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ABSTRACT 
Boundary violation is a common process in optimization 

problems. This problem can be seen in Particle Swarm 

Optimization(PSO) and its variants too. An aging based 

variant of PSO called, PSO with Aging Leader and 

Challengers(ALC-PSO) overcomes the stagnation problem 

that existed in PSO. To avoid the problem of random 

particles, some bound handling mechanisms need to be 

applied to Particle Swarm Optimization with Aging Leader 

and Challengers (ALC-PSO) to improve its performance. 

During the search process, some particles may leave the 

search boundaries within which the optimal solution is to be 

found. It becomes essential to handle such boundary 

constraint violations and some boundary handling strategies 

are required to be implemented. This paper presents some of 

these bound handling methods applied to ALC-PSO algorithm 

and comparisons are made with PSO. These methods include 

velocity initialization, velocity clamping and bound handling 

methods. The results are simulated on MATLAB R2011b for 

Ackley benchmark problem. 

Keywords 
Search Space, Particle, Velocity, Boundaries, Random 

Particles. 

1. INTRODUCTION 
The boundary constraint violation handling methods include 

1.) Velocity initialization approaches that mean to re-initialize 

the velocity of particles whose velocity exceeds the pre-

defined maximum velocity vmax. There are three velocity 

initialization strategies, that are initializing to zero, initializing 

to value within domain, initializing to small random value 

near zero 2.)velocity clamping, the velocity of particles in a 

swarm is clamped to a fixed value so that if a particle’s 

velocity exceeds that value, it is set back to the clamped value, 

which can be maximum or minimum 3.) Bound Handling 

techniques include unmodified method i.e. do not alter 

velocity of a particle leaving the boundaries, deterministic 

back i.e. bringing a variation in velocity update rule, nearest 

value i.e. initializing the particle to peak values of velocity 

and position. To deal with the boundary constraint violations 

in ALC-PSO, these mechanisms are applied.  

1.1 Basic Particle Swarm Optimization 

(PSO) 
Particle swarm optimization is a heuristic global optimization 

method[1]. Particle Swarm Optimization (PSO) was originally  

proposed to simulate the swarming behavior of bird flocks as 

they wander from one place to other in search of food. Swarm 

intelligence is a kind of multi-agent system where agents 

follow some simple rules and interact with each other so that 

an interactive behaviour between them emerges. PSO is one of 

the types of swarm intelligence and every particle in the 

swarm flies within the search space by updating its individual 

velocity after every iteration of process towards: i.) the 

personal best position ii.) global best position 

The fitness function of each particle is evaluated iteratively in 

order to determine the particle that offers the lowest function 

value for the function. The personal best, neighborhood best 

and global best are stored to a memory location that all 

particles can access and this location can be utilized to 

determine the particle’s individual velocities [2]. 

2. PARTICLE SWARM 

OPTIMIZATION WITH AGING 

LEADER AND CHALLENGERS 

ALGORITHM 
The aging mechanism is applied to the stochastic based 

Particle Swarm Optimization (PSO), so as to take away the 

limits that existed in PSO such as for example: it gets caught 

in local optima and the algorithm converges pre-maturely. 

When aging leader algorithm is applied to PSO, these 

limitations are removed in an efficient manner. Aging is an 

inevitable process[3] that involves all and spares none. This 

mechanism of ‘aging’ is used in the Particle Swarm 

Optimization Algorithm, to find an optimal solution for an 

optimization problem. An optimization problem can be 

extremely difficult[4] to solve manually, there is a need to 

solve such problem using an optimization algorithm. PSO is a 

very simple and efficient method for solving  such problems. 

When Aging mechanism is applied to the PSO, the problem of 

premature convergence that existed in PSO is overcome and 

the efficiency of the algorithm is highly increased.The 

designing of ALC-PSO can be done in three steps: 

1. Design lifespan controller- adjusting the lifespan of the 

leader according to its leading power is done. If the leader is 

efficient to lead the swarm, its lifespan is increased but if the 

leader is not efficient, its lifespan is decreased. The lifespan is 

adjusted adaptively on the basis of leading power. 

2. Generation of Challenger- A challenger is generated to 

challenge the leader of swarm who becomes inefficient.  

A challenger is generated using the following pseudocode: 

1. count= 0 

2. For j=1 to n 

3. If random(0,1)< pro 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.11, July 2015 

14 

4. Challengerj = random(Lj, Uj) 

5. Count=count+1 

6. Else 
7. Challenger j=Leaderj 

8. End if-else 

9. End for 

10. If count=0// make sure that challenger is different 

from the leader 

               randomly select a dimension ran 

11. challengerran=random(Lran, Uran) 

12. end if 

13. return 

14. end procedure [5] 

For every dimension j(j=1,2,… n) , a random number rndj is 

uniformly distributed within (0,1) is generated and compared 

with a parameter pro € (0,1). If rndj < pro, challenger j is set to 

a randomly generated number that is uniformally distributed 

in range [ Lj, Uj],  where Lj and Uj are lower and upper bounds 

of dimension j, else Challenger j is inherited from the previous 

leader.  

3.  Accepting a challenger- The acceptance or rejection of 

challenger is done by comparing the leading power of 

challenger with leader. 

The challenger can be accepted or rejected using the following 

pseudocode: 

1. For i=1 to m                       /*record current status*/ 

2. Old Xi= Xi  ; Old Vi=Vi 

3. End for 

4. For iteration= 1 to T     /*test leading power of 

leader for T iterations*/ 

5. For i=1 to M 

6. For i=1 to n                 /* update velocity and 

position */ 

7. Vi
j = w.* Vi

j + c1.r1
j. (pBesti

j – xi
j ) + c2. r2

j. (Leaderj – 

xi
j ) 

8. xi
j= xi

j + Vi
j 

9. end for 

10. Evaluate f(Xi) 

11. Update pbesti and challenger 

12. End for 

13. If atleast one pbest position is improved 

14. Leader=challenger   /* use the challenger as the new 

leader */ 

15. b=0                                   /* age  is initialized to 0 */ 

16. t=t0    lifespan is updated to the initial value 

17. return 

18. end if 

19. end for 

/*challenger is unacceptable and old positions are resumed */ 

20. For i=1 to M 

21. Xi= oldXi   ;  Vi=oldVi 

22. End for 

23. b=t-1; 

24. return 

25. end procedure 

The leading power of newly generated challenger is evaluated, 

if this challenger has enough leading power, it replaces the old 

leader and itself becomes the new leader.   

Age is initialized to 0 i.e. b=0 

Lifespan t is initialized to t0. else the old leader remains 

unchanged and will continue leading the swarm[5]. 

When this aging mechanism is applied to the PSO algorithm, 

the algorithm restricts some particles from becoming the 

leader of the swarm and thus, does not let those weaker 

particles to enter the process of finding the best solution. The 

challengers are generated by comparing their leading 

power[9]. If the leading power of the challenger is better, its 

lifespan is increased and it becomes the leader of the swarm. 

Thus, the stagnation problem is removed. 

3. DEALING WITH BOUNDARY 

CONSTRAINT VIOLATIONS 
A problem that arises in PSO and ALC-PSO as well, is the 

random behavior of particles[6], due to which the particles 

leave the search boundaries within which the solution is 

usually to be found. If the particles go out of the desired 

boundaries, there is a probability of  best particle gone out of 

the search boundaries, so it becomes necessary to bring the 

particles back within the boundaries, so that no effort is 

wasted for finding the solution which is no longer available in 

the set of feasible solutions. 

To overcome the situation of randomness of particles, 

boundary constraints are applied to the velocity of the 

particles of swarm. Every time a particle goes out from the 

defined boundaries, it is brought back within the search space, 

so that no effort is wasted in finding that particle, which is no 

longer available in the search space. When the particle is 

initialized, it is initialized to zero velocity, i.e. particles are 

stationary. When randomness within swarm increases, 

particles fly with different velocities and hence change their 

positions. Thus, particles move within swarm to find the best 

position. But as particles go out of the search space, they are 

required to be brought back into the search space, which can 

be done by re-initializing the velocities of such particles. 

There three ways of dealing with boundary constraint 

violations- 

1. Velocity re-initialization 

2. Velocity clamping 

3. Bound handling methods 

3.1  Velocity re-initialization Strategies 
The velocity of every particle in the swarm is updated using 

the following equation: 

vi(t+1) = w*vi(t)+c1r1(t)(p(t)- xi(t))+c2r2(t)(g(t) -xi(t)) 

where w is the inertia weight [7], 

c1 and c2 are the acceleration coefficients, 

r1(t), r2(t) € U(0, 1)nx , nx is the dimension of the search space, 

xi(t) is the current position of the ith particle, 

p (t) is the particle’s pbest position, 

g (t) is the gbest position. 

Particle positions are updated using the following equation: 

xi(t + 1) = xi(t) + vi(t) 

During each iteration of the algorithm, the velocity and 

position of the particles get updated by following the velocity 

and position update rules. During this process, a particle may 

leave the boundary positions, they need to be re-initialized. 

This re-initialization of particles can be done in three ways, in 

order to save the searching effort and searching time that has 

to be made in finding the solutions for the algorithm. 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.11, July 2015 

15 

3.1.1 Initialize velocities to zero 
For all the particles in the swarm(i=1,2,... nx) where nx is the 

total number of particles. This initialization limits the initial 

exploration ability of the swarm and the surface occupied 

initially by the particles of the swarm. The momentum of 

every particle is zero initially i.e. they do not move in starting, 

they are initialized to zero velocity. If the momentum value is 

greater than zero, it will lead to larger step size , which will 

further increase the randomness of the particles. The positions 

of the particles also are uniformly distributed throughout the 

swarm. 

3.1.2 Initialize of velocities to the random values 

within the domain 
The domain is set for the  optimization problem i.e. Vi(0) € 

U(-x min, x max)nx , nx being the dimension of the search 

space,. Because of the larger step sizes, the random 

initialization of the velocities help in the improvement of 

exploration ability of the swarm. These larger step sizes also 

increase the initial diversity of swarm and it may result in 

particles violating the boundary constraints on the search 

space. As the initial positions of the particles are initialized in 

the domain [ x min, x max], similarly, the initial velocities of 

the particles are initialized in a fixed domain. In this way, 

these roaming particle’s best positions may also violate the 

boundary constraint. 

3.1.3 Initialize the velocities to small random 

values 

In response to the problem of particles leaving the boundary 

values due to large step sizes, the velocities of particles were 

initialized to small values. It was supposed that this kind of 

initialization will not suffer from the problem of boundary 

violation and will contribute to the diversity of the swarm. But 

it was noticed that particles still leave the boundaries. Another 

problem that arose is how the small values will be found, 

which depends on the characterization of the optimization 

problems. 

3.2  Velocity Restriction/ Velocity Clamping 
To limit the range of velocity for every particle, the swarm is 

clamped with velocity i.e. a restriction is imposed on the 

velocity of particles. The concept of velocity clamping is 

simple and it follows the rule that boundary values of velocity 

are assigned to the particles of a swarm, such that if any 

particle goes out of the desired range, it is set to the clamped 

value [9]. 

1. Maximum velocity- if particle’s velocity increases the 

maximum allowed velocity, it is set to this maximum 

value. 

2. Minimum velocity- if particle’s velocity decreases the 

minimum allowed velocity, it is set to this minimum 

value. Example- Vmax=10 ,  Vmin= -10. [10] 

After every iteration, velocity is updated, if it increases vmax 

or decreases vmin, it is set to boundary values. Usually, vmax, j 

along jth dimension is taken to be 0.1 to 1.0 times of maximum 

value of x along that dimension. 

If a condition arises, where the current position of the particle 

becomes same as the personal best position and global best 

position, the particle may not change its position and with 

this, all other particles will follow this position. As a result, all 

the particles of the swarm will get accumulated at that point , 

so the swarm converges at that point only , leading to 

premature convergence. 

During the process of finding solutions, if the particle’s 

current position is far away from the personal best (pbest) and 

global best positions(gbest), particle’s velocity may exceed its 

limits. So, it becomes essential to restrict the values of 

velocity for every particle of the swarm, such that the particles 

don’t get out of the boundaries of search space If particles go 

out of the search space, it will affect the position of particles; 

as it will result in larger position updates due to large velocity 

values. This will further lead the particles leaving its 

boundaries. So, it is essential for the particle’s velocity to be 

clamped to certain limits, such that if these particles increase 

their velocities, these are put back to the limits. 

The exploration-exploitation balance is done to measure the 

accuracy and efficiency of optimization algorithms. 

Exploration capability means the ability of algorithm to 

explore into various directions of the search space to find the 

global optima whereas exploitation capability means the 

algorithm focuses on a specific region in order to find out the 

candidate solution. The balanced exploration-exploitation 

ratio accounts for better optimization algorithms. In Particle 

Swarm Optimization algorithms, the particles that are far 

away from pbest, its velocities exceeds to larger values, so 

they lead to larger position update rules, further leading to 

particles leaving the boundaries of search space. In order to 

overcome the problem of velocity exceeding the intended 

values, the velocity of particles of swarm need to be clamped, 

so that globl exploration be controlled. Velocity Clamping is 

used to accelerate the algorithm’s convergence speed and to 

avoid premature convergence of algorithm. If the velocity v of 

some particle i exceeds a maximum allowed velocity limit, it 

is set to the maximum value of velocity (vmax,j), which is the 

maximum allowed value of velocity. Velocity is updated as: 

vij (t + 1) = vij(t+1), if vij(t+1)<vmax, j else vij(t+1)= vmax,j  

Larger values of vmax,j cause global exploration and smaller 

values encourage local exploitation. It is not easy to choose 

the appropriate value of Vmax for solving a particular 

optimization problem being in consideration. Poor vmax 

chosen can lead to extremely poor performance. Moreover 

there is no simple and reliable method to choose the vmax. 

Mostly trial and error method is used[8]. 

Applying velocity clamping to particles of swarm is a must- 

do for having efficient results.  

1. It does not affect the position of particles. 

2. It decreases the step sizes. 

3. Changes the particle’s search direction to have 

better exploration 

 

3.3 Bound Handling 
Many bound handling approaches have been proposed[11] 

[12]. The particles in the swarm are restricted to leave the 

bounds of the search space. If particles leave the boundaries, 

some techniques are followed to bring them back into search 

area.  Bound Handling mechanisms include: 

1. Creation of feasible-only solutions during evolutionary 

search. 

2. Explicit mechanism to repair an infeasible solution i.e. 

bringing the infeasible solution back into the feasible 

search space. 
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The bound handling mechanisms are divided into two groups- 

1. Group A- These mechanisms carry out feasibility search 

variable wise. 

2. Group B- These mechanisms carry out feasibility search 

vertically. 

The boundary constraints can be applied by following – 

A. Change pbest/gbest update- such a particle is not 

selected. 

B. Update velocity- Velocity can be updated in following 

three ways: 

1. Unmodified- The velocity of such a particle is not altered 

i.e. the particle’s velocity remains the same. 

2. Deterministic back- The velocity is set by multiplying the 

negate of a predefined constant as- vi,t+1= -k vi,t+1 

3. Nearest value- The velocity of the particle is set to the 

peak value assigned for the process[13]. 

There are position bound handling methods [14] but these will 

not be combined as it may make the process complex. 

4. SIMULATION RESULTS 
The PSO and ALC-PSO algorithms are implemented and 

results are simulated on MATLAB R2011b for the Ackley 

benchmark problem and error i.e. difference between results 

fund by actual optimal problem and those found by PSO and 

ALC-PSO algorithms are calculated with respect to every 

iteration of the algorithm. Every strategy is applied for 50 

particles and 20 iterations of process. 

4.1. Velocity Initialization 
If any particle leaves the boundaries of the search space or its 

velocity increases the pre-defined value of velocity, it needs to 

be re-initialized so that it is brought back into the search 

space, as the initial condition of algorithm and fresh procedure 

be started for that particle, so that no effort is wasted in 

finding the particle that has left the boundaries of search space 

4.1.1 Velocity initialization to 0 

 This initialization can be done by bringing the particle back 

to initial momentum, as when it was initialized at the starting 

of algorithm. The velocity of the particle is set to zero, if its 

velocity increases the maximum velocity (peak velocity), 

clamped for a process, or its velocity decreases the minimum 

velocity. 

 
Figure 1: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function using Velocity 

initialization to zero strategy 

Discussion of Results- The error value for PSO at iteration 2 

is located at 10-1.5, whereas for ALC-PSO it is closer to 10-1.8 

that means the error is more at starting for ALC-PSO but as 

iterations are run, there is a constantly decreasing error for 

both curves. When iteration 12 is reached, the curve for ALC-

PSO starts falling compared to PSO, resulting in lesser error 

value than PSO. Finally, at iteration 20, the ALC-PSO curve 

declines as compared to PSO at value near to 10-2.5 whereas it 

is near to 10-2 for PSO.Better performance of ALC-PSO for 

Ackley function giving gbest value 0.04880 compared to 

0.0880 given by PSO. 

4.1.2 Velocity Initialization to value within domain 
The velocity initialization to a value within domain strategy 

initializes the velocity of the particle that has gone out of the 

search space to some random value within a pre-defined 

range. The range taken here is [0,1] within which the 

velocities are initialized if any particle violates the boundary 

constraints for the velocity and position of the search space.. 

 

 

Figure 2: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function using Velocity 

initialization to value within domain 

Discussion of Results- The error plots for PSO at iteration 1 

nearly touches the value 10-1 whereas the value for ALC-PSO 

at iteration 1 is lesser than 10 -1  i.e. for PSO . The PSO error 

curve shows a sudden fall at iteration 2 to value nearly 10-2.5  

which then continues to be stable till iteration 15 which then 

falls to value 10-3 after iteration 15 to iteration 20. Whereas 

for ALC-PSO, the error curve shows a constant decrease in 

error rate till last iteration 2 . The error rate for PSO is smaller 

than for ALC-PSO using Ackley function for the velocity 

initialization to values between domain. The gbest value for 

PSO is found to be 0.0196 and for ALC-PSO , it came out to 

be 0.0505 that means the PSO performs better than ALC-PSO 

for Ackley function while using velocity initialization to value 

within domain. 

4.1.3  Velocity initialization to random value near 

zero 

The velocity of the particle is initialized to some random value 

near to 0, so that the particles can be brought back into the 

search space for finding the solution of the problem. Here, the 

values take are: 0.004 and 0.002. 
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Figure 3: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function using Velocity 

initialization to small random value near zero 

Discussion of Results- The error curves for PSO shows 

sudden steep at iteration 2 to iteration 4 from error value near 

to 10-1 to error value 10-2.5. The ALC-PSO shows a constant 

decrease of error value from  nearly 10-0.8 to 10-0.5 at iteration 

11. The error rate for ALC-PSO comes to a value of 10-0.7 

during last 20th iteration while the error rate for PSO comes to 

value nearly 10-3 at the last 20th iteration. The error values for 

the ALC-PSO are more in the starting iterations but as 

iterations are run, the values decrease while the error rate for 

PSO which was initially higher than ALC-PSO decreases than 

ALC-PSO at iteration 3 and continues to be lower than ALC-

PSO till iteration 11 which then rises slightly and again falls 

close to ALC-PSO curve. The gbest values for ALC-PSO and 

PSO are closer to each other as for ALC-PSO, the value is 

0.0493 while for PSO the value was little higher 0.642. 

 

Table 1. gbest values found by PSO and ALC-PSO for 

velocity initialization strategies 

Strategy Gbset for PSO Gbest for 

ALC-PSO 

Velocity 

initialization to 

zero 

0.0880 0.0488 

 

Velocity 

initialization to 

value within 

domain 

0.0196 0.0505 

Velocity 

initialization to 

small random 

value near zero 

0.642 0.0493 

 

4.2 Velocity clamping in PSO 
Velocity clamping is essential to restrict the particles from 

going out of boundaries of search space. 

 

Figure 4: Graph Plots between error and iteration for 

PSO  with and without velocity clamping for Ackley 

Function with 50 particles and 20 iterations  

Discussion of Results- The error plots for the PSO with 

velocity clamping and PSO without velocity clamping are 

shown. The error value for PSO without velocity clamping 

remains constant at 100.8 while error values for PSO with 

velocity clamping varies from 102 at iteration 2 to value 10-1 

at 20th iteration. The results given by PSO with velocity 

clamping are better than PSO without velocity clamping 

having gbest values 0.0550 and 0.9273 respectively. 

 
Figure 5:  Graph Plots between error and iteration for 

ALC-PSO with and without velocity clamping for Ackley 

Function with 50 particles and 20 iterations 

Discussion of Results- The ALC-PSO with velocity clamping 

shows better performance than ALC-PSO without velocity 

clamping. The error curve for ALC-PSO with velocity 

clamping remains lower than the ALC-PSO without velocity 

clamping. The error values range from 0.005 to nearly 0 for 

Ackley function. The gbest value given by ALC-PSO with 

velocity clamping is better i.e. lesser than ALC-PSO without 

velocity clamping. Gbest values are 0.0850 and 0.0894 

respectively for the Ackley function. 

Table 2. gbest values found by PSO and ALC-PSO 

with and without velocity clamping 

PSO 
Without 

velocity 

clamping 

with 

velocity 

clamping 

 

0.9273 0.0550 
 

ALC-PSO 
Without 

velocity 

clamping 

 

With 

velocity 

clamping 

0.0894 0.0850 
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4.3 Bound Handling  

        Three bound handling techniques are implemented. 

1. Unmodified – In the unmodified bound handling 

approach, the velocity of the particle leaving boundaries 

of search space is unaltered. 

 
Figure 7: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function with 50 particles 

and 20 iterations using Unmodified bound handling  

Discussion of Results- The PSO error curve shows a constant 

error reading of 10-1.9 for every iteration of the process while 

ALC-PSO shows an exponential decrease in the value of error 

form 10-1.3 at iteration 1 to 10-2.5 at iteration 20, remaining 

lower than PSO curve for maximum number of iterations. The 

gbest value given by the ALC-PSO is better than PSO for the 

unmodified bound handling mechanism applied to the Ackley 

benchmark problem. The gbest value given by PSO is 0.4143 

which is higher than 0.0574 gbest value for ALC-PSO. 

2. Deterministic back 
A constant negative term k is multiplied with the velocity of 

the particle so as to bring the particle back into the bounds of 

the search space. 

 
Figure 8: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function with 50 particles 

and 20 iterations using Deterministic back bound handling 

method 

Discussion of Results- The PSO error curve shows a constant 

error value at 10-2.3 nearly for all the iterations of the process 

while ALC-PSO error curve shows a constant exponential 

decrease in the value of error from value 10-1.4  at iteration 1 to 

value of 10-2.8 nearly at the last 20th iteration.The gbest value 

for the ALC-PSO is 0.0481 while for PSO is 0.1601 for the 

Ackley function using deterministic back bound handling 

strategy. 

3. Nearest value- If any particle crosses the search 

boundaries, it is brought back into the search bounds. If the 

position value at any interval of time, exceeds the peak value 

for position, it is set back to the boundary value i.e. peak value  

so that it reaches back into the intended search space. In 

simple word, Nearest value means Initialize the velocity to 

peak value for increase in position peak value defined for 

every particle. 

 
Figure 9: Graph Plots between error and iteration for 

PSO and ALC-PSO for Ackley Function with 50 particles 

and 20 iterations using Nearest Value bound handling 

method 

Discussion of Results- The graph plots between error and 

iteration for Ackley function show a clear distinction between 

the PSO and ALC-PSO error curves. The nearest value 

method does not perform well for the Ackley function. The 

ALC-PSO shows more error than PSO, hence less efficient for 

this method of bound handling. The error value for PSO at 

iteration 3 is 10-1, that falls to nearly 10-3 immediately and 

remains constant till 7th iteration, then becomes constant at 10-3 

for all the remaining iterations. The Ackley function gives 

gbest value 0.0263 for the PSO algorithm and 0.0779 for the 

ALC-PSO algorithm when the nearest value strategy is used 

for handling the boundaries of search space. 

Table 3. gbest value found by PSO and ALC-PSO for 

bound handling techniques 

Strategy PSO ALC 

Unmodified 0.4143 0.0574 

Deterministic 

back 

0.1601 0.0481 

Nearest Value 0.0263 0.0779 

5. CONCLUSION 
Dealing with boundary constraint violations has been done 

successfully, which can be seen through the improved 

performance of ALC-PSO algorithm. Velocity clamping is an 

essential concept in the PSO algorithm, and so in ALC-PSO 

algorithm to restrict the particles from exceeding the 

maximum pre-defined velocity. Out of the three velocity 

initialization strategies, initializing to zero and initializing to 

small random value within domain works well while 

initializing to value within domain does not work well for 

ALC-PSO algorithm. All the bound handling techniques 

prove to be successful when implemented on ALC-PSO 

algorithm. 
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