
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

13

Dealing with Boundary Constraint Violations in

Particle Swarm Optimization with Aging Leader and

Challengers (ALC-PSO)

Avneet Kaur
Student, Computer Science Department,

Guru Nanak Dev University,
Regional Campus, Jalandhar

Mandeep Kaur
Assistant Professor, Electronics Department,

Guru Nanak Dev University,
Regional Campus, Jalandhar

ABSTRACT
Boundary violation is a common process in optimization

problems. This problem can be seen in Particle Swarm

Optimization(PSO) and its variants too. An aging based

variant of PSO called, PSO with Aging Leader and

Challengers(ALC-PSO) overcomes the stagnation problem

that existed in PSO. To avoid the problem of random

particles, some bound handling mechanisms need to be

applied to Particle Swarm Optimization with Aging Leader

and Challengers (ALC-PSO) to improve its performance.

During the search process, some particles may leave the

search boundaries within which the optimal solution is to be

found. It becomes essential to handle such boundary

constraint violations and some boundary handling strategies

are required to be implemented. This paper presents some of

these bound handling methods applied to ALC-PSO algorithm

and comparisons are made with PSO. These methods include

velocity initialization, velocity clamping and bound handling

methods. The results are simulated on MATLAB R2011b for

Ackley benchmark problem.

Keywords
Search Space, Particle, Velocity, Boundaries, Random

Particles.

1. INTRODUCTION
The boundary constraint violation handling methods include

1.) Velocity initialization approaches that mean to re-initialize

the velocity of particles whose velocity exceeds the pre-

defined maximum velocity vmax. There are three velocity

initialization strategies, that are initializing to zero, initializing

to value within domain, initializing to small random value

near zero 2.)velocity clamping, the velocity of particles in a

swarm is clamped to a fixed value so that if a particle’s

velocity exceeds that value, it is set back to the clamped value,

which can be maximum or minimum 3.) Bound Handling

techniques include unmodified method i.e. do not alter

velocity of a particle leaving the boundaries, deterministic

back i.e. bringing a variation in velocity update rule, nearest

value i.e. initializing the particle to peak values of velocity

and position. To deal with the boundary constraint violations

in ALC-PSO, these mechanisms are applied.

1.1 Basic Particle Swarm Optimization

(PSO)
Particle swarm optimization is a heuristic global optimization

method[1]. Particle Swarm Optimization (PSO) was originally

proposed to simulate the swarming behavior of bird flocks as

they wander from one place to other in search of food. Swarm

intelligence is a kind of multi-agent system where agents

follow some simple rules and interact with each other so that

an interactive behaviour between them emerges. PSO is one of

the types of swarm intelligence and every particle in the

swarm flies within the search space by updating its individual

velocity after every iteration of process towards: i.) the

personal best position ii.) global best position

The fitness function of each particle is evaluated iteratively in

order to determine the particle that offers the lowest function

value for the function. The personal best, neighborhood best

and global best are stored to a memory location that all

particles can access and this location can be utilized to

determine the particle’s individual velocities [2].

2. PARTICLE SWARM

OPTIMIZATION WITH AGING

LEADER AND CHALLENGERS

ALGORITHM
The aging mechanism is applied to the stochastic based

Particle Swarm Optimization (PSO), so as to take away the

limits that existed in PSO such as for example: it gets caught

in local optima and the algorithm converges pre-maturely.

When aging leader algorithm is applied to PSO, these

limitations are removed in an efficient manner. Aging is an

inevitable process[3] that involves all and spares none. This

mechanism of ‘aging’ is used in the Particle Swarm

Optimization Algorithm, to find an optimal solution for an

optimization problem. An optimization problem can be

extremely difficult[4] to solve manually, there is a need to

solve such problem using an optimization algorithm. PSO is a

very simple and efficient method for solving such problems.

When Aging mechanism is applied to the PSO, the problem of

premature convergence that existed in PSO is overcome and

the efficiency of the algorithm is highly increased.The

designing of ALC-PSO can be done in three steps:

1. Design lifespan controller- adjusting the lifespan of the

leader according to its leading power is done. If the leader is

efficient to lead the swarm, its lifespan is increased but if the

leader is not efficient, its lifespan is decreased. The lifespan is

adjusted adaptively on the basis of leading power.

2. Generation of Challenger- A challenger is generated to

challenge the leader of swarm who becomes inefficient.

A challenger is generated using the following pseudocode:

1. count= 0

2. For j=1 to n

3. If random(0,1)< pro

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

14

4. Challengerj = random(Lj, Uj)

5. Count=count+1

6. Else
7. Challenger j=Leaderj

8. End if-else

9. End for

10. If count=0// make sure that challenger is different

from the leader

 randomly select a dimension ran

11. challengerran=random(Lran, Uran)

12. end if

13. return

14. end procedure [5]

For every dimension j(j=1,2,… n) , a random number rndj is

uniformly distributed within (0,1) is generated and compared

with a parameter pro € (0,1). If rndj < pro, challenger j is set to

a randomly generated number that is uniformally distributed

in range [Lj, Uj], where Lj and Uj are lower and upper bounds

of dimension j, else Challenger j is inherited from the previous

leader.

3. Accepting a challenger- The acceptance or rejection of

challenger is done by comparing the leading power of

challenger with leader.

The challenger can be accepted or rejected using the following

pseudocode:

1. For i=1 to m /*record current status*/

2. Old Xi= Xi ; Old Vi=Vi

3. End for

4. For iteration= 1 to T /*test leading power of

leader for T iterations*/

5. For i=1 to M

6. For i=1 to n /* update velocity and

position */

7. Vi
j = w.* Vi

j + c1.r1
j. (pBesti

j – xi
j) + c2. r2

j. (Leaderj –

xi
j)

8. xi
j= xi

j + Vi
j

9. end for

10. Evaluate f(Xi)

11. Update pbesti and challenger

12. End for

13. If atleast one pbest position is improved

14. Leader=challenger /* use the challenger as the new

leader */

15. b=0 /* age is initialized to 0 */

16. t=t0 lifespan is updated to the initial value

17. return

18. end if

19. end for

/*challenger is unacceptable and old positions are resumed */

20. For i=1 to M

21. Xi= oldXi ; Vi=oldVi

22. End for

23. b=t-1;

24. return

25. end procedure

The leading power of newly generated challenger is evaluated,

if this challenger has enough leading power, it replaces the old

leader and itself becomes the new leader.

Age is initialized to 0 i.e. b=0

Lifespan t is initialized to t0. else the old leader remains

unchanged and will continue leading the swarm[5].

When this aging mechanism is applied to the PSO algorithm,

the algorithm restricts some particles from becoming the

leader of the swarm and thus, does not let those weaker

particles to enter the process of finding the best solution. The

challengers are generated by comparing their leading

power[9]. If the leading power of the challenger is better, its

lifespan is increased and it becomes the leader of the swarm.

Thus, the stagnation problem is removed.

3. DEALING WITH BOUNDARY

CONSTRAINT VIOLATIONS
A problem that arises in PSO and ALC-PSO as well, is the

random behavior of particles[6], due to which the particles

leave the search boundaries within which the solution is

usually to be found. If the particles go out of the desired

boundaries, there is a probability of best particle gone out of

the search boundaries, so it becomes necessary to bring the

particles back within the boundaries, so that no effort is

wasted for finding the solution which is no longer available in

the set of feasible solutions.

To overcome the situation of randomness of particles,

boundary constraints are applied to the velocity of the

particles of swarm. Every time a particle goes out from the

defined boundaries, it is brought back within the search space,

so that no effort is wasted in finding that particle, which is no

longer available in the search space. When the particle is

initialized, it is initialized to zero velocity, i.e. particles are

stationary. When randomness within swarm increases,

particles fly with different velocities and hence change their

positions. Thus, particles move within swarm to find the best

position. But as particles go out of the search space, they are

required to be brought back into the search space, which can

be done by re-initializing the velocities of such particles.

There three ways of dealing with boundary constraint

violations-

1. Velocity re-initialization

2. Velocity clamping

3. Bound handling methods

3.1 Velocity re-initialization Strategies
The velocity of every particle in the swarm is updated using

the following equation:

vi(t+1) = w*vi(t)+c1r1(t)(p(t)- xi(t))+c2r2(t)(g(t) -xi(t))

where w is the inertia weight [7],

c1 and c2 are the acceleration coefficients,

r1(t), r2(t) € U(0, 1)nx , nx is the dimension of the search space,

xi(t) is the current position of the ith particle,

p (t) is the particle’s pbest position,

g (t) is the gbest position.

Particle positions are updated using the following equation:

xi(t + 1) = xi(t) + vi(t)

During each iteration of the algorithm, the velocity and

position of the particles get updated by following the velocity

and position update rules. During this process, a particle may

leave the boundary positions, they need to be re-initialized.

This re-initialization of particles can be done in three ways, in

order to save the searching effort and searching time that has

to be made in finding the solutions for the algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

15

3.1.1 Initialize velocities to zero
For all the particles in the swarm(i=1,2,... nx) where nx is the

total number of particles. This initialization limits the initial

exploration ability of the swarm and the surface occupied

initially by the particles of the swarm. The momentum of

every particle is zero initially i.e. they do not move in starting,

they are initialized to zero velocity. If the momentum value is

greater than zero, it will lead to larger step size , which will

further increase the randomness of the particles. The positions

of the particles also are uniformly distributed throughout the

swarm.

3.1.2 Initialize of velocities to the random values

within the domain
The domain is set for the optimization problem i.e. Vi(0) €

U(-x min, x max)nx , nx being the dimension of the search

space,. Because of the larger step sizes, the random

initialization of the velocities help in the improvement of

exploration ability of the swarm. These larger step sizes also

increase the initial diversity of swarm and it may result in

particles violating the boundary constraints on the search

space. As the initial positions of the particles are initialized in

the domain [x min, x max], similarly, the initial velocities of

the particles are initialized in a fixed domain. In this way,

these roaming particle’s best positions may also violate the

boundary constraint.

3.1.3 Initialize the velocities to small random

values

In response to the problem of particles leaving the boundary

values due to large step sizes, the velocities of particles were

initialized to small values. It was supposed that this kind of

initialization will not suffer from the problem of boundary

violation and will contribute to the diversity of the swarm. But

it was noticed that particles still leave the boundaries. Another

problem that arose is how the small values will be found,

which depends on the characterization of the optimization

problems.

3.2 Velocity Restriction/ Velocity Clamping
To limit the range of velocity for every particle, the swarm is

clamped with velocity i.e. a restriction is imposed on the

velocity of particles. The concept of velocity clamping is

simple and it follows the rule that boundary values of velocity

are assigned to the particles of a swarm, such that if any

particle goes out of the desired range, it is set to the clamped

value [9].

1. Maximum velocity- if particle’s velocity increases the

maximum allowed velocity, it is set to this maximum

value.

2. Minimum velocity- if particle’s velocity decreases the

minimum allowed velocity, it is set to this minimum

value. Example- Vmax=10 , Vmin= -10. [10]

After every iteration, velocity is updated, if it increases vmax

or decreases vmin, it is set to boundary values. Usually, vmax, j

along jth dimension is taken to be 0.1 to 1.0 times of maximum

value of x along that dimension.

If a condition arises, where the current position of the particle

becomes same as the personal best position and global best

position, the particle may not change its position and with

this, all other particles will follow this position. As a result, all

the particles of the swarm will get accumulated at that point ,

so the swarm converges at that point only , leading to

premature convergence.

During the process of finding solutions, if the particle’s

current position is far away from the personal best (pbest) and

global best positions(gbest), particle’s velocity may exceed its

limits. So, it becomes essential to restrict the values of

velocity for every particle of the swarm, such that the particles

don’t get out of the boundaries of search space If particles go

out of the search space, it will affect the position of particles;

as it will result in larger position updates due to large velocity

values. This will further lead the particles leaving its

boundaries. So, it is essential for the particle’s velocity to be

clamped to certain limits, such that if these particles increase

their velocities, these are put back to the limits.

The exploration-exploitation balance is done to measure the

accuracy and efficiency of optimization algorithms.

Exploration capability means the ability of algorithm to

explore into various directions of the search space to find the

global optima whereas exploitation capability means the

algorithm focuses on a specific region in order to find out the

candidate solution. The balanced exploration-exploitation

ratio accounts for better optimization algorithms. In Particle

Swarm Optimization algorithms, the particles that are far

away from pbest, its velocities exceeds to larger values, so

they lead to larger position update rules, further leading to

particles leaving the boundaries of search space. In order to

overcome the problem of velocity exceeding the intended

values, the velocity of particles of swarm need to be clamped,

so that globl exploration be controlled. Velocity Clamping is

used to accelerate the algorithm’s convergence speed and to

avoid premature convergence of algorithm. If the velocity v of

some particle i exceeds a maximum allowed velocity limit, it

is set to the maximum value of velocity (vmax,j), which is the

maximum allowed value of velocity. Velocity is updated as:

vij (t + 1) = vij(t+1), if vij(t+1)<vmax, j else vij(t+1)= vmax,j

Larger values of vmax,j cause global exploration and smaller

values encourage local exploitation. It is not easy to choose

the appropriate value of Vmax for solving a particular

optimization problem being in consideration. Poor vmax

chosen can lead to extremely poor performance. Moreover

there is no simple and reliable method to choose the vmax.

Mostly trial and error method is used[8].

Applying velocity clamping to particles of swarm is a must-

do for having efficient results.

1. It does not affect the position of particles.

2. It decreases the step sizes.

3. Changes the particle’s search direction to have

better exploration

3.3 Bound Handling
Many bound handling approaches have been proposed[11]

[12]. The particles in the swarm are restricted to leave the

bounds of the search space. If particles leave the boundaries,

some techniques are followed to bring them back into search

area. Bound Handling mechanisms include:

1. Creation of feasible-only solutions during evolutionary

search.

2. Explicit mechanism to repair an infeasible solution i.e.

bringing the infeasible solution back into the feasible

search space.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

16

The bound handling mechanisms are divided into two groups-

1. Group A- These mechanisms carry out feasibility search

variable wise.

2. Group B- These mechanisms carry out feasibility search

vertically.

The boundary constraints can be applied by following –

A. Change pbest/gbest update- such a particle is not

selected.

B. Update velocity- Velocity can be updated in following

three ways:

1. Unmodified- The velocity of such a particle is not altered

i.e. the particle’s velocity remains the same.

2. Deterministic back- The velocity is set by multiplying the

negate of a predefined constant as- vi,t+1= -k vi,t+1

3. Nearest value- The velocity of the particle is set to the

peak value assigned for the process[13].

There are position bound handling methods [14] but these will

not be combined as it may make the process complex.

4. SIMULATION RESULTS
The PSO and ALC-PSO algorithms are implemented and

results are simulated on MATLAB R2011b for the Ackley

benchmark problem and error i.e. difference between results

fund by actual optimal problem and those found by PSO and

ALC-PSO algorithms are calculated with respect to every

iteration of the algorithm. Every strategy is applied for 50

particles and 20 iterations of process.

4.1. Velocity Initialization
If any particle leaves the boundaries of the search space or its

velocity increases the pre-defined value of velocity, it needs to

be re-initialized so that it is brought back into the search

space, as the initial condition of algorithm and fresh procedure

be started for that particle, so that no effort is wasted in

finding the particle that has left the boundaries of search space

4.1.1 Velocity initialization to 0

 This initialization can be done by bringing the particle back

to initial momentum, as when it was initialized at the starting

of algorithm. The velocity of the particle is set to zero, if its

velocity increases the maximum velocity (peak velocity),

clamped for a process, or its velocity decreases the minimum

velocity.

Figure 1: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function using Velocity

initialization to zero strategy

Discussion of Results- The error value for PSO at iteration 2

is located at 10-1.5, whereas for ALC-PSO it is closer to 10-1.8

that means the error is more at starting for ALC-PSO but as

iterations are run, there is a constantly decreasing error for

both curves. When iteration 12 is reached, the curve for ALC-

PSO starts falling compared to PSO, resulting in lesser error

value than PSO. Finally, at iteration 20, the ALC-PSO curve

declines as compared to PSO at value near to 10-2.5 whereas it

is near to 10-2 for PSO.Better performance of ALC-PSO for

Ackley function giving gbest value 0.04880 compared to

0.0880 given by PSO.

4.1.2 Velocity Initialization to value within domain
The velocity initialization to a value within domain strategy

initializes the velocity of the particle that has gone out of the

search space to some random value within a pre-defined

range. The range taken here is [0,1] within which the

velocities are initialized if any particle violates the boundary

constraints for the velocity and position of the search space..

Figure 2: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function using Velocity

initialization to value within domain

Discussion of Results- The error plots for PSO at iteration 1

nearly touches the value 10-1 whereas the value for ALC-PSO

at iteration 1 is lesser than 10 -1 i.e. for PSO . The PSO error

curve shows a sudden fall at iteration 2 to value nearly 10-2.5

which then continues to be stable till iteration 15 which then

falls to value 10-3 after iteration 15 to iteration 20. Whereas

for ALC-PSO, the error curve shows a constant decrease in

error rate till last iteration 2 . The error rate for PSO is smaller

than for ALC-PSO using Ackley function for the velocity

initialization to values between domain. The gbest value for

PSO is found to be 0.0196 and for ALC-PSO , it came out to

be 0.0505 that means the PSO performs better than ALC-PSO

for Ackley function while using velocity initialization to value

within domain.

4.1.3 Velocity initialization to random value near

zero

The velocity of the particle is initialized to some random value

near to 0, so that the particles can be brought back into the

search space for finding the solution of the problem. Here, the

values take are: 0.004 and 0.002.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

17

Figure 3: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function using Velocity

initialization to small random value near zero

Discussion of Results- The error curves for PSO shows

sudden steep at iteration 2 to iteration 4 from error value near

to 10-1 to error value 10-2.5. The ALC-PSO shows a constant

decrease of error value from nearly 10-0.8 to 10-0.5 at iteration

11. The error rate for ALC-PSO comes to a value of 10-0.7

during last 20th iteration while the error rate for PSO comes to

value nearly 10-3 at the last 20th iteration. The error values for

the ALC-PSO are more in the starting iterations but as

iterations are run, the values decrease while the error rate for

PSO which was initially higher than ALC-PSO decreases than

ALC-PSO at iteration 3 and continues to be lower than ALC-

PSO till iteration 11 which then rises slightly and again falls

close to ALC-PSO curve. The gbest values for ALC-PSO and

PSO are closer to each other as for ALC-PSO, the value is

0.0493 while for PSO the value was little higher 0.642.

Table 1. gbest values found by PSO and ALC-PSO for

velocity initialization strategies

Strategy Gbset for PSO Gbest for

ALC-PSO

Velocity

initialization to

zero

0.0880 0.0488

Velocity

initialization to

value within

domain

0.0196 0.0505

Velocity

initialization to

small random

value near zero

0.642 0.0493

4.2 Velocity clamping in PSO
Velocity clamping is essential to restrict the particles from

going out of boundaries of search space.

Figure 4: Graph Plots between error and iteration for

PSO with and without velocity clamping for Ackley

Function with 50 particles and 20 iterations

Discussion of Results- The error plots for the PSO with

velocity clamping and PSO without velocity clamping are

shown. The error value for PSO without velocity clamping

remains constant at 100.8 while error values for PSO with

velocity clamping varies from 102 at iteration 2 to value 10-1

at 20th iteration. The results given by PSO with velocity

clamping are better than PSO without velocity clamping

having gbest values 0.0550 and 0.9273 respectively.

Figure 5: Graph Plots between error and iteration for

ALC-PSO with and without velocity clamping for Ackley

Function with 50 particles and 20 iterations

Discussion of Results- The ALC-PSO with velocity clamping

shows better performance than ALC-PSO without velocity

clamping. The error curve for ALC-PSO with velocity

clamping remains lower than the ALC-PSO without velocity

clamping. The error values range from 0.005 to nearly 0 for

Ackley function. The gbest value given by ALC-PSO with

velocity clamping is better i.e. lesser than ALC-PSO without

velocity clamping. Gbest values are 0.0850 and 0.0894

respectively for the Ackley function.

Table 2. gbest values found by PSO and ALC-PSO

with and without velocity clamping

PSO
Without

velocity

clamping

with

velocity

clamping

0.9273 0.0550

ALC-PSO
Without

velocity

clamping

With

velocity

clamping

0.0894 0.0850

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

18

4.3 Bound Handling

 Three bound handling techniques are implemented.

1. Unmodified – In the unmodified bound handling

approach, the velocity of the particle leaving boundaries

of search space is unaltered.

Figure 7: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function with 50 particles

and 20 iterations using Unmodified bound handling

Discussion of Results- The PSO error curve shows a constant

error reading of 10-1.9 for every iteration of the process while

ALC-PSO shows an exponential decrease in the value of error

form 10-1.3 at iteration 1 to 10-2.5 at iteration 20, remaining

lower than PSO curve for maximum number of iterations. The

gbest value given by the ALC-PSO is better than PSO for the

unmodified bound handling mechanism applied to the Ackley

benchmark problem. The gbest value given by PSO is 0.4143

which is higher than 0.0574 gbest value for ALC-PSO.

2. Deterministic back
A constant negative term k is multiplied with the velocity of

the particle so as to bring the particle back into the bounds of

the search space.

Figure 8: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function with 50 particles

and 20 iterations using Deterministic back bound handling

method

Discussion of Results- The PSO error curve shows a constant

error value at 10-2.3 nearly for all the iterations of the process

while ALC-PSO error curve shows a constant exponential

decrease in the value of error from value 10-1.4 at iteration 1 to

value of 10-2.8 nearly at the last 20th iteration.The gbest value

for the ALC-PSO is 0.0481 while for PSO is 0.1601 for the

Ackley function using deterministic back bound handling

strategy.

3. Nearest value- If any particle crosses the search

boundaries, it is brought back into the search bounds. If the

position value at any interval of time, exceeds the peak value

for position, it is set back to the boundary value i.e. peak value

so that it reaches back into the intended search space. In

simple word, Nearest value means Initialize the velocity to

peak value for increase in position peak value defined for

every particle.

Figure 9: Graph Plots between error and iteration for

PSO and ALC-PSO for Ackley Function with 50 particles

and 20 iterations using Nearest Value bound handling

method

Discussion of Results- The graph plots between error and

iteration for Ackley function show a clear distinction between

the PSO and ALC-PSO error curves. The nearest value

method does not perform well for the Ackley function. The

ALC-PSO shows more error than PSO, hence less efficient for

this method of bound handling. The error value for PSO at

iteration 3 is 10-1, that falls to nearly 10-3 immediately and

remains constant till 7th iteration, then becomes constant at 10-3

for all the remaining iterations. The Ackley function gives

gbest value 0.0263 for the PSO algorithm and 0.0779 for the

ALC-PSO algorithm when the nearest value strategy is used

for handling the boundaries of search space.

Table 3. gbest value found by PSO and ALC-PSO for

bound handling techniques

Strategy PSO ALC

Unmodified 0.4143 0.0574

Deterministic

back

0.1601 0.0481

Nearest Value 0.0263 0.0779

5. CONCLUSION
Dealing with boundary constraint violations has been done

successfully, which can be seen through the improved

performance of ALC-PSO algorithm. Velocity clamping is an

essential concept in the PSO algorithm, and so in ALC-PSO

algorithm to restrict the particles from exceeding the

maximum pre-defined velocity. Out of the three velocity

initialization strategies, initializing to zero and initializing to

small random value within domain works well while

initializing to value within domain does not work well for

ALC-PSO algorithm. All the bound handling techniques

prove to be successful when implemented on ALC-PSO

algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.11, July 2015

19

6. REFERENCES
[1] Qinghai Bai, “Analysis of Particle Swarm Optimization

Algorithm” Volume 3, no.1, February 2010.

[2] A. E. Smith, “Swarm intelligence: from natural to artificial

systems [book reviews],” IEEE Transactions on

Evolutionary Computation, vol. 4, no. 2, pp. 192–193,

2000.

[3] Avneet Kaur “Particle Swarm Optimization with Aging

Leader Algorithm : A Review ”, International Journal of

Engineering Research & Technology (IJERT), ISSN:

2278-0181, Vol. 4 Issue 02, February-2015.

[4] Woo Nam Lee and Jong Bae Park, “Educational Simulator

for Particle Swarm Optimization and Economic Dispatch

Applications ”, IEEE Transactions on Power Systems,

03/2005.

[5] Wei-Neng Chen , Jun Zhang, Ni Chen, Zhi-Hui Zhan ,

Henry Shu-Hung Chung , Yun Li, Yu-Hui Shi “Particle

Swarm Optimization with an Aging Leader and

Challengers” , IEEE, 2013.

[6] Andries Engelbrecht, “Particle Swarm Optimization:

Velocity Initialization”, WCCI 2012 IEEE World

Congress on Computational Intelligence, June 2012.

[7] Y. Shi and R. C. Eberhart, “Empirical study of particle

swarm optimization,” Proc. IEEE Congr. Evol. Comput,

pp. 1945–1950, Jul. 1999.

[8] Daniel Bratton, James Kennedy, “Defining a Standard for

Particle Swarm Optimization”, Proceedings of the 2007

IEEE Swarm Intelligence Symposium (SIS), 2007.

[9] Avneet Kaur, “Particle Swarm Optimization with Aging

Leader Algorithm : A Review”, International Journal of

Engineering Research & Technology (IJERT), ISSN:

2278-0181, Vol. 4 Issue 02, February-2015.

[10] Farrukh Shahzad, A. Rauf Baig, Sohail Masood,

Muhammad Kamran,Nawazish Naveed, “Opposition-

Based Particle Swarm Optimization with Velocity

Clamping (OVCPSO)”, Advances in Computational

Sciences, Advances in Computational Intelligence ,

Advances in Intelligent and Soft Computing Volume

116, pp 339-348

[11] Juan C. Fuentes Cabrera and Carlos A. Coello Coello,

“Handling Constraints in Particle Swarm Optimization

using a Small Population Size”, Advances in Artificial

Intelligence , Lecture Notes in Computer Science,

Volume 4827 , pp 41-51

[12] Jian Li, Bo Ren, and Cheng Wang, “A Random Velocity

Boundary Condition for Robust Particle Swarm

Optimization” Bio-Inspired Computational Intelligence

and Applications, , Lecture Notes in Computer Science,

Volume 4688, pp 92-99

[13] Analyzing the Effects of Bound Handling in Particle

Swarm Optimization.

[14] Wei Chu, Xiaogang Gao, Soroosh Sorooshian, Handling

boundary constraints for particle swarm optimization in

high-dimensional search space, Springer, Information

Sciences 181 (2011) 4569–4581, October 2010.

IJCATM : www.ijcaonline.org

http://link.springer.com/book/10.1007/978-3-642-03156-4
http://link.springer.com/bookseries/4240
http://link.springer.com/book/10.1007/978-3-540-76631-5
http://link.springer.com/book/10.1007/978-3-540-76631-5
http://link.springer.com/bookseries/558
http://link.springer.com/book/10.1007/978-3-540-74769-7
http://link.springer.com/book/10.1007/978-3-540-74769-7
http://link.springer.com/bookseries/558

