
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.18, June 2015

25

Identification of Similar Strings in a Dataset

using Scalable Join

Khalid F. Alfatmi
Department of Computer Engineering,

 GES’s R. H. Sapat College of Engineering,
Savitribai Phule Pune University, India

Archana S. Vaidya

Professor, Department of Computer Engineering,
GES’s R. H. Sapat College of Engineering,

Savitribai Phule Pune University, India

ABSTRACT
Similarity Join plays an important role in data integration and

cleansing, record linkage and data de-duplication. It finds

similar sting pairs from collections of strings. If two strings

are similar they share a common token. Number of

approaches has been proposed for in-memory string similarity

joins. But due to the rising era of big data, demands for

scalable algorithms to support large scale string similarity

joins arises. The proposed architecture uses the MapReduce

concept and is based on inverted index and multiple prefix

filtering methods. The prefix filtering is made of different

global ordering which reduces the number of candidate pairs

significantly, thus improving the pruning power as compared

to other approach.

Keywords
Similarity Join, MapReduce, Big data, Hadoop

1. INTRODUCTION
The string similarity join finds all similar string pairs from the

given set of strings. String similarity join plays an important

role in many real-world applications like data cleansing and

integration, and duplicate detection. There are number of

applications that require detecting similar pairs of records.

List of possible applications includes: detecting near duplicate

web-pages in web crawling, document clustering, plagiarism

detection, master data management, making recommendations

to users based on their similarity to other users in query

refinement [1][2]. For example, in master-data-management

applications, a system has to identify that names “Rajiv S

Kapoor”, “Kapoor, Rajiv”, and “Rajiv Subodh Kapoor” are

potentially referring to the same person.

Detecting such similar pairs is a challenge today, as

applications are dealing with vast amounts of data. The size of

data is so large that it usually do not fit in the main memory of

one machine. The similarity between two strings is usually

calculated by similarity functions. The two main types of

similarity functions are: set-based similarity function (e.g.

Cosine, Jaccard, Dice) and character-based similarity

functions (e.g. Edit distance). Number of existing string

similarity-join methods used in-memory algorithms which are

restricted to a particular size of dataset. But the increased use

of big data now poses new challenges for large-scale string

similarity joins and demands for new scalable algorithms.

Large number of algorithms proposed for string similarity

joins take assistance from inverted index. In this approach,

they adopt a two stage filter and refine strategy in identifying

similar string pairs- first to generate candidate pair after

traversing the inverted index; and next to verify candidate pair

by computing similarity. But on other side, most of these

algorithms suffer from low pruning power, or they incur too

much computation to improve the pruning power. Hence the

proposed system is a multiple prefix filtering method based on

global ordering.

Problem Definition

Given a collection of strings‘S’ and a threshold value ‘Ø’

(theta), the string similarity join SIM finds out all the similar

string pairs from the collection, such that SIM(si,sj) ≥ Ø.

The Similarity between two strings is quantified by the

similarity functions/similarity metrics. The output of this

similarity function is compared with a predefined threshold

value. Mainly two types of similarity metrics are: character

based and set-based similarity metrics.

1.1 Character-based similarity function:
This function calculates the similarity between two strings

based on character transformations. They are efficient for

capturing typographical error. Edit Distance is one of the

representative of character based similarity function. Edit

distance between two strings is nothing but the minimum

number of edit operations that transform one string into

another [13]. Allowable edit operations are- deletion of

characters, replacing a character in the string by another or

inserting new character.

For example consider two strings x=”pratik” and y=”prateek”.

Their edit distance ED(x,y)= 2, since the first string can be

transformed to second by transforming two characters. Two

strings are said to be similar w.r.t. the edit distance metric

only if their edit distance is not larger than a given threshold

‘τ’.

1.2 Set-based similarity function:
The set based similarity function first transform strings into

sets of tokens. A token can be either a word or an-gram. Inn-

gram- a string’s substrings with length n is used to generate

the set, where the substring with length n is called an-gram.

For example, the 2-gram set of “bsnl” is {“bs”, “sn”, “nl”}.

Token-based metrics are found to be suitable for long strings,

e.g., documents. The three well-known set-based similarity

functions are Jaccard, Dice, and Cosine [5].

 …. (1)

Where x, y are two strings.

Two strings are similar w. r. t. the set-based similarity

function if their similarity is not smaller than the given

threshold value. The proposed system will use Jaccard

function as similarity function and tokens will be the words of

strings.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.18, June 2015

26

2. LITERATURE REVIEW
The string similarity join problem can be divided into two

categories as: In-memory similarity joins and MapReduce

based similarity joins. Number of approaches has been

proposed for in-memory similarity join which are restricted

with the dataset size. Few of the approaches have been done

for the MapReduce based string similarity join which still

needs to be upgraded.

To avoid verifying every pair of strings in the data set and

improve performance, string similarity join operation consists

of two phases: candidate generation and verification [2]. In

the candidate generation phase, the signature assignment

process is invoked. Recent works are typically built on top of

some traditional indexing methods as- tree based and inverted

index based. In [8], the Trie-tree-based approach was

proposed for edit similarity search, where an in-memory Trie-

tree is built. This support edit similarity search by

incrementally probing the nodes. The edit similarity join

method based on the Trie-tree was proposed in [7], in which

sub-trie pruning techniques are applied. In [11], a B+-tree

based method was proposed to support edit similarity queries.

This method transforms the strings into digits and indexes

them in the B+-tree. However, these algorithms are limited to

in-memory processing, and so are not efficient and scalable

for processing large scale data set.

The inverted index based methods are of the fact that similar

strings share common parts, and hence they transform the

similarity constraints into set overlap constraints. To prune

false positives, the PPJoin method applies the position

information of the prefix tokens of the string. Based on the

PPJoin, the PPJoin+ uses the position information of suffix

tokens to prune false positives further [9]. As these methods

need to merge the inverted lists during the candidate

generation phase, further some optimization techniques for the

inverted list merging were introduced. The exact computation

method proposed in [1] is based on the pigeon hole principle

which transforms similarity constraints into Hamming

distance constraints and transforms each record into a binary

vector. This binary vector is divided into partitions and then

hashed into signatures. The strings that produce the same

signatures are considered as candidate pairs. However, the

signature scheme is very time-consuming and introduces

unnecessary false positives.

In [2], Vernica proposed a prefix filtering based method,

which used a filter-and-verification framework. In the filter

step, they selected some tokens from each string and

generated a set of candidate pairs who share a common token.

In the verification step, they verified the candidate pairs to

generate the final answers. One of the big limitations of this

approach is low pruning power. A single token results to be

very short and usually has low selectivity, hence many

dissimilar pairs will share a same token and cannot be pruned.

3. PROPOSED WORK
MapReduce is a data intensive programming model which

works on a cluster of nodes. It consists of two main functions;

map and reduce. The map function read in the input data, and

emits multiple intermediate <key, value> pairs. Then the

Reduce functions merge these <key, value> pairs in such a

way that all values associated with the same key are paired

together. The map & reduce programs are automatically

parallelized and scheduled on a large cluster of machines.

Further the process of scheduling the jobs, balancing

maintenance on different nodes, detection of errors and

recovery from those errors are automatically managed by the

computing platform such as Hadoop. Hence, the users only

need to concern with the implementation detail of the

algorithm. This helps users without parallel programming

experience to easily utilize the computing resources.

3.1 Single Global ordering
An inverted index based string similarity joins algorithm

adopts three-step approach in identifying similar string pairs.

This approach is known as filter and refines approach, which

consists of following steps:

i) To generate an inverted index from the given prefix tokens.

ii) To generate candidate pairs by traversing through the

inverted index built in step1.

iii) To verify the candidate pairs by computing the similarities

between them.

3.2 Multiple Global ordering
By applying the single global ordering method, the candidate

pairs can be reduced significantly as compared to simple

approach, where every two strings that share common tokens

are considered as a candidate pair. But, in case of large-scale

data sets, the numbers of candidate pair results to be very

large and needs to be reduced considerably. Therefore,

multiple global ordering can be used to reduce the number of

candidate pairs. One of the approach for implementation can

be, to repeat the use of single global ordering for each

ordering. Then derive the overlap among these sets of

candidate pairs. However, this process for candidate pair

generation is costly. Hence, this problem is taken care by the

proposed system.

Proposed system is based on multiple prefix filtering

technique, which applies different global orderings in a

pipelined manner. In Figure 1, a set of global ordering is

applied on different stages where O1 is selected as a basis to

build inverted index for prefix tokens. The candidate pairs are

generated for each string based on its prefixes. A pipelining

process is used to prune the false positives in advance. The

candidate pairs are continuously checked in pipelining order

which significantly reduces their size.

Fig 1: Pipeline of Global Ordering

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.18, June 2015

27

MATHEMATICAL MODEL

P={ S, Og, k, F, ø , W}

Where

S: is set of strings with different length, each string made of

words,

Og: is set of global ordering

K: No. of prefix filtering

F: set of map and reduce functions

Ø: threshold value (between 0 and 1)

W: output pair of similar string

Consider if

S={s1,s2,s3,s4}

K=3

Og: {O1,O2,O3}

Ø : 0.8

F : {F1, F2, F3}

F1 : generates token universe and term frequency order

F2 : canonicalize dataset according to designated global

ordering and balance dataset on all nodes

F3: implement the MapReduce based String Similarity join

algorithm

Then, if srings s1 and s2 are similar, the output will be,

W={s1,s2}

The algorithm for String Similarity Join using Global

Ordering is outlined as follows.

Algorithm 1:

Input: S=input dataset; Ø=threshold value; k= number of

prefix filtering

Output: All pair of strings with similarity SIM(si,sj)≥ Ø

1. Tokenize each string in the dataset ‘S’.

2. Sort them based on global ordering ‘O’ based on

term frequency TF.

3. Other prefix tokens are derived during

canonicalization process.

4. Sorted strings are processed sequentially in two

phases- Candidate Generation and Verification.

5. For each prefix token, its inverted index will be

scanned using length filtering method and then

multiple prefix filtering.

6. String pairs satisfying all filter conditions are

considered as candidate pairs

7. To avoid duplicate pair verification, candidates are

counted for number of occurrences.

8. Finally pairwise verification is done with respect to

given threshold value.

Fig 2: MapReduce based String Similarity Join

To apply the above algorithm to the MapReduce framework,

the main challenge is to assign keys to candidate string pairs.

A candidate pair of strings must have one common prefix

token under any global ordering, prefix tokens of a string are

choose as its keys and the string content as the value so that

strings with the same prefix token can be shuffled to the same

reducer.

Following is the proposed MapReduce based String Similarity

Join Algorithm

Algorithm 2:

1. Generate the token universe U and term frequency

order <sorted token file>

2. Load the token files and sorting rules on each

datanode.

3. In Map, prefix token set is derived for each string.

4. The new value from Map will be set of record id,

prefix token and original record

5. String pairs with the same key will be shuffled to

same node.

6. In reduce, string with same key will be verified with

respect to given threshold value using Jaccard

function.

7. To avoid duplicate pair verification, candidates are

counted for number of occurrences.

8. Pair of similar string with its threshold value will be

given as output

4. RESULTS
Proposed work implements similarity join with MapReduce

based on inverted index and multiple prefix filtering methods.

It will also try to reduce memory overheads, communication

between work nodes by distributing appropriate proportion of

key value pairs. It is compared with implementation of

parallel set-similarity joins [2] which is based on signature

similarity join. Implementation of both algorithms is tested on

DBLP dataset.

DBLP is a computer science bibliography snapshot

downloaded from DBLP website[12]. It contains records

which are concatenation of author name and title of

publication.

The performance of proposed system is evaluated on Hadoop

platform on a centralized machine as well as on a cluster of 4

computer nodes, among which one is configured as the master

and the others are configured as slaves.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.18, June 2015

28

Centralized system: Experiment performed on single

machine with core i7 processor2.0GHz x 2 and 8GB of main

memory. The operating system is Ubuntu 14.04 and all

algorithms are implemented in JDK 1.7.

Taking record size=100 and threshold value =0.8 we get the

following results.

Table 1: Comparative Result on Centralized system

Different Stages of Join

Operation

Time

taken by

Proposed

Approach

Time

taken by

Self Join

Record Build 11.45sec 11.35sec

Record Balance 17.54sec 18.45sec

Join operation 105.38sec 110.27sec

No. of matching records 14 14

Distributed and Parallel System:

All nodes have the same configurations as follows:

- CPU: Intel core 2 Duo;

- Main memory: 2 GB;

- Disk: 320 GB;

- OS: Ubuntu 14.0;

- Software environment: Hadoop-2.6.0 and JDK-1.7.0.

Taking 31,7004 records and the join threshold is set to 0.6.we

get following results.

Table 2: Comparative result on Distributed System

Stages of Join operation Time taken by Proposed

Approach

Record Build 33

Record Balance 30

Join Time 95.54

No. of matching records 15267

5. CONCLUSION
The proposed approach is a MapReduce-based framework for

scalable string similarity joins. The system generates

signatures for strings, which acts as keys and the stings itself

acts as values for the MapReduce framework. This method is

based on multiple prefix filters which applies different global

ordering to reduce the number of candidate pairs. It is

executed on centralized system as well as distributed

computing environment. When compared to the parallel set

similarity join approach, the proposed approach is much more

efficient and scalable.

6. FUTURE SCOPE
Further work can be carried on to find an efficient mechanism

for generating total number of global ordering needed as well

as their sequence of application, to reduce the candidate pair

size.

7. ACKNOWLEDGEMENT
I would like to express my sentiments of gratitude to all who

rendered their valuable guidance for this work. I would like to

thank Dr. P. C. Kulkarni, Principal, GES’s. R. H. Sapat

College of Engineering Nashik, for providing me strong

platform to develop my skills and capabilities.

I am also thankful to Prof. N. V. Alone, Head of Department,

Computer Engineering and my guide Prof. A. S. Vaidya for

helping and guiding me with the topic and also providing me

with adequate facilities, ways and means by which I was able

to complete this paper.

8. REFERENCES
[1] C. Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du and

Anthony K.H. Tung, “Efficient and Scalabe Processing

of String Similarity Join,” IEEE Transactions on

Knowledge and Data Engineering, VOL. 25, 2013, pages

2217-2230.

[2] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set

Similarity Joins using MapReduce,” In SIGMOD, 2010,

pages 495-502.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” In OSDI, pages 137- 150,

2014.

[4] NikolausAugsten, Michael H Bohlen, “Similarity Joins

in Relational Database Systems,” Morgan & Claypool

publishers.

[5] Younghoon Kim, Kyuseok Shim, “Parallel Top-K

Similarity Join Algorithms using MapReduce,” IEEE

28th International Conference on Data Engineering,

2012.

[6] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact

Set-Similarity Joins,” Proc. 32nd International Conf.

Very Large Data Bases, pp. 918-929, 2009.

[7] Yu Jiang, Guoliang Li, JinhuaFeng, Wen-Syan Li,

“String Similarity Joins: An Experimental evaluation”,

International Conference on Very LargeDataBases,

Vol.7, No.8., 2014.

[8] Wang, J. Feng, and G. Li, “Trie-Join: Efficient Trie-

Based String Similarity Joins with Edit-Distance

Constraints,” Proc. VLDB Endowment, vol. 3, nos. 1/2,

pp. 1219-1230, 2010.

[9] C. Xiao, W. Wang, X. Lin, and J. Yu, “Efficient

Similarity Joins for Near Duplicate Detection,” Proc.

International Conf. World Wide Web, pp. 131-140, 2008.

[10] A. Elmagarmid, P. Ipeirotis, and V. Verykios, “Duplicate

Record Detection: A Survey,” IEEE Trans. Knowledge

and Data Eng., vol. 19, no. 1, pp. 1-16, Jan. 2007.

[11] Z. Zhang, M. Hadjieleftheriou, B. Ooi, and D.Srivastava,

“Bed-Tree: An All-Purpose Index Structure for String

Similarity Search Based on Edit Distance,” Proc. ACM

SIGMOD International Conf. Management of Data, pp.

915-926, 2010.

[12] Dataset https://www.informatik.uni-trier.de/~ley/db

[13] D. Deng, G. Li, S. Hao,”MassJoin: A MapReduce-based

Method for Scalable String Similarity Joins”, IEEE 30th

International Conference on Data Engineering, pp. 340-

351, 2014.

IJCATM : www.ijcaonline.org

https://www.informatik.uni-trier.de/~ley/db

