
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

1

A Comparative Study on Dynamic Scheduling

of Real-Time Tasks in Multiprocessor System

using Genetic Algorithms

Sri Raj Pradhan
Department of CSE,

Sikkim Manipal Institute of
Technology, Sikkim, India

Sital Sharma
Department of CSE,

Sikkim Manipal Institute of
Technology, Sikkim, India

Debanjan Konar
Department of CSE,

Sikkim Manipal Institute of
Technology, Sikkim, India

Kalpana Sharma
Department of CSE,

Sikkim Manipal Institute of Technology, Sikkim, India

ABSTRACT
Multiprocessors have evolved as powerful computing tools

for executing dynamic real time tasks. The continual

evolutions of the multiprocessor and real-time systems in the

last few decades have encouraged the research and

development of a new and efficient algorithm for dynamic

scheduling of real-time task in multiprocessor systems. This

paper proposes a compact study on dynamic real time task

scheduling in multiprocessor environment using Genetic

Algorithm (GA) which is a typically NP-complete problem.

GA exploits the power of parallel computing which drives the

solution towards optimal one. The GA, inspired by biological

genetics and the process of natural selection, comprises fixed

size chromosome and biological inspired genetic operators

like mutation and crossover. This paper investigates the

various scheduling algorithms and compares the simulation

result in terms of fitness value and the percentage of success

for scheduling real time tasks.

Keywords

Dynamic task scheduling, Genetic Algorithm, Multiprocessor

system, NP complete problem, Real time system, Earlier

Deadline First (EDF), Shortest Computation First (SCF).

1. INTRODUCTION
In today’s computing era multiprocessor system have

outperformed the uniprocessors systems for executing the

real-time applications as uniprocessor system is not sufficient

enough to execute all the tasks while also satisfying their

timing constraints. In multiprocessor system there are several

processors available wherein all the task could be executed

without missing its deadline. Allocating the task in

multiprocessor system is much more difficult as compared to

the uniprocessor system as determining the optimal solution

has an exponential complexity hence falls under the category

of NP-hard problem. Thus scheduling algorithm for

multiprocessor system should ensure the feasible schedule for

the set of real-time task. A valid schedule is called a feasible

schedule if the entire tasks in the set are executed without

missing its deadline and no task are scheduled before its

arrival [1].

1.1 Real time system
Real-time systems can be defined as the software systems in

which the efficiency of the system relies more on the time at

which the result is obtained rather than its logical correctness.

If the system exceeds the specified time bound to produce the

result then it may produce undesirable or even fatal result,

thus system failure is said to have occurred. Real-time task are

said to have arrived when some events are triggered and may

occur at a large number of times at random instance which has

some timing constraints. These timing constraints need to be

considered when scheduling the real-time task [1]. These

timing properties that real-time tasks constitute are as follows:

1.1.1 Arrival time (Ai)
The time at which the real-time task is generated due to the

occurrence of some specific event.

1.1.2 Ready time (Ri)

The time at which the task is allocated to the processor for

execution.

1.1.3 Computational Time (Ci)
The Maximum time taken for the execution of the task after

being released.

1.1.4 Deadline (Di)
The Time by which the execution of the real-time task needs

to be completed. Real-time systems constitutes of multiple

tasks with different levels of criticality and it is not always

necessary that all the real-time task belongs to the same

category thus, real-time tasks are further divided into hard,

soft and firm real-time task relying on consequences of task

missing its deadline. Let us assume that a real-time system

consists of a set of tasks T = {T1, T2, T3,….,Tn}, where the

computation time of the task ,Ti T is Ci.. The system is said

to be real-time if there exist at least one task Ti T which falls

into one of the following category.

1.1.5 Hard Real-Time Task
 In hard real-time task meeting the deadline is obligatory

otherwise results become undesirable, i.e. Ci ≤ Di

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

2

1.1.6 Soft Real-Time task
Soft real-time task also have timing constraints associated

with it however, missing some is tolerable but a penalty is

associated with it if computation time Ci exceeds the given

deadline Di. The penalty function P (Ti) can be defined as:

If Ci ≤ Di then P (Ti) = 0, otherwise P (Ti) > 0.

1.1.7 Firm Real-Time Task
 A firm real-time task also associates a deadline with it but

missing may not adversely affect the system, the late result

are merely discarded but if the task finishes its computation

earlier than its deadline than it gains a reward. The reward

function R (Ti) can be defined as:

If Ci ≥ Di , then R (Ti) = 0, otherwise R (Ti) >0.

Real-time task are generated on the occurrence of some events

and may reoccur over a period of time, based on this they are

further classified into three main categories: periodic, sporadic

and aperiodic task.

1.1.8 Periodic Task
 The instance of a real-time task which repeats after a fixed

time interval determined by clock interrupts is known as

periodic task.

1.1.9 Sporadic Task
The instance of a real-time task whose reoccurrence cannot be

predicted as it occurs at random time periods is known as

Sporadic Task.

1.1.10 Aperiodic Task
 The real-time task that arise at random instance similar to a

sporadic but aperiodic task are generally soft real-time task

whose two or more instance of may occur at the same time

instant and therefore it may be very hard to meet their

deadlines for the aperiodic tasks.

1.2 Scheduling
Scheduling is a process of assigning task to a processor for

execution. The main objective of scheduling is to assign

processor to a task while generating an efficient makespan

(Total time to complete the task list) and valid schedules. The

task scheduling can be further classified into static and

dynamic scheduling.

1.2.1 Static Scheduling

 The algorithm is also known as offline deterministic

scheduler, the execution times of the task and data

dependencies between them are known a prior. These types

of scheduling are done during compile time therefore the run

time overhead of these schedulers are very low [2]. The main

disadvantage of these schedulers is they cannot acceptably

handle aperiodic and sporadic task since the exact time of

occurrence cannot be predicted. [4]

1.2.2 Dynamic Scheduling

 The execution times of the task and data dependencies

between them are not known a prior and thus scheduling

decisions and processors are allocated on run time. Dynamic

scheduling thereby furnishes a faster and flexible system [2].

The remainder section of the paper consist of Related works

in section 2, multiprocessor scheduling algorithm in section 3,

Genetic Algorithm in section 4 and conclusion on section 5.

2. RELATED WORKS
Various heuristic approaches have been precisely studied for

overcoming the problem of scheduling the time critical real

time application on multiprocessor platform which includes

Earliest Deadline First (EDF)[1], Shortest Computational

Time First (SCTF)[1] . The use of genetic algorithm (GA) for

real-time task scheduling has also been studied and GA was

very successful compared to the earlier approaches. Genetic

operators such as crossover and mutation have been the key

features of genetic algorithm. Bohler, M. et al.[3] proposed a

genetic algorithm for scheduling task in multiprocessor

system. This algorithm generated a schedule for 20, 40, 50

task taking crossover probability 1.0 and mutation probability

as 0.1 and 0.2. For 20 tasks they generated the solution in 20

generations and were within 1.2% of the optimal solution. For

larger problems of 40 tasks they required 100 generations to

generate a solution and for 50 tasks it required 500

generations. Heidari, H. and Chalechale, A.[4] implemented

GA and have further improvised GA to obtain a node

Duplication Genetic Algorithm (NGA) and have produced

better results with less execution time than GA. Roy, P. et.

al.[5] implemented a heuristic based task scheduling

algorithm for multiprocessor system to obtain an efficient way

of selecting processors in order to have less execution time.

They have compared Elitism algorithm and their proposed

scheduling algorithm and have shown that their algorithm take

much less time to reach the termination condition than Elitism

algorithm except on task that were scheduled using 16

processors . Dahal, K.[6] et al. obtained feasible solution

using genetic algorithm combined with well-known heuristics

as Earliest Deadline First (EDF) and Shortest Computation

Time First (SCF) obtaining high processor utilization. They

were able to schedule 90% or more of the task taking into

consideration task queue of 100,200,400 and 600. Mostafa R.

M, Medhat H, A.[7] have proposed two algorithms namely

Modified List Scheduling Heuristic (MLSH) and hybrid

approach composed of genetic algorithm and compared them

to list scheduling heuristic algorithm and bipartite GA,

surpassing them in both execution time and processor

utilization also comparing the types of chromosome formats

and their impact on the algorithm. They concluded that

chromosome format containing both task list as well as

processor list generated better results. Dhingra, S. et al [8]

proposed a genetic algorithm for multiprocessor system and

were able to minimize the make span and total completion

time. Sachi Gupta et al implemented multiprocessor

scheduling algorithm using genetic algorithm and provided

with better solution than Heterogeneous –Earliest Finish

Time. It also stated that genetic algorithms are robust since

the average schedule continuously decreases as more

generations are evolved. Thus it reveals that as generations

passes the quality of solution increases [9]. Shu-Chen Cheng

et al. [10] suggested a dynamic real-time scheduling for multi-

processor tasks using genetic algorithm combined with a

feasible energy function which drives the solution towards

better quality schedules.

3. MULTIPROCESSOR SCHEDULING

ALGORITHM
The main goal of real-time scheduling are completing the task

within a specified time constraint and preventing them from

simultaneously accessing the shared resources and devices.

Multiprocessor platforms contain several processors upon

which task can be scheduled. Some assumptions that can be

taken into consideration while designing multiprocessor

scheduling algorithms are:

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

3

3.1 Preemptive task
A Task is allowed to be removed (preempted) from the

processor prior to its completion and can later be resumed if a

task with higher priority arrives for execution [7].

3.2 Task migration
A Task preempted from a processor may execute on a

different processor [7].

Multiprocessor Scheduling falls under two general categories:

3.3 Global scheduling algorithms
 A queue is shared among all processors which store task that

have arrived but not yet completed their execution. If there

exist m processors, than the highest n priority task are selected

for assigning to n processors [7].

3.4 Partitioning scheduling algorithms

 A set of Task are partitioned such that all the task of a

partition are assigned to the same processor. This schedule is

similar to having many uniprocessor scheduling problem

since task are not allowed to migrate [7].

Static algorithms are employed to schedule periodic tasks

whose ready time are known a prior whereas dynamic

scheduling algorithms are used to schedule sporadic and the

aperiodic tasks whose characteristics could not be known

prior to its arrival. Dynamic scheduling can either be

centralized or distributed. Each processor present in a

distributed architecture has its own local scheduler that

decides whether the requirement of the incoming tasks could

be met or not. If the scheduler fails to satisfy the requirement

then it tries to find an acceptable processor for the task so it

can be completed within the required condition. In the

centralized scheme there is the central processor called the

scheduler whose job is to determine the acceptable processor

for execution. The two main intents of task scheduling in real-

time systems should be fulfilling all timing constraints and

gaining high resource utilization.

 Some centralized algorithm for static tasks such as:

Utilization Balancing algorithm, where task are maintained in

a queue in an increasing order of their utilization and removed

one by one from the head of the queue and allocated to the

least utilized processor each time. This algorithm is

appropriate when the number of processors is fixed and the

tasks at individual processors are scheduled using Earliest

Deadline First (EDF) [1]. Next Fit Algorithm attempts to use

as less processors as possible and can be implemented on any

arbitrary number of processors. The tasks are divided into a

particular number of classes. If the task are divided into m

classes, task Ti belongs to class j, 0≤ j < m assigned according

to: (21/j+1-1 -1) < ei/pi ≤ (21/j-1-1). The main methodology

behind this algorithm is to assign task with similar utilization

value to the same class of task [1].

Some Decentralized algorithm for dynamic task such as:

Focussed Addressing and Bidding, have two tables called

status table and system load table. These two tables store

information’s regarding the task and the load of the processors

respectively. The task on arrival is scheduled locally if it is

free else offloaded to another processor (focussed processor)

selected on the basis of the table. The table are periodically

updated over a fixed interval of time. However this algorithm

incurs a high communication overhead since it needs to

maintain the system load table at each processor [1]. Buddy

Algorithm is similar to Focussed Addressing and Bidding

algorithm but differ in the manner it selects the processor.

Only processors with utilization values less than a threshold

values are used for selection and the table information are

only distributed among a set of processors called the buddy

list [1].

4. GENETIC ALGORITHM (GA)

Genetic algorithms are search methods that implement

methodologies based on biological evolution [7]. The method

was introduced by John Holland in 1970. Genetic

Programming Inc. company used parallel computer with 1000

node for implementation of genetic algorithm in 1999 [4]. To

find potential solutions that approach a specific criterion this

algorithm search or operate on a given set of potential

solutions. To do this, the algorithm applies the principle of

survival of the fittest in order to a find a better approximation

[10]. At each generation, by the process of selecting potential

solutions on the basis of their level of fitness and breeding

them together with operators borrowed from natural genetics a

new set of approximations is created. Due to these processes

just as in natural adaption a new set of individuals are

generated that are better suited for their environment.

Fig 1: Genetic Algorithm

The following subsections explain the basic concepts of GA.

4.1 Selection
 This operator selects individuals from a set of population for

reproduction. There are many selection methods. Some are

described below:

4.1.1 Roulette Wheel Selection

The parents are selected according to their fitness.

Chromosomes that have higher fitness values have more

chance to be selected. Imagine a roulette wheel where the

chromosomes are placed and the size of the place occupied in

the wheel is considered according to their fitness shown in

Fig2.

Generate Initial Population P(t=0)

Compute Fitness of each chromosome in P(t)

Selection of fitter chromosomes among P(t)

Crossover the pair of selected chromosomes

Mutation

Increment t

Verification criterion?

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

4

Fig 2: Roulette wheel selection

Then a marble is thrown and the position where the marble

stops that chromosome is selected. Therefore, we can see that

chromosomes with higher fitness values are likely to be

submitted.

The above selection can be simulated using the following

Pseudo Code:

 Chromosome = RouletteWheel(Population)

 Generate Cumulative Sum of all the

fitness value of Population.

 Generate random number between

interval [0,S] – r

` Select Chromosome whose cumulative

sum is greater than the random number r.

end

4.2 Crossover
 This operator randomly selects a point on an individual string

and exchanges the subsequence before and after that point to

create two new offspring.

 There are basically two types of crossover:

4.2.1 Single - Point Crossover
Fig 3. Implements single point crossover. This type of

crossover includes only one crossover point. The entire

chromosome from the crossover point to the end of the

chromosome is replaced by another string selected from

another chromosome taken from the same positions.

Fig 3: Single point crossover

4.2.1 Double-Point Crossover
Fig 4. Implements double point crossover. This type of

crossover includes two crossover point. The entire

chromosome from the first crossover point to the second of

the chromosome is replaced by another string selected from

another chromosome taken form the same position

.

Fig 4: Double point crossover

4.3 Mutation

This operator randomly selects a point and flips the data in the

individual. Fig 5. Implemnts a mutation where a the value of

the mutation point is changed.

Fig 5: Mutation

These operators are used to modify the chosen solution in

order to select a most appropriate offspring to pass to the

succeeding generation. GA if used on problems that are too

large may have excessive complexity. GA allows parallel

processing to be performed when finding solutions to larger

and complex problems since they work on population of

individuals rather than a single solution. GA is an iterative

process consisting of individuals that are encoded in the

population string known as chromosomes, encoding a possible

solution in a given problem space. This space, denoted as

search space consists of all possible solutions to the problem.

At every generation the individuals are decoded and fitness of

an individual in the population is calculated according to the

fitness function set for the problem. The goal of the fitness

function is to find the shortest possible schedule. Crossover

operator fuses the information within pairs of selected

individual to generate new individuals. To prevent premature

convergence the mutation operator is used and mutation rate

is taken very small (typically between 0.1 and 1) [11].

5. RESULT AND DISCUSSIONS
Various researchers have implemented a scheduling algorithm

incorporating GA and produced better results than heuristic

algorithms. Fig 6. Shows the task feasibility implementing

their scheduling algorithm. The percentage of task scheduled

was 90% and above [6].

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

5

Fig 6: Task feasibility of EDF and GA

Fig 7. Shows the performance comparision of Genetic

Algorithm and Node Duplication Genetic Algorithm done by

Hadis Heidari and Adolah Chalchale [4]. The graph clearly

shows that their improvisation of genetic algorithm for

scheduling in multiprocessor system have produced better

results than conventional GA.

Fig 7. Performance comparision of Genetic Algorithm and

Node Duplication Genetic Algorithm

Fig. 8 shows the performance analysis of Task List Processor

List Chromosome(TLPLC) and Bipartite Genetic

Algorithm(GA) [7]. The problems was done for 15 task. The

graph clearly shows that the improbvised algorithm produced

better results than the BGA.

Fig 8: Performance analysis of TLPLC and BGA

Fig 9. Shows the success ratio obtained by Gheni Ahmed Ali

for chromosome size = 5 in a system with 5 processor

implementing single point and double point crossover on their

GA based scheduling algorithm [11]. The graph clearly shows

that using double point crossover better results were obtained.

Fig 9: Success ratio for chromosome size = 5 in system

with 5 processor

Fig 10: Success rate of algorithms applying GA

Fig. 10 comprises of the success rate achieved by the

algorithms for 100 task. Here we can clearly see that GA

combined with the heuristic ‘EDF’ produced better results

than GA applied by Sachi Gupta and Sunita Dhingra.

6. CONCLUSION
This paper discusses some of the scheduling algorithm used to

solve multiprocessor scheduling problems. Generally

traditional algorithms such as Utilization Balancing Algorithm

tried to decrease the make span by considering only low

utilized processors for scheduling with the help of EDF. Next

fit Algorithm created an environment of having many

uniprocessor systems. The make span was further decreased

with the help of genetic algorithms. Many algorithms

incorporated genetic algorithms to generate an optimal

solution. Studies showed that genetic algorithm converge to

an optimal solution very slow thus combining it with other

heuristics often improves the result. Many improvements have

been made since the introduction of evolutionary algorithm

and further improvements are also expected to be made.

Genetic algorithms combined with heuristics produce better

results and thus further improvements may be possible on

how cleverly the algorithms are used with other heuristics to

produce better results. However, the classical genetic

algorithm still suffers from the lack of generalization in

generating valid schedules due its crossover and mutation

operators. In addition to this, the time consuming genetic

operations used in most of these approaches for updating the

schedules fails to meet the deadline constraint of the real time

tasks. The problem of multiprocessor real-time scheduling can

be addressed much efficiently by employing the quantum

inspired genetic algorithm with some well-known existing

heuristics. The research scholars are currently engaged in this
direction.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

Fe
as

ib
ili

ty

Task Set

GA

EDF

50

52

54

56

58

60

62

64

66

Genetic
Algorithm

Node
Duplication GA

0

20

40

60

80

2 3 4

TLPLC

BGA

0

20

40

60

80

100

120

1 3 5 7 9

Single Point
Crossover

Double
Point
Crossover

84

86

88

90

92

94

K Dahal

Sunita Dhingra

Sachi Gupta

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.20, June 2015

6

7. REFERENCES
[1] Mall, R. 2007 Real- Time Systems . Pearson Education

[2] George, D.I., Amalarethinam, A., Josphin, M. 2015.
Dynamic Task Scheduling Methods in Heterogeneous

Systems- A Survey. International Journal of Computer

Applications (0975 – 8887) Volume 110 – No. 6.

[3] Bohler, M., Moore, F., Pan, Y. 1999. Improved

Multiprocessor Task Scheduling using Genetic

Algorithms. Proceeding of the Twelfth international

FLAIRS Conference.

[4] Heidari, H., Chalechale, A. 2012. Scheduling in

Multiprocessor System using Genetic Algorithm.

International Journal of Advanced Science and

Technology ,Vol.43.

[5] Roy, P., Alam, U.M., and Das, N. 2012. Heuristic based

Task Scheduling in Multiprocessor Systems with

Genetic Algorithm by choosing the eligible processor.
International Journal of Distributed and Parallel Systems

(IJDPS) Vol.3, No.4.

[6] Dahal, K., Hossain, A., Varghese, B.,Abraham, A.,

Xhafa, F., Daradoumis, A. 2008. “Scheduling in

Multiprocessor System Using Genetic Algorithms.

Proc.IEEE Computer Information System and Industrial

Management Applications, 7, pp.281-286

[7] Mostafa, R.M., Medhat, H., Awadalla, A. 2011. “Hybrid

Algorithm for Multiprocessor Task Scheduling”. IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 2, May ISSN (Online): 1694-0814

[8] Dhingra, S., Gupta, S.B., Biswas, R. 2014. Genetic

Algorithm Parameters Optimization for Bi-Criteria

Multiprocessor Task Scheduling Using Design of

Experiments. World Academy of Science, Engineering

and Technology. International Journal of

Computer,Control,Quantum and Information

Engineering Vol: 8, No: 4,

[9] Gupta, S., Agarwal, G., Kumar, V. 2013. An Efficient

and Robust Genetic Algorithm for Multiprocessor Task

Scheduling, International Journal of Computer Theory

and Engineering. Vol: 5, No: 2.

[10] Cheng, S.C., Huang, Y.M. 2004. Dynamic real-time

scheduling for multi-processor tasks using genetic

algorithm.Computer Software and Applications

Conference, COMPSAC ,pp 154-161.

[11] Ali, G.A. 2008. Dynamic Task Scheduling in

Multiprocessor Real Time Systems Using Genetic

Algorithms. Iraq Academic Scientific Journal (IASJ),

ISSN: 16816870 Issue: 23 Pages: 46-65

[12] Laboudi, Z., Chikhi, S. 2012. Comparison of Genetic

Algorithm and Quantum Genetic Algorithm. The

International Arab Journal of Information Technology,

Vol. 9, No. 3, May

IJCATM : www.ijcaonline.org

