibility and verification

logging.

The proposed model does not incur major additional

computation costs than standard ID-RDPC approach. The

model provides flexible approach in pre processing which

cause considerable computational overhead. If we have file f

and client wants to break it into n blocks, the computational

complexity is O(n) to divide the file. Practically, client

provide value of n<c for standard file storage where c is a

constant. The client computations are carried out on timer

basis which added a minute complexity to deal with the timer.

The approach supports logging activity which needs less

amount of time to perform I/O operations on client end.

The communication overhead caused varies which is based on

number of blocks generated by client. We have used Identity

management to reduced additional communication. The U.S.

National Bureau of Standards and ANSI X9 have determined

the shortest key length requirements: 1024 bits for RSA and

DSA, 160 bits for ECC.

Simulation: To study the prototypal implementation of Auto

IDRDPC approach, we have simulated the protocol by using

Java programming language with JPair Library (JPair v1.03).

In the simulation, Cloud Storage is simulated on FUJITSU

Lifebook A Series Laptop with the following settings:

 CPU: Intel Core i3-2020M @ 2.40GHz

 Physical Memory: 4GB DDR3 1600MHz

 OS: Windows 8 OS 8.1 Pro

The client works on Lenovo Laptop with the following

settings:

 CPU: CPU I PDC E6700 3.2GHz

 Physical Memory: DDR3 2G

 OS: Windows 7 OS

In the simulation, we choose an elliptic curve with 160-bit

group order. The web service is hosted on client side server.

The service provides all facilities to ensure data integrity to

client. Here the client is considered as an employee of

organization which has public cloud storage. The client and

server software specifications are as follows:

 Web Server: Apache Tomcat 7

 Spring Web MVC 3.0

 Java 7 or above

 XML specifications

 HTML 5 and CSS 3

 Eclipse Juno IDE

We have compared our approach with previous studies as

listed below in table 2.

Table 2. Comparison of our scheme with other techniques

Sche

mes

Query Response Stora-

ge

Auto-

mated

Log

Based

[1]
log2

n+2log2 q

1G1+slog2

q
O(n) No No

[2]
3Z*q

(480)+c

1G1+1Z*q

(480)+c
O(1) No No

Our bi+16n bi+255+c O(1) Yes Yes

As per the standards, we analyze the communication overhead

caused by our model, which mainly comes from the queries

and responses. In an Auto ID-RDPC query, the client needs

to send the block id of available blocks to CS. In case of

response, the CS needs to respond with 1 element of set T* to

the client. The total communication is about (16)*n+255+c

bits where n is number of blocks requested, in this approach

we are assuming single query submission. The scheme [2]

gives considerable performance but causes additional cost c

for client request initiation and major communication

overhead due to client reference. If client needs to generate

challenges with small durations, the constant value grows

rapidly.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

26

The following graph indicates the query generation time

comparison. As our approach provides automated query

generation, the client interaction is less and hence as query

generation goes increasing our approach provides steady

behavior as shown below.

Figure 3: Graph to represent query generation of our

scheme and [2].

Our model reduces this constant time by providing timer

based approach for challenge generation trigger. This amount

of communication is reasonable with current communication

technologies and will be fixed for any number of files

uploaded on server. In Ateniese et al.’s scheme, it uses as

many as 6*1024=6144 bits [3]. In Table 2, we compare the

communication overheads of our Auto ID-RDPC protocol

with respect to query and response time needed for the

integrity checking. In our approach Query generation is faster

and Response formation is little bit burdened.

4.1 User Interface Design
The UI of proposed system is generated with JSP technology

and shown as below.

Figure 5: Upload File option

This upload file screen provides a way to enter factor,

which is used for file breaking and a file which user wants

to upload on remote cloud server.

Figure 6: Timer Setting Screen

This screen ensures that the possession will be requested after

given time duration and will be recorded in verification log

file for future use

Figure 7: Verification Log

The verifications are generated automatically for random

blocks to maintain data possession and the records can be

viewed as shown above.

5. CONCLUSION
This paper formalizes an Auto IDRDPC model appropriate for

company-oriented cloud storage. We present the novel Auto

ID-RDPC protocol proven secure under the assumption that

the CDH problem is hard.

The protocol maintains the log records which facilitates

verification analysis. The approach allows clients to set time

interval after which the challenge generation will be

performed. Hence the client time is saved and data

verification is performed automatically. The modified tag

generation is algorithm is used to ensure uniqueness of tag.

The flexibility is provided by allowing user to select factor for

file breaking activity.

In addition to the structural advantage of removal of

certificate administration and verification, our protocol gives

enhanced performance and provides logging, automation and

flexibility.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

27

6. REFERENCES
[1] Wang H., “Identity-Based Distributed Provable Data

Possession in Multi-Cloud Storage”, Services

Computing, IEEE Transactions 2014, (Volume:PP, Issue

99.)

[2] Huaqun Wang, Qianhong Wu, Bo Qin , Domingo-Ferrer,

J., “Identity-based remote data possession checking in

public clouds”, Information Security, IET (Volume:8

, Issue: 2), pp. 114 – 121, 2014.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson,

D. Song, “Provable Data Possession at Untrusted Stores”,

CCS’07, 2007.

[4] G. Ateniese, R. DiPietro, L. V. Mancini, G. Tsudik,

“Scalable and Efficient Provable Data Possession”,

SecureComm 2008.

[5] C. C. Erway, A. Kupcu, C. Papamanthou, R. Tamassia,

“Dynamic Provable Data Possession”, CCS’09, pp. 213-

222, 2009.

[6] F. Seb´e, J. Domingo-Ferrer, A. Mart´ınez-Ballest´e, Y.

Deswarte, J. Quisquater, “Efficient Remote Data

Integrity checking in Critical Information

Infrastructures”, IEEE Transactions on Knowledge and

Data Engineering, 20(8), pp. 1-6, 2008.

[7] H.Q. Wang, “Proxy Provable Data Possession in Public

Clouds,” IEEE Transactions on Services Computing,

2012.

[8] Y. Zhu, H. Hu, G.J. Ahn, M. Yu, “Cooperative Provable

Data Possession for Integrity Verification in Multicloud

Storage”, IEEE Transactions on Parallel and Distributed

Systems, 23(12), pp. 2231-2244, 2012.

[9] Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H. Hu, S. S. Yau,

“Efficient Provable Data Possession for Hybrid Clouds”,

CCS’10, pp. 756-758, 2010.

[10] R. Curtmola, O. Khan, R. Burns, G. Ateniese, “MR-PDP:

Multiple Replica Provable Data Possession”, ICDCS’08,

pp. 411-420, 2008.

[11] A. F. Barsoum, M. A. Hasan, “Provable Possession and

Replication of Data over Cloud Servers”, CACR,

University of Waterloo, Report2010/32, 2010. Available

at

http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr

2010-32.pdf.

[12] Z. Hao, N. Yu, “A Multiple-Replica Remote Data

Possession Checking Protocol with Public Verifiability”,

2010 Second International Symposium on Data, Privacy,

and E-Commerce, pp. 84-89, 2010.

[13] A. F. Barsoum, M. A. Hasan, “On Verifying Dynamic

Multiple Data Copies over Cloud Servers”, IACR eprint

report 447, 2011. Available at http://eprint.iacr.org/

2011/447.pdf.

[14] A. Juels, B. S. Kaliski Jr., “PORs: Proofs of

Retrievability for Large Files”, CCS’07, pp. 584-597,

2007.

[15] H. Shacham, B. Waters, “Compact Proofs of

Retrievability”,bASIACRYPT 2008, LNCS 5350, pp. 90-

107, 2008.

[16] K. D. Bowers, A. Juels, A. Oprea, “Proofs of

Retrievability: Theory and Implementation”, CCSW’09,

pp. 43-54, 2009.

[17] Q. Zheng, S. Xu. Fair and Dynamic Proofs of

Retrievability. CODASPY’ 11, pp. 237-248, 2011.

[18] Y. Dodis, S. Vadhan, D. Wichs, “Proofs of Retrievability

via Hardness Amplification”, TCC 2009, LNCS 5444,

pp. 109-127, 2009.

[19] Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H. Hu, “Zero-

Knowledge Proofs of Retrievability”, Sci China Inf Sci,

54(8), pp. 1608-1617, 2011.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Data Storage Security in

Cloud Computing”, INFOCOM 2010, IEEE, March

2010.

[21] Q. Wang, C. Wang, K. Ren, W. Lou, J. Li, “Enabling

Public Auditability and Data Dynamics for Storage

Security in Cloud Computing”, IEEE Transactions on

Parallel And Distributed Systems , 22(5), pp. 847-859,

2011.

[22] C. Wang, Q. Wang, K. Ren, N. Cao, W. Lou, “Toward

Secure and Dependable Storage Services in Cloud

Computing,” IEEE Transactions on Services Computing,

5(2), pp. 220-232, 2012.

[23] Y. Zhu, G.J. Ahn, H. Hu, S.S. Yau, H.G. An, S. Chen,

“Dynamic Audit Services for Outsourced Storages in

Clouds,” IEEE Transactions on Services Computing,

2011.

http://doi.ieeecomputersociety.org/10.1109/TSC.2011.51

[24] O. Goldreich, “Foundations of Cryptography: Basic

Tools”, Publishing House of Electronics Industry,

Beijing, 2003, pp. 194-195.

[25] D. Boneh, M. Franklin, “Identity-based Encryption from

the Weil Pairing”, CRYPTO 2001, LNCS 2139, 2001,

213-229.

[26] A. Miyaji, M. Nakabayashi, S. Takano “New Explicit

Conditions of Elliptic Curve Traces for FR-reduction”,

IEICE Transactions Fundamentals, pp. 1234-1243,

2001.

[27] D. Boneh, B. Lynn, H. Shacham, “Short Signatures from

the Weil Pairing”, ASIACRYPT 2001, LNCS 2248, pp.

514-532, 2001.

[28] H. W. Lim, “On the Application of Identity-based

Cryptography in Grid Security”, Ph.D. dissertation,

University of London, London, U.K., 2006.

[29] S. Yu, K. Ren, W. Lou, “Attribute-based On-demand

Multicast Group Setup with Membership Anonymity”,

Calculater Networks, 54(3), pp. 377-386, 2010.

[30] P. S. L. M. Barreto, B. Lynn, M. Scott, “Efficient

Implementation of Pairing-based Cryptosystems”,

Journal of Cryptology, 17(4), pp. 321- 334, 2004

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Huaqun%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qianhong%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bo%20Qin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Domingo-Ferrer,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Domingo-Ferrer,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149673
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6748540
http://eprint.iacr.org/

