
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

37

A Review on Developing an Arcade Game Machine and

an Arcade Game using Raspberry Pi and Pygame

Nishant Sahni
Computer Engineering

Department, Mukesh Patel
School of Technology

Management & Engineering,
NMIMS University, Mumbai,

India

Kailash Srinivasan
Computer Engineering

Department, Mukesh Patel
School of Technology

Management & Engineering,
NMIMS University, Mumbai,

India

Harsh Savla
Computer Engineering

Department, Mukesh Patel
School of Technology

Management & Engineering,
NMIMS University, Mumbai,

India

ABSTRACT

In this paper, we will discuss and review the steps involved in

developing an arcade game machine from ground-up along

with designing and developing an arcade game to run on it. We

will also discuss the choice of hardware and the development

tools used for developing our system. In-game physics will also

be incorporated using the PyODE engine and Pygame libraries.

We will also compare Easel and Pygame as game development

libraries and will determine which would be the most

appropriate for our project.

Keywords

Arcade Game, Raspberry Pi

1. INTRODUCTION
The technical details of Raspberry Pi and elucidation of how

they will be used in the proposed system have been mentioned

in this paper. Further, every aspect of the proposed system has

been mentioned in detail including the OS installation and

various commands for the configuration of the Raspberry Pi

processor. The first part of the paper deals with the hardware,

where all the problems associated with Raspberry Pi and its

corresponding Raspbian OS installation are discussed. The

second part of the paper deals with the software, where we

discuss the development of the Arcade game which will be

coded in Python using Pygame Libraries. The in-game physics

would also be implemented using the PyODE engine that is

supported by this library.

2. BRIEF DESCRIPTION
We will now discuss the development of the Arcade game

machine and the Arcade game in two different sections:

2.1 Arcade Game Machine
This machine would be an embedded system whose sole

purpose would be to run the arcade game we design for it. It’s

hardware components are described as follows:

2.1.1 Raspberry Pi:
Raspberry Pi would be the most appropriate processor for our

system. It is small in size and has low power consumption. We

will be using the B+ model which flaunts a clock speed of

700MHz in normal conditions and 1000MHz in Turbo. It has a

512MB SDRAM and a 128MB GPU [4]. These specifications

are more than enough for us to be able to smoothly run any

arcade game. Also, it has an in-built HDMI port which will

enable us to connect it to a display device. Raspberry Pi also

supports external input which would play a major role in our

system. General purpose input/output are a set of generic pins

on the processor whose behaviour can be controlled as well as

programmed through software. It has a Micro SD card slot

which will enable us to boot the OS as well as the game. It is

also relatively cheap and thus reduces the overall development

cost of the system.

2.1.2 Display Device
This would display the general purpose output of the system.

Any standard display device which has an A/V or an HDMI

port can be used for our system. It may range from an old CRT

display to the newer LCD display.

2.1.3 Cabinet
This would be the external casing of our system so that it stays

protected from external entities and looks more visually

appealing. We will use Medium-density fibreboard for making

this cabinet.

2.1.4 Heat Sinks
These are passive heat exchangers used for cooling the device

by dissipating heat into the surrounding medium. We will be

using a heat sink to keep our Raspberry Pi processor from

overheating.

2.1.5 Controls
These would provide a medium for the users to interact with

the system. They would be responsible for the general purpose

input of our system. The controls would comprise of buttons

and a joystick.

After the components are put together we must initialize the

system with the appropriate software so that it is capable of

running the designed arcade game. The steps involved for

doing so are as follows:

1. We must download the latest RetroPi SD card image and

write the image to the SD card so that we can boot it from

our Raspberry Pi processor. RetroPi is a preconfigured

setup for the Raspberry Pi running EmulationStation,

which is basically a front end for navigating and

launching games for multiple emulators [5]. We will need

at least a 4GB card just to run RetroPie.

2. We must then load our game onto the SD card over the

network. Game ROMs are stored in the appropriate folder

on the RetroPi and will be automatically read by

EmulationStation.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

38

3. The last part would require us to configure the controls.

The physical controls need to be wired before we can

tackle this part. It involves identifying the ports that each

button is wired to and then editing the controls config file

to map the keys to the right buttons in-game.

The basic structure of our arcade game machine can be best

illustrated with the help of the following block diagram:

We will now venture into the steps to be followed and tools

required for developing the arcade game which our machine is

designed to play.

2.2 Arcade Game
Developing the arcade game would be the most time

consuming task. We will be using Python as the programming

language to develop our game as it has a lot of freely available

game development libraries. Also, it is a high-level language,

which means better code readability and more efficient

debugging. It is possibly the best language for writing

game­world simulations in. It's clear to read and write, easy to

learn, handles a lot of programming house­keeping and is

reasonably fast [2]. Using Python would also enable us to use

PyODE which is an engine for in-game physics. Two main

game development libraries are described as follows:

2.2.1 Easel
 It is a framework for creating real time games by defining pure

functions [3]. It was designed principally for the purpose of

game programming. Unfortunately, Easel does not support in-

game physics and hence is not appropriate for our project.

2.2.2 Pygame
SDL is a multimedia library that allows access to hardware in a

cross platform fashion. The PyGame library is a set of Python

bindings to the SDL library. It consists of various top level

“pieces” like Sprite, Surface, Font, Mixer etc. each of which is

necessary to create a full game [2]. It provides user input

handling through mouse, keyboard or joystick and game output

via screen for shape drawing, font rendering, etc. and speakers

for sound effects and music. Pygame strictly supports 2-D

graphics. Since we are not dealing with 3-D graphics, this

restriction of Pygame does not affect our project. Hence, with

its controller support and in-game physics engine PyODE, it is

easily the most appropriate game development library for our

system.

Now that the game development library has been selected, let

us look into developing physics aware games using these

libraries.

2.2.3 PyODE
Here ODE stands for Open Dynamics Engine. It has mainly

two features:

2.2.3.1 Rigid Body Simulations
 Its first and main feature is Rigid Body Simulations. PyODE

simulates the effects of various forces on various bodies. The

specific shapes of the bodies are not particularly relevant.

Physical properties like mass, mass distribution, etc. are

important. To use this library, we first create a world and set its

properties like gravity etc. We then create the bodies. The

library provides us some useful calls to create objects of

different shapes by specifying their parameters (eg. Creating a

sphere by specifying its radius, mass and density) [1]. It must

be noted that the shape is useful for the system to calculate the

centre of gravity. Once it figures that out, it simply treats the

object as a point mass and changes its position and orientation

according to the effects of the various forces acting on it.

2.2.3.2 Collision Detection
This is PyODE’s secondary feature. It helps in detecting when

two objects collide, with what force did they collide and how

the objects will react after the collision.

The two features of PyODE are independent of each other but

work well in combination.

With the help of the above mentioned tools we will develop

our arcade game. This game would then be transferred over the

network to the SD card in our Arcade machine.

2.3 Advantages & Disadvantages
2.3.1 Advantages of Existing Techniques
• Made physics aware games easier to implement

• All of this was possible due to the proper use of the

PyODE engine

• Rigid body simulations were properly implemented

2.3.2 Disadvantages of Existing Technique
• Physics simulation may or may not be accurate

• Event handling (mouse clicks), sounds etc. are difficult

to manoeuvre

• One fault in the loop of the Pygame code will disturb the

entire system

• Basically laws of physics are not very easy to be

implemented in a Pygame.

2.3.3 Advantages of Proposed System
• As python is used, coding is easier

• Pygame library provides almost all facilities required

for implementing an arcade game

• The components proposed for the system are readily

available

• Use of heat sinks helps the processor to maintain its

heating capacity

2.3.4 Disadvantages of Proposed System
• Providing heat sinks may make the system bulky

• Embedding the input controls (arcade controls) to the

system is not an easy task

• Placing the RetroPi in a specific location is a tedious

job

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.17, June 2015

39

• Online gaming is not incorporated

3. INFERENCE
This paper barely scratched the surface of the universe that is

independent gaming. A myriad of high quality libraries are

there on the internet which can make your life as a game

developer easy. There are multiple libraries to choose from

when looking to create games. ODE is a full-fledged 3D

physics engine. It might be too heavy for our needs and there

are alternatives like chipmunk and box2d both of which are 2D

engines. PyGame is implemented as a raw C extension to

Python and totally relies on SDL. The concept of collision

detection is well explained in the existing system. ODE can be

made compatible to 2D engines by making minimal use of it in

the system. Through ODE, various mathematical calculations

can be used to resolve the laws of physics that are implemented

in rigid body simulations

4. CONCLUSION
As far as system requirement is concerned, the Raspberry Pi

processor provides all the basic functions provided by the

desktop. The type of model for our system is the B+ model that

is very versatile, providing high Debian friendly OS. As far as

Easel and Pygame is concerned, no doubt that Easel is more

user-friendly, but because of its main disadvantage of not

supporting in-game physics, Pygame does it better. The game

to be developed would support physics ODE engine through

which developing the physics related rigid simulation system

becomes easier, which is the main concern of our project.

5. REFERENCES
[1] Noufal Ibrahim KV, “Creating Physics Aware Games

using PyGame and PyODE” in The Python Papers

Monograph 2: 20, Proceedings of PyCon Asia-Pacific

2010.

[2] Richard Jones, “Rapid Game Development In Python”.

[3] Josh Archer, Bryant Nelson, and Nelson Rushton, “An

Experiment Comparing Easel with Pygame”.

[4] Dhaval Chheda, Divyesh Darde, Shraddha Chitalia,

“Smart Projectors using Remote Controlled Raspberry Pi”

in International Journal of Computer Applications (0975 –

8887) Volume 82 – No 16, November 2013.

[5] Rolfebox, “2-Player Bartop Arcade Machine (Powered by

Pi)”, at www.instructables.com.

IJCATM : www.ijcaonline.org

