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ABSTRACT 
Similarity Join plays an important role in data integration and 

cleansing, record linkage and data de-duplication. It finds 

similar sting pairs from collections of strings. If two strings 

are similar they share a common token. Number of 

approaches has been proposed for in-memory string similarity 

joins. But due to the rising era of big data, demands for 

scalable algorithms to support large scale string similarity 

joins arises. The proposed architecture uses the MapReduce 

concept and is based on inverted index and multiple prefix 

filtering methods. The prefix filtering is made of different 

global ordering which reduces the number of candidate pairs 

significantly, thus improving the pruning power as compared 

to other approach. 
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1. INTRODUCTION 
The string similarity join finds all similar string pairs from the 

given set of strings. String similarity join plays an important 

role in many real-world applications like data cleansing and 

integration, and duplicate detection. There are number of 

applications that require detecting similar pairs of records. 

List of possible applications includes: detecting near duplicate 

web-pages in web crawling, document clustering, plagiarism 

detection, master data management, making recommendations 

to users based on their similarity to other users in query 

refinement [1][2]. For example, in master-data-management 

applications, a system has to identify that names “Rajiv S 

Kapoor”, “Kapoor, Rajiv”, and “Rajiv Subodh Kapoor” are 

potentially referring to the same person. 

Detecting such similar pairs is a challenge today, as 

applications are dealing with vast amounts of data. The size of 

data is so large that it usually do not fit in the main memory of 

one machine. The similarity between two strings is usually 

calculated by similarity functions. The two main types of 

similarity functions are: set-based similarity function (e.g. 

Cosine, Jaccard, Dice) and character-based similarity 

functions (e.g. Edit distance). Number of existing string 

similarity-join methods used in-memory algorithms which are 

restricted to a particular size of dataset. But the increased use 

of big data now poses new challenges for large-scale string 

similarity joins and demands for new scalable algorithms. 

Large number of algorithms proposed for string similarity 

joins take assistance from inverted index. In this approach, 

they adopt a two stage filter and refine strategy in identifying 

similar string pairs- first to generate candidate pair after 

traversing the inverted index; and next to verify candidate pair 

by computing similarity. But on other side, most of these 

algorithms suffer from low pruning power, or they incur too 

much computation to improve the pruning power. Hence the 

proposed system is a multiple prefix filtering method based on 

global ordering. 

Problem Definition 

Given a collection of strings‘S’ and a threshold value ‘Ø’ 

(theta), the string similarity join SIM finds out all the similar 

string pairs from the  collection, such that SIM(si,sj) ≥ Ø.  

The Similarity between two strings is quantified by the 

similarity functions/similarity metrics. The output of this 

similarity function is compared with a predefined threshold 

value. Mainly two types of similarity metrics are: character 

based and set-based similarity metrics. 

1.1 Character-based similarity function:  
This function calculates the similarity between two strings 

based on character transformations. They are efficient for 

capturing typographical error. Edit Distance is one of the 

representative of character based similarity function. Edit 

distance between two strings is nothing but the minimum 

number of edit operations that transform one string into 

another [13]. Allowable edit operations are- deletion of 

characters, replacing a character in the string by another or 

inserting new character. 

For example consider two strings x=”pratik” and y=”prateek”. 

Their edit distance ED(x,y)= 2, since the first string can be 

transformed to second by transforming two characters. Two 

strings are said to be similar w.r.t. the edit distance metric 

only if their edit distance is not larger than a given threshold 

‘τ’. 

1.2 Set-based similarity function:  
The set based similarity function first transform strings into 

sets of tokens. A token can be either a word or an-gram. Inn-

gram- a string’s substrings with length n is used to generate 

the set, where the substring with length n is called an-gram. 

For example, the 2-gram set of “bsnl” is {“bs”, “sn”, “nl”}. 

Token-based metrics are found to be suitable for long strings, 

e.g., documents. The three well-known set-based similarity 

functions are Jaccard, Dice, and Cosine [5]. 

          
   

   
  …. (1) 

 
Where x, y are two strings. 

Two strings are similar w. r. t. the set-based similarity 

function if their similarity is not smaller than the given 

threshold value. The proposed system will use Jaccard 

function as similarity function and tokens will be the words of 

strings. 
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2. LITERATURE REVIEW 
The string similarity join problem can be divided into two 

categories as: In-memory similarity joins and MapReduce 

based similarity joins. Number of approaches has been 

proposed for in-memory similarity join which are restricted 

with the dataset size. Few of the approaches have been done 

for the MapReduce based string similarity join which still 

needs to be upgraded. 

To avoid verifying every pair of strings in the data set and 

improve performance, string similarity join operation consists 

of two phases: candidate generation and verification [2]. In 

the candidate generation phase, the signature assignment 

process is invoked. Recent works are typically built on top of 

some traditional indexing methods as- tree based and inverted 

index based. In [8], the Trie-tree-based approach was 

proposed for edit similarity search, where an in-memory Trie-

tree is built. This support edit similarity search by 

incrementally probing the nodes. The edit similarity join 

method based on the Trie-tree was proposed in [7], in which 

sub-trie pruning techniques are applied. In [11], a B+-tree 

based method was proposed to support edit similarity queries. 

This method transforms the strings into digits and indexes 

them in the B+-tree. However, these algorithms are limited to 

in-memory processing, and so are not efficient and scalable 

for processing large scale data set. 

The inverted index based methods are of the fact that similar 

strings share common parts, and hence they transform the 

similarity constraints into set overlap constraints. To prune 

false positives, the PPJoin method applies the position 

information of the prefix tokens of the string. Based on the 

PPJoin, the PPJoin+ uses the position information of suffix 

tokens to prune false positives further [9]. As these methods 

need to merge the inverted lists during the candidate 

generation phase, further some optimization techniques for the 

inverted list merging were introduced. The exact computation 

method proposed in [1] is based on the pigeon hole principle 

which transforms similarity constraints into Hamming 

distance constraints and transforms each record into a binary 

vector. This binary vector is divided into partitions and then 

hashed into signatures. The strings that produce the same 

signatures are considered as candidate pairs. However, the 

signature scheme is very time-consuming and introduces 

unnecessary false positives. 

In [2], Vernica proposed a prefix filtering based method, 

which used a filter-and-verification framework. In the filter 

step, they selected some tokens from each string and 

generated a set of candidate pairs who share a common token. 

In the verification step, they verified the candidate pairs to 

generate the final answers. One of the big limitations of this 

approach is low pruning power. A single token results to be 

very short and usually has low selectivity, hence many 

dissimilar pairs will share a same token and cannot be pruned.  

3. PROPOSED WORK 
MapReduce is a data intensive programming model which 

works on a cluster of nodes. It consists of two main functions; 

map and reduce. The map function read in the input data, and 

emits multiple intermediate <key, value> pairs. Then the 

Reduce functions merge these <key, value> pairs in such a 

way that all values associated with the same key are paired 

together. The map & reduce programs are automatically 

parallelized and scheduled on a large cluster of machines. 

Further the process of scheduling the jobs, balancing 

maintenance on different nodes, detection of errors and 

recovery from those errors are automatically managed by the 

computing platform such as Hadoop. Hence, the users only 

need to concern with the implementation detail of the 

algorithm. This helps users without parallel programming 

experience to easily utilize the computing resources.   

3.1 Single Global ordering 
An inverted index based string similarity joins algorithm 

adopts three-step approach in identifying similar string pairs. 

This approach is known as filter and refines approach, which 

consists of following steps: 

i) To generate an inverted index from the given prefix tokens. 

ii) To generate candidate pairs by traversing through the 

inverted index built in step1.   

iii) To verify the candidate pairs by computing the similarities 

between them. 

3.2 Multiple Global ordering 
By applying the single global ordering method, the candidate 

pairs can be reduced significantly as compared to simple 

approach, where every two strings that share common tokens 

are considered as a candidate pair. But, in case of large-scale 

data sets, the numbers of candidate pair results to be very 

large and needs to be reduced considerably. Therefore, 

multiple global ordering can be used to reduce the number of 

candidate pairs. One of the  approach for implementation can 

be, to repeat the use of single global ordering for each 

ordering. Then derive the overlap among these sets of 

candidate pairs. However, this process for candidate pair 

generation is costly. Hence, this problem is taken care by the 

proposed system. 

Proposed system is based on multiple prefix filtering 

technique, which applies different global orderings in a 

pipelined manner. In Figure 1, a set of global ordering is 

applied on different stages where O1 is selected as a basis to 

build inverted index for prefix tokens. The candidate pairs are 

generated for each string based on its prefixes. A pipelining 

process is used to prune the false positives in advance. The 

candidate pairs are continuously checked in pipelining order 

which significantly reduces their size. 

 

Fig 1: Pipeline of Global Ordering 
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MATHEMATICAL MODEL 

 

P={ S, Og, k, F, ø , W} 

 

Where  

S: is set of strings with different length, each string made of 

words, 

Og: is set of global ordering 

K: No. of prefix filtering 

F: set of map and reduce functions 

Ø: threshold value (between 0 and 1) 

W: output pair of similar string  

 

Consider if  

S={s1,s2,s3,s4} 

K=3 

Og: {O1,O2,O3} 

Ø : 0.8 

F : {F1, F2, F3} 

F1 : generates token universe and term frequency order 

F2 : canonicalize dataset according to designated global 

ordering and balance dataset on all nodes  

F3: implement the MapReduce based String Similarity join 

algorithm 

 

Then, if srings s1 and s2 are similar, the output will be, 

W={s1,s2} 

 

The algorithm for String Similarity Join using Global 

Ordering is outlined as follows. 

 

Algorithm 1: 

Input: S=input dataset; Ø=threshold value; k= number of 

prefix filtering 

Output: All pair of strings with similarity SIM(si,sj)≥ Ø 

1. Tokenize each string in the dataset ‘S’.  

2. Sort them based on global ordering ‘O’ based on 

term frequency TF. 

3. Other prefix tokens are derived during 

canonicalization process.  

4. Sorted strings are processed sequentially in two 

phases- Candidate Generation and Verification. 

5. For each prefix token, its inverted index will be 

scanned using length filtering method and then 

multiple prefix filtering. 

6. String pairs satisfying all filter conditions are 

considered as candidate pairs 

7. To avoid duplicate pair verification, candidates are 

counted for number of occurrences. 

8. Finally pairwise verification is done with respect to 

given threshold value. 

 
Fig 2: MapReduce based String Similarity Join 

 

To apply the above algorithm to the MapReduce framework, 

the main challenge is to assign keys to candidate string pairs. 

A candidate pair of strings must have one common prefix 

token under any global ordering, prefix tokens of a string are 

choose as its keys and the string content as the value so that 

strings with the same prefix token can be shuffled to the same 

reducer. 

Following is the proposed MapReduce based String Similarity 

Join Algorithm 

 

Algorithm 2: 

 
1. Generate the token universe U and term frequency 

order <sorted token file> 

2. Load the token files and sorting rules on each 

datanode. 

3. In Map, prefix token set is derived for each string. 

4. The new value from Map will be set of record id, 

prefix token and original record 

5. String pairs with the same key will be shuffled to 

same node. 

6. In reduce, string with same key will be verified with 

respect to given threshold value using Jaccard 

function. 

7. To avoid duplicate pair verification, candidates are 

counted for number of occurrences. 

8. Pair of similar string with its threshold value will be 

given as output 

 

4. RESULTS 
Proposed work implements similarity join with MapReduce 

based on inverted index and multiple prefix filtering methods. 

It will also try to reduce memory overheads, communication 

between work nodes by distributing appropriate proportion of 

key value pairs.  It is compared with implementation of 

parallel set-similarity joins [2] which is based on signature 

similarity join. Implementation of both algorithms is tested on 

DBLP dataset. 

DBLP is a computer science bibliography snapshot 

downloaded from DBLP website[12]. It contains records 

which are concatenation of author name and title of 

publication. 

The performance of proposed system is evaluated on Hadoop 

platform on a centralized machine as well as on a cluster of 4 

computer nodes, among which one is configured as the master 

and the others are configured as slaves.  
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Centralized system: Experiment performed on single 

machine with core i7 processor2.0GHz x 2 and 8GB of main 

memory. The operating system is Ubuntu 14.04 and all 

algorithms are implemented in JDK 1.7. 

Taking record size=100 and threshold value =0.8 we get the 

following results. 

Table 1: Comparative Result on Centralized system 

Different Stages of Join 

Operation 

Time 

taken by 

Proposed 

Approach 

Time 

taken by 

Self Join 

Record Build 11.45sec 11.35sec 

Record Balance 17.54sec 18.45sec 

Join operation 105.38sec 110.27sec 

No. of matching records 14 14 

 
Distributed and Parallel System: 

All nodes have the same configurations as follows: 

- CPU: Intel core 2 Duo; 

- Main memory: 2 GB; 

- Disk: 320 GB; 

- OS: Ubuntu 14.0; 

- Software environment: Hadoop-2.6.0 and JDK-1.7.0. 

 

Taking 31,7004 records and the join threshold is set to 0.6.we 

get following results. 

 

Table 2: Comparative result on Distributed System 

Stages of Join operation Time taken by Proposed 

Approach 

Record Build 33 

Record Balance 30 

Join Time 95.54 

No. of matching records 15267 

 

5. CONCLUSION 
The proposed approach is a MapReduce-based framework for 

scalable string similarity joins. The system generates 

signatures for strings, which acts as keys and the stings itself 

acts as values for the MapReduce framework. This method is 

based on multiple prefix filters which applies different global 

ordering to reduce the number of candidate pairs. It is 

executed on centralized system as well as distributed 

computing environment. When compared to the parallel set 

similarity join approach, the proposed approach is much more 

efficient and scalable. 

6. FUTURE SCOPE 
Further work can be carried on to find an efficient mechanism 

for generating total number of global ordering needed as well 

as their sequence of application,  to reduce the candidate pair 

size.  
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