
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

19

New Testing Process for Software Development

in Hybrid Electric Vehicles

Mihai-Ovidiu Nicolaica

PhD Student, Faculty of Electronics, Telecommunications & Information Technology,

"Gheorghe Asachi" Technical University, Iaşi, Romania

ABSTRACT

The present paper introduces a new testing process for

embedded software development activities in the field of

hybrid electric vehicles. The proposed process addresses some

deficiencies of the existing testing models in order to improve

the performance of HEV embedded software testing activities.

The value added is given by the clear split of the test tasks and

the level of independence between the test vehicles involved

in the test process. The motivation of the research is given by

the fact that the automotive sector is heading towards electric

vehicles and the level of software complexity in these vehicles

is continuously increasing. The advantage of this method is

that will allow a smoother offload of testing tasks between

locations, depending on project needs. The test model

contributes to the practical need of developing software for

hybrid and electric vehicles at higher quality standards, faster

and with a better cost.

Keywords

HEV; testing process; software

1. INTRODUCTION

1.1 Software in HEV
When comparing to the conventional vehicles, there are more

electrical components used in electric, hybrid, and fuel cell

vehicles, such as electric machines, power electronics, and

embedded powertrain controllers. Advanced energy storage

devices and energy converters, such as Li-ion batteries, ultra

capacitors, and fuel cells, are introduced in the next

generation powertrains. In addition to these electrification

components or subsystems, conventional Internal Combustion

engines (ICE) and mechanical and hydraulic systems may still

be present in the vehicles [1]. Most innovations within the

automotive domain are driven by embedded systems and

software solutions. The costs for embedded solutions in

vehicles are growing rapidly. The costs for embedded

solutions in vehicles grew from 1 percent in 1980 over 7

percent in 1990 to 22 percent in 2007. It is estimated that the

importance of embedded systems and software in electric

vehicles will grow much further. One major innovation within

the automotive domain is the introduction of electric vehicles.

Therefore, the embedded systems and software challenges in

the hybrid electric vehicles become more difficult. Current

electronic architectures consist of up to 100 electronic control

units for hybrid electric vehicles. A good testing process is

needed to handle this complexity. Today, embedded systems

and software in HEV are essential for the competitiveness of

the automotive industry. Their most notable effects are to

improve driving performance, comfort, and to enhance both

passive and active safety. Modern vehicles comprise dozens

of spatially distributed embedded systems. These ECUs are

often developed by different suppliers with most diverse

requirements on safety, reliability, costs, and computational

power. The integration of distributed components into a

modern vehicle is a challenging task [2]. The software

development becomes one of the most challenging activities

in the field of hybrid electric vehicles being responsible of full

integration and safety.

1.2 Software testing in HEV
In a few words, software testing represents an engineering

activity performed in order to assess the software quality. It

should be demonstrated that the software behaves as expected.

The expected behavior is defined in the design documents and

in the system and software requirements. A good testing

process has the goal to detect errors with a minimum effort

and in a minimum amount of time. Due to the increased

complexity of the system and software in hybrid electric

vehicles, testing gains more and more importance in the

development process.

By testing, the engineering team can validate the product

before release to market and in this way the quality and the

confidence is increased. Currently the test activity starts after

the code development, and requires as much time as the actual

build of the code. Sometimes the time needed for complete

testing the code exceeds the time the code was written. Also

the costs of testing can exceed the development cost. This

happens because, currently, there is a linear approach in the

product lifecycle. There is a dependency between design,

development and testing. More than this there is a dependency

between the test levels involved and this affects the

performance in terms of time and costs of the final product.

The system and software design team, software development

team and system and software test team should have the same

starting point and work in parallel trough the development

lifecycle. Of course, there will be still a task dependency at

certain gates in the product development, but this should be

kept to a minimum in order to reduce the overall development

time.

The test teams should be involved, through a representative,

from the design phase, in the requirement definition and

customer interaction in order to assess the testability of the

design intent to avoid scrap and rework. In this paper it is

underlined the fact that in the field of hybrid and electric

vehicles the way of improving the efficiency of the testing

activities is to involve the test teams as early as possible. In

the same time all test teams should fulfill their specific task in

parallel. This approach improves the testing time, the

accuracy of the results (because one test team does not relay

anymore on the results of another team), and in this way

increases the quality of the final product at a lower cost.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

20

1.3 Importance of testing
The importance of testing has increased tremendously in HEV

since the system and software have become more complex

[3]. Efficient testing has a direct impact on the software

quality and mainly on safety. The cost is also an aspect that

needs to be considered. The cost of a failure increases

dramatically if it is found in production or in service. A recall

of a vehicle fleet can have a decisive impact on the business.

This is even more problematic in case of hybrid electric

vehicles, where the market is still fragile. Testing performed

according to an efficient testing process can help avoiding

underestimated project costs or quality escapes. Using the

proposed testing process, it can be proven that the HEV

software meets the ISO26262 quality standards and the

corresponding quality levels. Hybrid electric vehicles have

more and more components with ASIL D safety level and the

manufacturer is responsible of the damages that happen to the

product user and other road participants.

1.4 Testing levels
In general, in literature, the testing is structured in a set of four

levels: component test, integration test, system test and

acceptance test [4]. There can be defined also some

intermediate levels, but this depends on the developed product

type. For HEV, these levels are valid and the proposed test

process is developed around them.

1.5 Testing types
There are different testing types that can be applied on

different test levels. The testing activities can be divided in

black box testing or white box testing, static testing or

dynamic testing, manual testing or automated testing. The

present paper underlines the importance of automating the test

steps at every level. Test automation has the advantage of one

hundred percent reproducibility and once created, the test

scripts can be executed again on each software drop. This

approach speeds up the testing activities and increases the

reliability of the results. The proposed testing process

underlines the importance of the test automation and

encourages the usage of this approach.

2. DEVELOPMENT V CYCLE

2.1 Process Overview
The V cycle development model is currently the model used

while developing software in HEV. It has certain advantages

and disadvantages. A main advantage is the fact that the

development and testing activities are considered with the

same importance. The actual model has one branch dedicated

to the software development and one dedicated to the testing

tasks. A representation of the V cycle is visible in Fig. 1.

Fig 1: Development V Cycle

The V cycle is used in different versions and the names of the

levels vary from one version to another. The main idea that

needs to be understood here is the fact that the development

and testing need to have granted the same importance. This is

underlined also by the new proposed test process. Only in this

way complex systems like hybrid electric vehicles can have

the expected level of quality.

2.2 Cross industry assessment
Currently, the complexity of HEV software is similar to the

software available in the aviation industry or biomedical

equipment. From certification perspective are clearly different

but the level of complexity and quality constraints are raising

in the automotive market. The levels of safety and accuracy

are more and more demanding. The proposed test model is

intended for automotive industry, but due to its portability and

adaptability can be easily translated to other industries.

3. Testing HEV software

3.1 Actual testing models
There are different testing models or processes in the current

automotive industries that help developing high quality

software. Due to the evolution of software quantity and

functionality the existing processes need to be also updated.

The current direction in the automotive industry, especially

HEV, is to develop new technologies faster, to a higher

quality and with a better cost. Cost cutting and task offload

represent another aspect that needs to be considered in the

actual economic environment. In order to keep up with the

market tendency, the test processes need to be aligned, and

this is what the current paper tries to support.

Actual HEV products are developed based on the test model

visible in the V cycle or using waterfall model, spiral model

or scrum. All of them have a linear approach where each test

vehicle follows a previous one. If an issue is found at the end

of the test process there is a need of a complete reiteration of

the entire process. This means time and resources blocked to a

certain degree. The proposed testing process tries to eliminate

the linearity and dependency between test vehicles. If a

reiteration is needed than this can be done only by the team

that is required, freeing up resources that have nothing to do

with the corresponding finding.

3.2 Deficiencies and improvement

proposals in actual test processes
Lacks in the actual testing process are: test vehicle

dependencies, linearity of tasks, and full reiteration of the

testing process in case of failure.

Possible improvements could be: parallel testing approach,

independence of testing, easier offload of test tasks, cost, and

time to market.

4. PROPOSAL FOR NEW TESTING

PROCESS
The current paper proposes a new testing model that tries to

address some shortages in the existing testing processes. The

proposed testing model is focused on improving the testing

accuracy and independence.

4.1 Overview (Rhombus Testing Process)
In order to get valuable test results there is a need of a certain

degree of independence between testing vehicles. The

proposed approach focuses on requirements based testing in

order to avoid testing based on specifications. Testing based

on requirements assures different points of view for certain

Development Testing

Requirements

High-level

Design

Detailed

Design

Coding Unit

Integration

System

Acceptance

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

21

functionalities. The requirements should be unambiguous,

atomic and clear. The tester has a certain degree of freedom in

defining the test steps based on his understanding of the

functional behavior.

The intention of the proposed model is to have different

specific requirements for each testing level (low level testing,

hardware in the loop testing, system testing and acceptance

testing). The requirements are flown down from top to

bottom, starting from the customer requirements, as specified

in the development V cycle. There is a strong emphasis on the

traceability that is considered very important in this case,

together with the test coverage on all levels. The new

proposed testing model is named rhombus or diamond model.

The main idea is to assure independence between the testing

vehicles through the life cycle of the software drop. A

representation of the proposed testing process is presented in

Fig. 2.

Fig 2: Rhombus testing model

There is a common starting point where the work split is

agreed together with the requirements trading. There might be

the case that some high level requirements cannot be tested on

a high level and in this case low level testing needs to support.

Also, sometimes, a system level effect needs to be assessed

for some low level requirements. The new testing model

proposes only three common points for the involved test

vehicles. A common point is when the testing activities start.

This is intended to concentrate on planning activities. A

second common point is defined after the last development

build. This is intended to assess the software quality in the

middle of the development cycle and decide if the software

can be frozen. For the software freeze decision, all involved

parties need to agree and all test results need to be analyzed. If

the outcome of the analysis shows that the software

implementation is at the expected quality standard the

implementation can go formal. The third common point is at

the end of the testing activities, performed with frozen formal

software.

4.2 Process levels
The proposed process involves different layers of testing with

similar testing gates. The testing steps are valid for each test

vehicle and are executed in parallel by each of them through

the lifecycle of the software drop.

The defined levels of testing or test vehicles are:

• Low Level Test – V1

• Hardware in the Loop Test or Integration Test – V2

• System Test – V3

• Acceptance Test – V4

The defined test gates for each test vehicle are:

• Requirements scoping

• Test Design

• Test Review

• Test Approval

• Development Test Run

• Development SW Quality Assessment

• Official Test Run

• Test Closeout

The proposed levels of testing and the corresponding test

gates can be customized based on the project needs and

defined at the beginning of the project in the master

verification plan. It might be that another test vehicle or

another test gate needs to be added. Before the software

development starts all test vehicles need to be involved in

requirements review. The review must focus at this moment in

time on the testability assessment. Every requirement must be

verifiable at each level. After all requirements pass the

testability assessment than software can start implementing

the functions in the code. The work split between the test

teams must be defined before the initial development software

build is available. The software team can work independently

on building the code based on the reviewed requirements and

when ready the compiled version can be uploaded in a

configuration management tool. From this moment in time

there is a clear split of responsibilities and task independence.

Each test team representing the test vehicles V1 to V4 can

take the initial code and initiate the testing activities. The

starting point is the test design activity. The test engineer will

define a test strategy composed from a set of test steps derived

from the system or software requirements. Depending on the

verification level the test steps can turn into manual or

automated tests. Different tools can be used, and these are

specific to each team. If the test are automated than a set of

tests scripts are developed. It is recommended to have a high

degree of test automation. The level of automated test scripts

should be at least 85% and should be monitored accordingly.

Before execution, the test steps and test scripts need to be

reviewed by another engineer. This exercise validates the test

strategy and increases the quality and confidence in the test

process. After the review process is passed and the testing

approach is approved the testing can be initiated.

Each level can provide test results on the initial development

build. Before the test results are communicated to the software

team they need to be again reviewed by another engineer. It

can be the same engineer that reviewed the test strategy and

scripts or another one. Each test level can raise issues found

while testing the initial development build. In the same time a

software update can be triggered by findings from any level.

If for example low level testing reports one or more issues and

the software is decided to be updated, than it will be

configured in the change management tool and will be

available also for hardware in the loop test or system test.

Each test team needs to continue the work with the last

software version available in the database. This approach

Test Design

Test Review

Test Approval

Dev SW Quality

Assessment

Official Test Run

Test Closeout

Dev SW build

SW Release

SW Freeze

V1 V2 V3 V4

Requirements scoping

Dev Test Run

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.14, June 2015

22

forces an immediate reaction at every code change from the

test teams. Based on the test findings the embedded software

can be updated several times. There is not defined a specific

number of development builds. The decision when the last

build is done comes from the project plan. When development

testing is stopped all test vehicles need to discuss results.

Open findings are analyzed at each level and a common status

needs to be provided. Based on the result it is decided if the

software freeze can be done or not. If an important software

issue is still visible at this level, and if other test vehicles and

software team agree, there can be another development build.

The decision of freezing the software brings all test teams

together for the first time since the start of the test process on

the development builds.

Once decided that the software can be frozen, independent

testing can again continue until the decision of releasing the

software will be made. After the software is frozen, it needs to

be configured again in the configuration management tool. In

principle, this version should be the final one and no change is

intended anymore. Having this final version, all test teams

need to reconfirm the test scenarios and results on the frozen

software code. This activity can be defined as official test run.

At this moment the test cases are stable and the results should

confirm the conclusion drawn during development coding and

testing. Any issue spotted at this moment in time would

reiterate the development process and the code should be

unfrozen. Here the advantage of the proposed testing model

would be that only the level that reported the issue could re-

execute the development testing. After the official test run it is

done each test level needs to provide a test report or a test

closeout. All reports are then discussed in a quorum where all

verification levels meet for the third time in the testing

process. Based on the final results a decision is made if the

software can be released. The proposed testing process is

designed for baseline testing or for testing independent

software drops with only certain fixes that address correction

of existing functionalities. Based on the level of the changes

the number of the involved testing teams can be adjusted.

4.3 Advantages and improvements
The main advantage of the proposed testing process is that it

assures a level of independency between the test vehicles.

Each team (low level testing, hardware in the loop testing,

system testing, acceptance testing) follows the same process

steps but without having a task dependency between them.

The only dependency to progress the testing tasks is on

software drops and software quality. This avoids unplanned

delays in the testing activities, caused by other testing team’s

inability to accomplish deadlines. Another aspect is that the

test tasks can be done in parallel by separate teams distributed

in different locations, all over the world. Adopting the

proposed testing process will allow a smoother offload of

testing tasks between locations, depending on project needs.

5. CONCLUSION
The present paper proposed a new testing process that is

intended to be applied during software development for

hybrid and electric vehicles and is based on a newly defined

Rhombus testing process. A short analysis of the actual state

of the automotive industry with regards to testing in HEV was

presented. Some improvement opportunities were identified

and some solutions were presented trough the proposed test

process. Due to its portability the process can be easily

implemented also into other industries like aviation or

medicine. The proposed model tries to improve the software

development approach in order to increase the software

quality, development time, resource allocation and planning.

Using this model the control over the project lifecycle will be

increased and the task offload capacity will be improved.

 The testing steps are described on a high level. The difference

between software testing for HEV and other safety critical

embedded systems are not significant. The paper is written in

line with HEV for validation purpose in order to demonstrate

the value of the proposal. The link towards HEV is intended

to demonstrate how it would be applied in practice. A

concrete set of testing results are not available since the

proposed testing model represent a conceptual approach. It is

intended to be a process definition for testing embedded

systems. One of the main points is to have different specific

requirements for each testing level (low-level testing,

hardware in the loop testing, system testing). The new process

relies on performing different levels of testing in parallel,

contrary to current practice (V model) which suggests running

test levels one after the other. The intention is to make testing

more efficient. Applying the prosed test process has more

value added in a context where the code works already

reasonably well. This process can be applied with better

results for software updates rather than brand new software

development.

6. REFERENCES
[1] D. Wenzhong Gao, C. Mi, A. Emadi, "Modeling and

Simulation of Electric and Hybrid Vehicles",

Proceedings of the IEEE, Vol. 95, No. 4, April 2007

[2] S. Chakraborty, M. Lukasiewycz, C. Buckl,S.b Fahmy,

N.k Chang, S. Park, Y. Kim, P.k Leteinturier,H.

Adlkofer, " Embedded Systems and Software Challenges

in Electric Vehicles", EDAA, 2012

[3] M. Raetzmann, C. De Young, "Software Testing and

Internationalization", Lemonine International, Inc. Salt

Lake City, 2003

[4] A. Spillner, T. Linz, and H. Schaefer, “Software Testing

Foundations” Rocky Nook Inc. Santa Barbara,4th

Edition, 2014.

IJCATM : www.ijcaonline.org

