
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

24

Optimized Bully Algorithm

Sathesh B.M
Programmer Analyst,

Cognizant Technology Solutions,
Chennai, India

ABSTRACT
All distributed systems require one process to act as a

coordinator , initiator or otherwise perform some special

role .In general , it does not matter which process takes on

this special responsibility , but one of them has to do it .

The goal of an election algorithm is to ensure that when an

election starts, it concludes with all processes agreeing on

who the new coordinator is to be. Bully Algorithm by

Garcia-Molina is a classic algorithm for leader election in

a distributed system. Although the already existing

algorithm solves the purpose, the traditional bully

algorithm takes lot of message passing involved and it

does not provide facilities to ensure that what will happen

when dead leader recovers back again. Here we propose a

slight modification in the classic bully algorithm which

reduces the number of messages that are needed to elect

the leader. Also we suggest methods on how to react when

the dead leader recovers back again. The end result is a

modified election bully algorithm which is much efficient

than the existing leader election algorithms used in a

distributed environment.

General Terms

Election Algorithms, Distributed Computing.

Keywords

Bully Algorithm, leader election, Message passing.

1. INTRODUCTION
A collection of independent computers, having a common

goal of solving a complex problem are commonly called as

distributed systems. Earlier computing of data were limited

and centralized to a single processor or a single computer.

The systems are interconnected via a network; capable of

collaborating on a single task. Distributed computing

systems each have their own memory where information is

exchanged through passing messages mechanism called

message passing among the various processors

interconnected.

Synchronization and self-stabilization is a common

challenge faced by distributed systems. In traditional

computers when the input is passed a computer or a

processor processes the input for a while and then it

produces the output and the processing is stopped. But for

some computer science problems such as the dining

philosopher’s problem the processing must not stop after

the output is reached. Here the systems must continuously

coordinate and synchronize with each other such that no

deadlocks or any conflicts occur, here election algorithm

come into place in electing a leader and maintaining the

proper functioning of the system.

The goals or major benefits of distributed computing are

given below:

•Resource sharing

•Scalability

•Fault tolerance

•Availability

1.1 Need for a coordinator
Many algorithms used in distributed systems require a

coordinator to grant permission to access critical section

and to manage the nodes in the distributed system .In

general; all processes in the distributed system are equally

suitable for the role Election algorithms are designed to

choose a coordinator.

1.2 Mutual Exclusion
One of the important problems in distributed systems is

mutual exclusion. The mutual exclusion problem states

that only a single process is allowed to access a protected

resource, also termed as a critical section (CS), at any

point of time. One of the approaches for solving this

problem is centralized algorithm. In this approach one

process is elected as the coordinator (e.g., the one running

on the machine with the highest network address).

Whenever a process wants to enter a critical section, it

sends a request message to the coordinator and asking for

permission. If no process is currently in the critical section,

the coordinator sends back a reply granting permission and

when the reply arrives, the requesting process enters the

critical section. Providing access to this critical section is

the purpose of the coordinator node and it will be further

emphasized in remainder of the paper.

1.3 Elections in Distributed Systems
In a distributed system, when the leader is crashed, other

nodes must elect another leader. The election algorithm we

consider here is called the bully algorithm because the

node with the highest ID forces the nodes with smaller ID

into accepting it as a coordinator. In bully algorithm when

the node N understands the leader is crashed, sends an

election message to all nodes with higher numbers. If no

one responds, N wins the election and becomes the leader.

If one of the higher IDs answers, it takes over. N’s job is

done. When such a message arrives, the receiver sends an

OK message back to the sender to indicate that he is alive

and will take over. The receiver then holds an election,

unless it is already holding one. Eventually, all nodes give

up but one and that one is the new leader. Classic example

for leader election is the bully election algorithm which is

prevalently used to elect leaders in a distributed system.

Also for electing the leader some distributed networks

make use of the Ring Election Algorithm, but we will be

focusing on reducing the number of messages in the bully

algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

25

1.4 Bully Algorithm

Fig 1: Working of Bully Algorithm

Process p calls an election when it notices that the

coordinator is no longer responding. High-numbered

processes “bully” low-numbered processes out of the

election, until only one process remains. When a crashed

process reboots, it holds an election. If it is now the

highest-numbered live process, it will win. Process p sends

an election message to all higher-numbered processes in

the system. If no process responds, then p becomes the

coordinator. If a higher-level process responds, it sends p a

message that terminates p’s role in the algorithm.

If a process receives an Election message:

Immediately sends Coordinator message if it is the process

with highest ID , Otherwise, returns an OK and starts an

election .If a process receives a Coordinator message, it

treats sender as the coordinator

2. DRAWBACKS OF BULLY

ALGORITHM
There are two major drawbacks of the bully election

algorithm; they are increased message passing and no

method for recovery.

2.1 Increase in message passing
This simple idea has a big problem that is the high number

of messages that should be exchanged between processes.

Therefore this approach imposes heavy traffic in the

network. In order to solve this problem, we will present

optimized method by modifying the bully algorithm that

decreases the number of messages that should be

exchanged between processes.

We aim to modify the bully algorithm in order to reduce

the number of messages to reduce the number of messages

exchanged to find a new coordinator, each process that

notices the failure of the coordinator, attempts to run the

bully algorithm and whatever the ID (identifier) of this

process is lower, more messages should be exchanged,

until a process with the largest ID is found and introduced

as a new coordinator. Number of messages is calculated by

the following equation, in this regard n is the number of

processes in the distributed system and ID is the identifier

of the process that has noticed a coordinator crash and run

the bully algorithm.

2.2 No method for recovery
The bully election algorithm does not say what to do when

a crashed leader recovers. Not only bully election

algorithm, all the election algorithm does not care about

the crashed leader, when the leader is crashed new leader

is elected and the crashed leader is not considered for the

new election. By some means if the crashed leader

recovers itself , we need to include it also in the election

.This is a major drawback in the bully election algorithm

and even other election algorithms do not address this

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

26

issue. We are suggesting an alternate method to overcome

this drawback.

3. PROPOSED METHOD

3.1 Improved Bully election algorithm

Section -1

In the proposed method, when a process demands to enter

the critical region, sends a message to coordinator, the

coordinator responds the applicant process based on the

situation of the critical area, whether it is free or not. Here,

coordinator accomplishes an addition task too, it should

register the ID of the applicant process, so over time, a list

of the applicants process’s ID is created with the

coordinator. This list represents the coordinator

information from the ID of the processes presents in the

system. With increasing knowledge and get the ID of

applicant processes, the coordinator frequently sends a

message containing the biggest ID in the list for the

processes to inform them that there is a process with this

ID in the list, provided that in the interval between two

posts, there is an applicant process that applies to enter the

critical section and its ID is bigger than the biggest ID in

the list. If the coordinator is failed, each process that

notices this failure compares its ID with the ID which it

has received via the coordinator.

If the received coordinator id is bigger than the current

coordinator, since it knows the next coordinator the node

sends out election message to the next possible coordinator

node. If the next possible node is alive it receives the

message and it sends the coordinator message to all its

other nodes bullying to accept it as the new coordinator. In

other case, the received coordinator id may be less than the

current coordinator; here it follows the procedure as of the

traditional bully algorithm. In most of the cases, it is going

to be case 1 that is the number of messages will be

considerably reduced than the existing bully algorithm.

We have simulated the existing bully algorithm and our

modified bully algorithm which sends out the next possible

leader message to the remaining nodes in C programming

language. And our results have shown a remarkable

amount of decrease in the number of messages needed to

elect the leader.

Below are figures that show the number of messages

passed and the total number of process involved in the

election.

[Output written out to a file showing the number of

messages]

The output value shows the efficiency increases with the

increase in the number of messages .Also we have plotted

the graph for the output values for the total number of

messages against the number of processes and have

simulated results from matlab showing considerable

increase in efficiency for our algorithm.

[Graph comparing the number of messages between the

two algorithms]

Section – 2

Now we have addressed the issue of message passing, next

issue to be addressed is what to do when a crashed leader

recovers.

In our proposed method, the newly elected leader in spite

of sending messages to the other nodes it must periodically

send alive message to the crashed leader to see if it had

recovered. When it finds that the crashed leader had

recovered, it gives the control back to the old leader and it

now takes the job of coordinator in the distributed system

which is preferable than the existing leader which took

over the job of the leader.

The existing bully algorithm does not satisfy this and

conducts election again when the dead leader has

recovered back, in spite of just transferring the control to

the highest possible leader which will be achieved in the

new method.

4. CONCLUSION
One of the problems in the centralized algorithms for

solving mutual exclusion is finding a new coordinator

when –the current coordinator crashes. Bully algorithm

imposes a big message passing overhead in order to find

the successor coordinator and this causes reduction in the

performance. In this algorithm, after the breakdown of the

coordinator, a process that first noticed the coordinator

failure, attempts to send a message to all processes with

bigger ID and if it does not receive an answer, it becomes

the coordinator itself otherwise, the process with the bigger

ID that has received this message repeats this action.

Whatever the ID of the process which notices the

coordinator failure is smaller, the process ID so that the

coordinator has noticed failure is smaller, amount of

message passing would be more. The proposed algorithm

is trying to improve the bully algorithm, so that the ID of

the process which runs this algorithm be larger, therefore,

in contrary to the bully algorithm that only runs when the

coordinator is failed, it runs on the coordinator during its

life time. In this algorithm, the coordinator during its

lifetime tries to use the incoming messages to recognize

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

27

the process with the biggest ID and announces its ID to all

processes. So it periodically sends the biggest known ID in

the system for existing processes, then the first process that

notices the coordinator failure, sends a message to a

process with biggest ID and asks it to run the bully

algorithm. So because the process runs the bully algorithm

is probably the same process with the biggest ID, the

amount the amount of message passing is minimized.

Number of exchanged messaged is never greater than the

number of messages which are exchanged during the

traditional bully algorithm in which the messages passed is

always high than the modified algorithm even after

including the overhead which occurs due to the

information sent by the leader to the nodes regarding the

maximum available ID to the nodes of the distributed

system.

5. FUTURE WORK
The algorithm is implemented for the best case, provided

that there won’t be any inconsistencies in the system. This

can be expanded to all the cases for example, the next

highest coordinator may not be in a position to accept the

new coordinator request, or the new coordinator node is

not willing to take on the responsibility of a coordinator, in

these cases the above proposed algorithm cannot hold

well. The cases must be considered and we are planning to

make the algorithm run on all cases and conditions.

6. REFERENCES
[1] Arghavani . A E.Ahmadi A.T.Haghighat Improved

Bully Election Algorithm in Distributed Systems

[2] Fredrickson .N and Lynch .N., 1 9 8 7 . Electing a

Leader in a Synchronous Ring.” J.ACM, vol.34, no.1,

pp.98-115.

[3] Garcia-Molina, H., “Elections in Distributed

Computing System,” IEEE Transaction Computers,

Vol.C-1,pp.48-59,Jan.1982.

[4] Kim, J. L. and Belford, Geneva G., 1988. A robust,

distributed election protocol", Proc. of seventh IEEE

Computer Soc. Symp. Reliable Distributed Systems,

pp. 54-60, Columbus, Ohio.

[5] Le Lann, G., "Distributed Systems – Towards a

Formal Approach", in Information Processing 77, B.

Gilchrist, Ed. Amsterdam, The Netherlands: North-

Holland, pp. 155-160, 1977.

[6] Park S , Y. Kim and Hwang J.S., 1999. An Efficient

Algorithm for Leader-Election in Synchronous

Distributed Systems, IEEE TENCON

[7] Renu Nekkanti and Aruna Kumari G.L.

ELECTION ALGORITHM WHEN CRASH

LEADER RECOVERS IN DISTRIBUTED

SYSTEMS

[8] Singh, S., Kurose, J.F., “Electing ‘good’ leaders

(election leader algorithm),” Journal of Parallel and

Distributed Computing, Vol. 21, No. 2, pp. 184-201.

May 1994.

[9] Sung-Hoon-Park, Yoon Kim, And Jeoung Sun

Hwang “An Efficient Algorithm for Leader-Election

in Synchronous Distributed Systems.” IEEE

Transaction on Computers, vol. 43, no. 7, pp.1991-

1994, 1999.

[10] Tanenbaum, A.S., and Steen M.V.: “Distributed

Systems Principles and Paradigms,” Prentice-Hall

International, Inc, 2002.

IJCATM : www.ijcaonline.org

