
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

23

Impact of Elasticity on Cloud Systems

Pancham Baruah

Department of Computer Engineering,
Dr. D. Y. Patil School of Engineering and

Technology, Charoli Bdk, Pune, India

Arti Mohanpurkar
Department of Computer Engineering,

Dr. D. Y. Patil School of Engineering and
Technology, Charoli Bdk, Pune, India

ABSTRACT

Today’s computing world and application market is

dominated by cloud technology. Cloud computing provides a

powerful computing paradigm and deliver services over the

network and has emerged as a new enterprise model. With

Cloud computing, the service providers can provide on-

demand services to users as needed. In cloud systems,

enormous resources are involved and computations are done

at a very vast scale which enables users to access huge

amount of resources on demand. But there is uncertainty of

the demand of cloud resources by the end users as it can vary

depending on the time. Also it becomes costly affair in

maintaining sufficient resources to meet peak resource

requirements all the time. This is where dynamic scalability or

elasticity comes into picture. Elasticity of cloud is very

necessary as it allows the servers to resize the virtual machine

deployed in the system and thereby fulfilling the requirement

of new resources. Elasticity can be considered as the next

great achievement which is getting much focus. In this paper,

an effort has been put to analyze the impact of elasticity on

cloud systems and how it will benefit the Cloud implementers

to improve the systems performance and reduce the operation

cost.

Keywords

Cloud computing; Elasticity; Performance; cost optimization;

throughput

1. INTRODUCTION
Cloud computing has become the most sought after

technology in today’s world and has become a significant part

for many business and scientific applications. The boom of

handheld devices has accelerated the pace of growth of cloud

as the application usage has become ubiquitous. Many big

market players such as IBM, Microsoft and Google provide

large-scale public cloud services. However, on-demand

workload scheduling has become critical as the applications in

cloud can be bombarded with dynamic workloads [1]. Beyond

technological advances, cloud computing also holds promises

to change the economic landscape of computing. The costing

of cloud resources is both a fundamental component of the

cloud economy and an essential system parameter for the

cloud operator, because customer usage pattern and the

utilization level of infrastructure is directly impacted by it.

Considering the current market scenario, static pricing

remains the dominant form of pricing today. In static pricing

scheme, the Cloud user predefines its requirements to the

Cloud service provider. The requirements are in terms of

computing resources, storage areas, virtual machines etc. In

this way, all the required resources are reserved by the cloud

service provider well in advance. This technique can be

termed as fixed pricing technique where the price is calculated

based on the resources that are being reserved [3]. However,

fixed pricing technique suffers from underutilization of

resources from Cloud service provider point of view and

monetary issues from cloud users’ point of view. Therefore, in

order to strategically influence demand in order to better

utilize unused cloud capacity, and to generate more revenue, it

is intuitive to adopt a dynamic pricing policy. Dynamic

pricing strategy will help to better tackle with unpredictable

customer demand. This is where elasticity and dynamic

provisioning of Cloud infrastructure comes into picture. It

eliminates the costs of buying, installing and maintaining a

dedicated infrastructure for running an application. Moreover,

most IaaS providers allow the application owners to scale up

and down the resources used based on the computational

demands of their applications, thus letting them pay only for

the amount of resources they use. This model is beneficial for

deploying applications that provide services for third parties,

e.g. traditional e-commerce sites, financial services

applications and bioinformatics applications. The application

owner can ideally scale up the resources if the workload of a

service increases (e.g. more end users start submitting

requests at the same time) and thus used to maintain the

Quality of Service (QoS) of their service [2]. They can also

scale down the resources used when the workload eases down.

The same thing can be implemented in the form of automatic

provisioning of the resources in the cloud which can be called

as elasticity. Within this context, elasticity (on-demand

scaling), also known as redeploying or dynamic provisioning,

of applications has become one of the most significant

features. Elasticity empowers a Cloud Service Provider to

reduce the cost of resources and also to increase the

performance of the system

2. LITERATURE SURVEY

2.1 Existing Systems
An extensive literature survey has been done related to

elasticity and dynamic scaling of applications. Paper [1]

discusses the authors have described a novel architecture for

the dynamic scaling of web applications based on thresholds

in a virtualized Cloud Computing environment. They have

also illustrated a scaling approach with a front-end load-

balancer for routing and balancing user requests to web

applications deployed on web servers installed in virtual

machine instances. The scaling of internet applications have

also been discussed. Here focus is put more on web

applications and their scalability. In paper [2], the author

discusses about the grouping of homogeneous data and

processes the same in chunks. The application workloads

which are of similar types have been categorized under one

group and are termed as homogeneous workload. Due to

homogeneity of tasks, the processing time reduces which

helps in doing a task in lesser amount of time and thus

reducing cost. In paper [3], stress has been put on assigning a

checkpoint during the computation process. Checkpoint keeps

an eye on the tasks and computations which are being

repeated and avoids the same using a pre saved values in

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

24

checkpoint buffer. Paper [4] familiarizes us with the various

mechanisms of xen virtualization which can be extended in a

cloud environment. Xen is the underlying technology on

which virtualization works. Xen is an x86 virtual machine

monitor that allows multiple commodity operating systems to

share conventional hardware in a safe and resource managed

fashion, but without compromising the performance or

functionality of the system. The same is achieved by

providing an idealized virtual machine abstraction to which

operating systems such as Linux, BSD and Windows XP, can

be ported with minimal effort. In paper [5], the authors have

developed a customized framework for cluster management of

virtual. After going through all the papers it can be referred

that early works were more focused on system level tuning

and underlying computing resources such as CPU and

memory and mostly considered single-tier setups and

architecture. Few papers were there in which an application

was classified as multi tier and multiple level deployment was

considered. It consisted of segregating down the end-to end

response time tier wise and conducts the worst-case capacity

estimation to ensure applications meeting the peak workload.

This was more of a conventional way of measuring

performance. Overall, the single-tier model can be viewed as

a special case of a multi-tier model and the latter model can

guide the scaling in a more accurate way. Although scaling of

traditional applications, which are often hosted on physical

servers, shares many similarities with that of cloud

applications, conventional techniques mainly concentrate on

how to schedule compute nodes to meet the Quality of Service

requirements of applications by predicting their long term

demand changes. However in cloud environment, focus is put

more on providing metered resources on-demand and on

quickly scaling applications up and down whenever

application demand changes. Further investigations, therefore,

are needed to address the challenges brought about by this

requirement for high elasticity and how it will benefit in

reducing the cost of operations and improving system

performance.

2.2. Proposed System

A proper methodology is required for the implementation of

an elasticity handling framework in the cloud environment.

To make this task easier, Markov Decision Processes (MDPs)

has been adopted as the mathematical modeling framework.

The proposed process consists of two steps. First, an

expressive model of elasticity actions is presented and second,

bargaining them for devising concrete policies which can

further take dynamic provisioning decisions. Markov

Decision Processes (MDPs) has chosen been because MDPs

can capture both the probabilistic and non deterministic

aspects of the problem. The non-deterministic approach

handles the various possible elasticity and the probabilistic

nature and helps in to take account of the effects of the

unpredictable environments evolution. Also, elasticity

probabilistic models are used in the decision making process

to describe, drive and analyze cloud resources. It is also

helpful to capture the uncertain behavior of systems elasticity.

MDP model is also used to additionally capture non-

determinism and this form the basis of the proposed approach.

There are also numerous other approaches where MDPs are

used to handle both offline and runtime decision making. The

dynamic resizing of a cluster has been considered here as the

main form of elasticity, i.e., dynamically modifying the

number of VMs with a view to optimizing a utility function.

While the main objective is to render elasticity decision

policies more dependable, the principle approach is capable of

yielding higher utility. The performance of system resources

has also been handled. The aim is to distribute the system load

across all the free VMs and acquire a higher utilization rate.

This will ensure that the cost is optimized for the cloud

resources. Also the dynamic addition of Virtual machines

ensures that the system is scalable and the performance is not

degraded.

3. MOTIVATION
Two main scenarios have been considered here towards cost

and system performance. Without loss of generality, a simple

example is used based on an bulk e-mail sending application

to capture the typical behavior of the overall system. Also for

simplicity, focus is made only on applications that are

deployed on the resources of single IaaS cloud provider.

3.1 Reducing the cost
For the application that we have considered, the workload

significantly depends on the number of emails that are sent to

the mail delivery Server (also called as Mail Transfer Agent

Server). Below are the two main points which are considered

as part of motivation factor included with elasticity of cloud.

When the application is initially deployed, few servers of this

application are hosted across different VMs to support a small

number of customers. As the demand increases, the

application should be able to scale up itself. A vital factor here

is that this scaling process is greatly influenced by the

behavior (i.e., the type of workload) of the application itself.

Three typical types of workloads are examined. These

workloads can be light, medium and heavy workload. Each

workload places varying demands on different tiers of the

application. This is helpful in simulating a real usage scenario

of the actual world. In the primarily light workload, the email

delivery application simply creates a mailing and sends it via

email assembly server and mail transfer agent. The email

assembly server is the personalization engine of the

application where different components and contents of an

email are created according to the target user. For light load,

the templates that are used for email are of lesser size and

fewer contents like less textual matter and less images. Also,

we set a throttling factor in the applications configuration so

that lesser number of mailings are sent per unit time. The light

workload mainly stresses the service tier including the Apache

and Tomcat servers. Then comes the medium workload where

we increase the contents of the templates with more text and

images. Also, personalization urls are included which gets

personalized dynamically. For medium workload, the

mailings are sent to a larger set of audience and throttling

factor is set to a medium level, so that a higher workload is

created on the server as compared to light workload. Finally,

the typical higher workload is considered which

simultaneously stresses the service and storage tiers and so the

number of servers in both two tiers is increased. For higher

workload, we choose a message template having large number

of textual and image contents. Also, when the mailings are

received in the end users system, which has been simulated by

a local loopback control in this case, some tracking data is

generated. The tracking data signifies the actions of the actual

end users and shows their behavior towards the emails which

they have received.

3.2 Improving the system performance
The cloud environment is very uncertain as far as the

workload in the application is concerned. This dynamic nature

of cloud can be formulated in the form of two types of

uncertainties that exist in the application workload. They are:

(1) the workload volume, which can be represented by the

arrival rate of incoming requests per time unit (2) the

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

25

workload type, such as three types of workload i.e low,

medium and high workloads. Taking the above two points

into consideration, the elastic scaling must be adaptive to the

changing workload, and such adaptive scaling can have three

interpretations. First of all, to scale the application up and

down, bottleneck tiers of applications should be automatically

identified. Secondly, there can be after affects of fixing a

bottleneck because fixing at one tier may create another

bottleneck at a different tier of the application. Therefore

scaling should be performed as an iterative process. For

example, if multiple Apache and Tomcat servers are added to

the service tier, the bottleneck is shifted to the storage tier.

Finally, to rapidly restore acceptable application performance

agile scaling is needed. Agility signifies the easiness with

which an application can be scaled quickly and easily without

or minimal disruption. In the coming sections of this paper an

algorithm is explained that address both the challenges

effectively. The approach is implemented and evaluated by

using the Amazon Cloud platform as an example. The

advantage of using the Amazon Cloud platform is that it

supports a fine-grained pricing strategy which simplifies the

evaluation of the parameters. However, the approach and

algorithms are generic and can be applied on most IaaS

environments.

4. ARCHITECTURE
The architecture of the overall system can be depicted in the

figure 1. The email delivery application is deployed over the

cloud. There can be multiple instances of delivery servers

consisting of message assembly servers and mail transfer

agents. When a user of the application triggers the sending of

email actions, load is created. This load has to be distributed

equally across all the servers of the virtual machines. For the

current architecture, an elasticity framework is developed

which will present along with the application layer. The

framework continuously monitors the load on the existing

servers and also monitors the performance of the systems.

This is done dynamically at a predefined time interval and is

constantly monitored. The monitoring and controlling

decisions are taken by the Monitor and Control component

which are present as a separate entity. The information

collected is stored in a stable data storage. The framework

reads the latest state of the application along with the load on

the servers and the performance parameters. Once it detects

the increase in load on a particular server, it triggers an action

point to scale up the number of servers. The configuration of

the new server to connect to the existing system is handled by

the framework. Servers at the load balancing (LB) tiers,

distribute requests to servers at the service or storage tiers;

servers at the service tier, such as Apache and Tomcat, are

responsible for handling HTTP requests and implementing

business logic. The storage tier servers, such as the MySQL

database, are used for managing application data. Usually,

each application has a set of demands and constraints

specified by the application owner in the form of a Service

Level Agreement. Typically, the performance demand is

defined by the maximum end-to-end response time for a

request. The cost constraint impacts the budget of the total

application deployment. In addition, each tier has a resource

constraint that restricts the maximum number of servers in

this tier.

Fig 1: Architecture of the framework

5. ALGORITHM
For a standalone application like the email delivering system,

there is a Virtual cluster monitor. It can detect whether the

load on the server are over the threshold in a virtual cluster.

For distributed computing task, Virtual cluster monitor system

is able to detect whether the number of virtual machine are

over the threshold of use of physical resources in a virtual

cluster. The elasticity algorithm is implemented in auto

provisioning system, and Virtual cluster monitor system as

component part of the framework is used to control and

trigger the scale-up and scale-down in elastic provisioning

system on the number of virtual machine instances based on

the statistics of the scaling indicator. The algorithm accepts

the number of clusters of Virtual Machine. There are different

parameters which are calculated dynamically and optimized

output is calculated to give the front load balancer the best

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

26

decision. The different parameters consists of the VC which is

a virtual cluster consisting of virtual machines. The machines

which are active in a particular cluster is handled by the

parameters VMns. Since the number of sessions for a virtual

machine is limited, a separate variable is defined to handle it.

Also there are threshold value storage variables which handle

the minimum and maximum values of threshold.

Algorithm : Elasticity Algorithm

Input: n: number of Clusters

1 VC: a Virtual Cluster consists of VMs that run the same

computational system

 VMns: number of active session in a virtual machine

 SiMax: maximum sessions for a virtual machine of a

Cluster

 Supper bound: upper-threshold of session

 Slower bound: lower-threshold of session

 Ebelow: a set records of virtual machines that exceed the

session upper-threshold

 Output: Front Load Balancer

2 for i = 1 to n do

3 for each VM element of 2 VCi do

4 if (VMns=SiMax >= Supper bound) then

5 e = e + 1

6 if (VMns=SiMax >= Lower

bound) then

7 b = b + 1

8 end

9 Record VM to E below

10 end

11 if (e == VCi) then

12 Provision and start a new VM that runs

the same system as VCi

Add new VM to FLB (Front Load-

Balancer Set)

13 end

14 end

15 end

16 if (b >= 2) then

17 for each VM in Ebelow do

18 if VMns == 0 then

19 RemoveVMfromFLB (Front Load Balancer Set)

DestroyVM EmptyEbelow

20 end

21 end

22 end

6. METHODOLOGY

6.1 Definitions
Two terms are discussed here which forms the basis of central

focus

6.1.1 Performance

The performance defines the state and condition of the

systems and tells about how a system is performing in various

states of workloads. It is characterized by the time needed to

complete a given number of requests with a given level of

parallelization. The chosen levels of parallelization and

number of requests used during the measurements are

explained in the step by step methodology. In our case, all

requests are performed in batches called request sets which

are being performed as low, medium and high workloads.

This helps in decreasing variability and improving accuracy in

measurement of time.

6.1.1 Elasticity

It is the ability to adapt to workload changes by provisioning

and de-provisioning resources in an autonomic manner, such

that at each point in time the available resources match the

current demand as closely as possible. It is also called as auto

scaling or auto provisioning. It is a defining factor for the

overall implementation of the framework.

Fig 2. Elasticity Methodology

Figure 2 depicts the step by step methodology used during the

tests. The methodology is based on the following parameters:

N the number of nodes, R the size of a request set and r the

percentage of read requests. In practice, the methodology is

defined by the following steps:

1) A cluster of N= 6 nodes is started up with and the emails

records are injected to the email delivery server.

2) The elasticity test is started by injecting different request

sets. The request sets varied according to the workload. For

low workload, 10000 records are being injected. The payload

for each record has been kept as 1KB. For medium workload,

50000 records are injected simultaneously in a thread of 25.

The payload has been kept as 5KB. For high workload,

100000 records have been injected in a thread of 50 with

payload size of 10KB. The time for performing each request

set is measured. This measurement is repeated until the cluster

is stable. This gives the variability for a stable cluster.

3) New nodes are bootstrapped to double the number of nodes

in the cluster and continued until the cluster is stable again.

During this operation, the time measurements continue. It is

assumed that the cluster is stable when the last 5 request sets

have delta times less than the one measured for the stable

cluster.

4) Then the data set size is doubled by inserting the higher

payload records as many times as needed but with unique IDs

for each insert. This is done by injecting unique records

having

unique domains.

5) To continue the test for the next transition, step (2) to (4)

can be continued with a doubled number of requests and a

doubled number of threads.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

27

6.2 Justification of the methodology
The methodology that is being used above can be justified by

the following points. The aim to analyze the impact of

variability of the actions in the framework. To characterize the

variability, one approach can be to use the standard deviation

of request set times and a statistical test to compare the

standard deviations. However, standard deviation is too

sensitive to normal cluster operations like compaction and

disk pre-allocations. Therefore, the delta time characterization

is used instead. Because it is based only on the average

values, it tends to smooth these transient variations. The

median of all the observed delta times is used instead of the

average to be less sensitive to the magnitude of the

fluctuations. All the important information about the elasticity

(time needed to stabilize, loss of performance, and variability)

are captured by this characterization. It also normalizes it into

a dimensionless number that can be used for comparisons.

This comparison numbers can be well plotted in a graphical

manner and presented in a reporting format to make the

analysis of the performance easier for the admin of the

framework.

7. TEST RESULTS AND COMPARISON
As previously mentioned, the application deployed over cloud

is an email delivery application. There are transactional

mailings which are a type of mailing that are always in active

state and acts like a listening socket. As soon as records are

injected to the same they are sent via the mail transfer agent

via the SMTP port over a local loop. In the below result set,

only a part of test numbers are mentioned that are collected

for a test done with 50 concurrent threads. The payload used

and the pattern of injection remains the same for both the tests

i.e with elasticity and without elasticity.

Without Elasticity With Elasticity % Increase in Client

Performance

Client Performance Client Performance

Messages/Hrs Messages/Hrs

45613 56478 23.82

46878 57451 22.55

48004 56450 17.59

45046 54450 20.88

44056 55605 26.21

Since there is an increase in the performance of the overall

system, the cost of operation of the system gets reduced.

Without

Elasticity

Payload size of

records (in Kb)

API response

(Milli Seconds)

Message delivery

latency

(Seconds)

Client

Performance

Server

Performance
Threads

Min Max Avg. Min Max Avg. Messages/Hrs Messages/Hrs

1 30 18460 208 1 192 6.1 45613 45610 50

3 40 22350 228 1 139 6.10 46878 46870 50

5 30 28454 215 1 106 6.00 48004 47950 50

7 30 29580 210 1 139 7.10 45046 45003 50

10 20 27541 221 1 533 10.94 44056 44001 50

 With Elasticity

Payload size of

records (in Kb)

API response

(Milli Seconds)

Message delivery

latency

(Seconds)

Client

Performance

Server

Performance
Threads

Min Max Avg. Min Max Avg. Messages/Hrs Messages/Hrs

1 20 13023 154 1 134 3.2 56478 56475 50

3 32 18756 167 1 127 5.40 57451 57450 50

5 21 24121 165 1 65 4.90 56450 56445 50

7 28 22313 187 1 87 5.50 54450 54445 50

10 24 31212 169 1 454 8.3 55605 55605 50

8. ADVANTAGES OF THE DISCUSSED

WORK
The elasticity technique empowers a cloud system to handle

the incoming requests more effectively. It is well capable of

handling sudden load requirements via its dynamic decision

technique to modify the virtual server environment. This

results in increasing system performance, maintaining higher

resource utilization and reducing energy cost.

9. CONCLUSION
In this paper, cloud elasticity scenarios have been discussed.

The cloud architecture discussed in this paper consisted of a

cloud elasticity framework which contained different

components like Front-end load balancer, a Virtual cluster

monitor system and an Auto-provisioning system. We have

seen that the elasticity techniques are capable of handling

sudden load requirements, increasing system performance,

maintaining higher resource utilization and reducing energy

cost. This will ultimately result in reducing cost and

increasing the performance of the overall system.

10. ACKNOWLEDGEMENTS
The authors would like to thank the researchers as well as

publishers for making their resources available and teachers

for their guidance.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5

Without
Elasticity
Client
Performance
Messages/Hrs

With Elasticity
Client
Performance
Messages/Hrs

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

28

11. REFERENCES
[1] Zhen Xiao, Senior Member, IEEE, Qi Chen, and

Haipeng Luo, Automatic Scaling of Internet Applications

for Cloud Computing Services, IEEE TRANSACTIONS

ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

[2] Jianfeng Zhan, Member, IEEE, LeiWang, Xiaona

Li,Weisong Shi, Senior Member, IEEE, Chuliang Weng,

Wenyao Zhang, and Xiutao Zang, Cost- Aware

Cooperative Resource Provisioning for Heterogeneous

Workloads in Data Centers, IEEE TRANSACTIONS

ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER

2013

[3] Sangho Yi and Derrick Kondo,INRIA Grenoble Rhne-

Alpes, France and Artur Andrzejak , Zuse Institute Berlin

(ZIB), Germany Reducing Costs of Spot Instances via

Checkpointing in the Amazon Elastic Compute Cloud

published in EC project eXtreemOS (FP6-033576) and

the ANR project Cloudshome (ANR-09-JCJC-0056-01)

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. HoR. Neugebauer, I. Pratt,and A. Warfield, Xen and

the art ofvirtualization, in Proc. ACM Symp. Oper. Syst.

Princ.(SOSP03),Oct. 2003, pp. 164177.

[5] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker,

Usher: An extensible framework for managing clusters

of virtual machines, in Proc. Large Install. Syst. Admin.

Conf. (LISA07), Nov. 2007, pp. 116.

[6] B. Sotomayor et al., F. Capacity Leasing in Cloud

Systems Using the Opennebula Engine, Proc. Cloud

Computing and Applications (CCA 08), 2008.

[7] M.R. Palankar et al., Amazon S3 for Science Grids: A

Viable Solution? Proc. Intl Workshop Data-Aware

Distributed Computing (DADC 08), pp. 55-64, 2008.

[8] W. Zhou et al., Scalable Group Management in Large-

Scale Virtualized Clusters.

http://arxiv.org/abs/1003.5794, 2011.

12. AUTHORS PROFILE
Pancham Baruah, received the B.E degree in Computer

Science & Engineering from PES College of Engineering,

Aurangabad in 2008 and is currently pursuing his M.E (CN)

in D.Y Patil SOET, Pune. His area of interest lies in

Performance and scalability analysis of applications, Cloud

technology.

Prof Ms Arti Mohanpurkar received the B.E. and M.E

degrees in Computer Science Engineering, and pursuing Ph.D.

Now she is HOD of Computer Engineering Department, Dr.

D. Y. Patil School of Engineering & Technology, Savitribai

Phule Pune University .India

IJCATM : www.ijcaonline.org

