
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

8

Implementation of Secure Software Design and
their impact on Application

Zia Ahmad
Department Of Computer
Science, National Textile

University Faisalabad
Pakistan

Muhammad Asif, PhD
 Assistant Professor,

Department of Computer
Science, National Textile

University Faisalabad
Pakistan

Muhammad Shahid
Lecturer, Department of

Computer Science,
National Textile University

Faisalabad Pakistan

Adeel Rauf
Department Of Computer

Science, Virtual
University of Pakistan.

ABSTRACT
Vulnerability is associated with the system and it is a big risk

for system and result in surplus maintenance cost. It is due to

many reasons those are not considered during the stages of

System Development Life Cycle (SDLC). During SDLC it

may be reduced to minimum level. Millions of dollars waste

due to vulnerable application and rescind working. Most of

the software are not secure and cause Physical and Financial

mutilation. It may not be possible to eliminate vulnerability

completely but it might be reduced to the minimum level

because it is the ongoing process. A web application using

secure design patterns (SDPs) is presented in this paper. Two

secure design patterns and their implementation are given.

Secure Strategy Design Pattern (SSDP) and Secure Builder

Design Pattern (SBDP) are purposed for two different forms

SSDP is used for Driver information page and SBDP is used

for Route information page. Special codes are used for

inquiring whether valid user is using site or not. A class of

encryption/decryption technique is added to add security. An

encryption/decryption technique named SHA-1 is used. The

result shows that SDPs are beneficial to all application

developers especially for the developers of critical and

sensitive systems. The system suits secure and design pattern

makes it simple to understand its functionality. However, any

other encryption/decryption techniques may also be applied

on it in place of SHA-1. In future we plan to attach this class

with other design patterns to make them secure from attackers

and eliminate vulnerable points. Many features can be

included in web application with the help of different design

patterns and can be secured by attaching

encryption/decryption class.

Keywords: design patterns, pattern selection, security,

software engineering, security pattern, refactoring, design

vulnerability, secure software design, secure pattern.

1. INTRODUCTION
Vulnerability is a feebleness which allows an attacker to

change and use system’s information and use system to bring

down attackers vital functionality. It is the insertion of three

elements 1) a system susceptibility or flaw 2) attacker access

to the flaw 3) attacker capability to exploit the flaw. It is a

threat to the software. Vulnerability is also known as a fault in

the security of an information system that some time may be

known or unknown. There may be many reasons of

vulnerability, one of them in which security is compromised,

reduced, a reason may be code mistake, there may be

untrained users, insecure configuration setting may also one

big reason of it. Vulnerability is a state in which security

measures are compromised, reduced or lacked. Secure design

patterns are intended for two main reasons:

 They may reduce the accidental insertion of

vulnerabilities into code

 It may lessen the penalties of these vulnerabilities.

The creation of secure design pattern is to block entrance of

accidental vulnerability in code and reduce the hazard of

vulnerability[1]. Vulnerability is simply a design flaw or an

implementation bug that allows a potential attack on the

software in some way[1]. A high risk of attack is the

information that is immediately communicated when software

system are busy in communication.

1.1 History of Design Pattern
Alexander introduced the concept of pattern which is based on

town and building design in 1977/79[2]. Beck and

Cunningham experimented with applying patterns to

programming and presented at (OOPSLA '87 workshop on

Specification and Design for Object-Oriented Programming)

OOPSLA[3]. Erich Gamma, Richard Helm, Ralph Johnson,

and John M. Vlissides (Gang of Four) presented large number

of design patterns in 1994/95[4]. The 23 patterns were

introduced in the classification of First Behavioral, Second

Structural, Third Creational and they contains patterns like

State, Strategy, Visitor, observer for the first, Adapter, Bridge,

Decorator, Façade for the second and Singleton, Builder,

prototype & Factory etc. Design level patterns implemented

with real life problems. The change in logical structure results

in efficiency reduction. Achievements for software quality are

more significant and therefore software maintenance cost is

reduced and results optimal performance harm[5]. Design

Pattern (DP) Reliable solution for frequently occurring

problem in software design is known as design pattern. Such

solution cannot be converted into machine or source code

directly. This solution can be used in many different

situations. DP is recurring solution of real world problem. DP

not only helps to reuse code but also improve extensibility and

maintainability. It is proved that DP build flexible software

architecture. For the new developer selection of appropriate

design pattern is a hard task. DP, on the other hand having bad

effect at efficiency it is due to interaction among views and

data through method call, many DP has this problem. DP

captures the best practices for solving recurring software

design problems. For software security is most important

topic. The attackers in today’s environment can easily harm

software working in industry, commercial application because

they are poor in quality and design with various weaknesses.

The news heard may time over all around the world about

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

9

attack on database or website resulting in the loss of millions

of dollars either directly or indirectly. Therefor most software

is not secure in recent times and is the big reason for financial

and physical damages. This is because most of the efforts

placed onto maintenance and development processes. These

vulnerabilities of system and their associated risk after

software completion become very high for both user and

customer if needed to fix it. Due to the importance of security

flaws it must be considered in all phases of software

development lifecycle (SDLC). There is a change of attack

model day by day on software systems. Attackers are getting

more inventive, and more complex attackers are being

constructed and formulated[1]. The basic root of all

cybercrime may be considered is Networking. The data when

transferred from any source of networking is the invitation to

corrupt the application. An in depth research has already been

performed in the field of security patterns. Secure Design

Pattern (SDP) is used to eliminate the unintentional addition

of vulnerability into code and to reduce vulnerability.

Strategy Design Pattern describes a family of algorithms,

encapsulate each one, and make them exchangeable. Strategy

allows the algorithm differ freely from customers that use it.

The classes and objects participating in this pattern are:

Strategy (Sort Strategy): declares an interface common to all

supported algorithms. Context uses this interface to call the

algorithm defined by a Concrete Strategy. Concrete

Strategy (Quick Sort, Shell Sort, and Merge Sort): implements

the algorithm using the Strategy interface. Context (Sorted

List): is configured with a Concrete Strategy object, maintains

a reference to a Strategy object, and may define an interface

that lets Strategy access its data.

Builder Design Pattern disseminated the creation of an

intricate object from its illustration so that the same creation

process can create different representations. A Builder class

builds the absolute entity step by step. This builder is

sovereign of other objects.

Encryption is the renovation of electronic data into another

form, called ciphertext, which cannot be certainly understood

by anyone except legal revelries.

Decryption is the process of taking encoded or encrypted text

or other data and mutable it back into text that you or the

computer are able to read and understand. This term could be

used to describe a method of un-encrypting the data manually

or with un-encrypting the data using the proper codes or keys.

Data may be encrypted to make it difficult for someone to

snip the information. Some companies also encrypt data for

general protection of company data and trade riddles. If this

data needs to be viewable, it may require decryption. If a

decryption passcode or key is not presented, distinctive

software may be required to decrypt the data using algorithms

to fissure the decryption and make the data readable. Many

encryption/decryption techniques are used like SHA-1, SHA-

3, SHA-3, SHA-256 and SHA-512.

A pattern is a reusable structure in different applications

represents the knowledge and experience of software

application developer. Any specific problem can be solved by

a single and/or a number of patterns in given context and can

be prepared to work in different situations. Analysis patterns

can be used to build conceptual models and security patterns

can be used to build secure systems[6, 7]. In requirements

stage use cases define the required interactions with the

system. From the use cases the needed rights for each actor

can be determined and thus apply a need-to-know policy[8].

Design patterns are a familiar tool used by the software

development community to help solve recurring problems

encountered during software development[9]. These patterns

try to address head on the thorny problems of secure, stable,

and effective software architecture and design. Since the

introduction of design patterns, many other types of patterns

relevant to software have been conceived, including a

relatively new construct known as attack patterns[10].To

identify the vulnerability from the application being to be

developed according to its logic and design is the vital step

when gathering requirements, application design and

developing system from the security perspective. By mapping

and ranking the system vulnerabilities it is possible to

determine the preliminary attack surface of the system, the

likely points that an attacker would chose to explore for

potential compromise [1]. It should be completed before the

completion of code because as the development progress the

attack surface always increases. An attacker sends malicious

input and tries to compromise the system and one case is also

important that system exiting the traffic called “information

leakage” [1]. It is the processing of application revealing large

amount of information during its original processing. The

sensitive information sending with too much error by which

errors can be manipulated can be used with remaining number

of attempts to guess a password is because of the information

leakage[1]. The techniques are learned, understand and

enhanced by attackers and defenders as attackers attack, and

defenders defend, so security cannot taken as static and it is an

arms race. The attackers attempts for anticipate and stay ahead

and defenders acquire from vulnerabilities and make better

ways for being compromised. Algorithm solves computational

problems not the design problem so they are not design

pattern. The creation of secure design pattern is to block

entrance of accidental vulnerability in code and reduce the

hazard of vulnerability[1]. In contrast to the design-level

patterns popularized in the issue of security is discussed in

secure design pattern with variety of range specifying

architectural level patterns ,high level design and

implementation level patterns road map for implementing

methods and functions in application[4]. Software

development is not an insignificant task; treks (methods of

understanding manual working) are used to gather

requirements from stakeholders. Small software may be hard

to develop and large software may be easy and may not

provide resistance. A pattern is a form of knowledge for

capturing a recurring successful practice[11]. They explicitly

capture knowledge that experienced developers understand

implicitly and facilitate training and knowledge transfer to

new developers[12].

Unified Modeling Language (UML) diagrams allow a direct

incorporation of the security element[1]. The preliminary

attack surface of the system can be determined by mapping

and ranking of system vulnerabilities. These may be points

that an attacker can chose for potential compromise. The

surface of attack may be increased as the development

proceeds. The expected points of attack must be identified

before the implementation of mitigate techniques at design

level[1]. The techniques are learned, understand and enhanced

by attackers and defenders as attackers attack, and defenders

defend from previous study so security cannot taken as static

and it is an arms race. The attackers attempts for anticipate

and stay ahead and defenders acquire from vulnerabilities and

make better ways for being compromised. In design when

problem occurs commonly a pattern is reusable solution.

http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

10

1.2 Related Work
A technical report on Secure Design Patterns was published

by Software Engineering Institute on March, 2009[13]. There

are three categories of Secure Design Patterns (SDPs)

Architectural-Level Pattern, Design-Level Pattern and

Implementation-Level Pattern[13]. In the work proposed at

Design-Level Patterns include Factory, Strategy, Builder,

Chain of Responsibility, State and Visitor. The work at them

represents the secure working by the patterns. A book on

security of software design was given by Theodor Richardson

and Charles Thies named “Secure Software Design” in

2013[1]. In this book introduction of vulnerability is given

and discussed about current and emerging threats are

described. Moreover, in this book a method is provided by

author that by using UML diagrams. The emerging and

current threats are discussed under the circumstances of

human factor, over network, in operating system environment,

data management and data centric threats. These all explains

the importance of removing threats in described

circumstances also. In 2014 more work done at the DP as

Application and Open Issues: Design Patterns. This paper said

that the Observer Pattern of DP is studied and its adaptability

and extensibility are increased. This work reduces the

efficiency but it is the problem of most DPs. This is due to the

improvement in the logical structure[5]. Threat is a possible

exploit of a vulnerability where an attacker is the actual use of

such an exploit[1].

2. PROPOSED MODEL

2.1 Problem Statement
The application developers consistently working on the

reliability, availability and reusability but they continuously

ignore design of application. It is the major drawback which

becomes real cause of point that is being compromised and

may provide potential attraction to attackers. Software design

becomes the biggest issue and leaked or compromised point

that may become welcome point for the vulnerability. For this

reason developers and end users have to pay more for fixing

the system vulnerability and its associated risk after the

system deployed. There are many types of practices in use to

report of software security vulnerability but these are difficult

to use. Many current best security practices focus on

implementation and deployment issue and so do not address

security flaws introduced in earlier phase of the development

process[13].

2.2 Model
Existing DPs converted in to secure design pattern after taking

security issue into account. The proposed secure DPs of this

paper and their practical developed application provide

benefit for developers of secure software product. The use of

these patterns will help to reduce the cost and associated risk

of vulnerability. After the arrangement and grouping of use

cases system functionality can be mapped and try to find if

there are any gaps; if gaps found new use case diagram

construct to bridge the gap. Failure to do this will force the

developer to make this connection and it could open new

security holes[1]. Developers are excellent problem solvers

and creative workers. However, a good system will have well

defined specifications from the outset, meaning those creative

problem solving skills can be applied to better coding instead

of determining some new and unspecified method for point A

to connect to point G because no one define B through F in

the system planning[1].

An application developed by using the proposed solution is a

web based application, which uses Google Maps APIs “Map

My Way”. It is developed to facilitate the users of any

Organization to define their routs on Google Map, so that

others colleagues of same organization can see/view routes

and get the information about their weekly journey plan and

addresses of their home to office from this application. Any

user can define route. But if user wants to see all other similar

routes defined by other users then user will have to login. If

new user comes to this website then registration is required.

After login user can view/see all required per-defined routes

of same organization. User can send friend request to other

users having same/similar routes. This application also gives

the functionality for users to contact with their colleague via

SMS or Email. By using address information the colleague

can ask people to drop them at their home. So, to obtain this

goal we get such a system which can maintain colleague

personal information and their vehicle information (if

colleague have their own vehicle). Personal information about

any user of this site will be hidden to any other. Admin will be

responsible to manage site. However, user will manage their

route and other information themselves.

2.3 Secure Strategy Design Pattern
This page is established by using the Secure Strategy Design

Pattern and vulnerabilities exposed by the UML diagram are

removed, moreover it is now secure strategy design pattern.

This page is used to add new driver with its vehicle and

personal information. After identifying pointes to be open for

attack and presence of vulnerability, the vulnerability can be

reduced to minimum by secure strategy design pattern. UML

diagrams are used here to show vulnerability; in this page

Figure 1 is about use case diagram and Figure 2 for this page

is sequence diagram and Figure 3 is class diagram. The driver

submit required information asked on the page and the system

ask him the security credentials at the same time the attacker

may be available to do this as shown in Figure 1. These are

expected vulnerable points for the attacker. The expected

solution is, the driver when select the vehicle type to select

bike, car, van or APV the system ask a security code from the

driver which is already stored in the database in encrypted

form which is then compared from the code that is provided

by the driver. If the security code matches with the database

encrypted code the submit process will be done otherwise it

asks the correct code 2 times again if not provided the correct

code the system will logout, no more time for the malicious

user to use the website for specific time period or may have to

login again.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

11

Figure 4: use case diagram representing Vulnerability

The use case diagram for secure strategy pattern indicates that

[E] and [C] points. Any place where both [E] and [C] are

located on the same association, there must be one of the most

likely target for attack[1]. At the same time, when [I] and [C]

are located together, a level of protection must be added to the

data in transit; otherwise, there is no protection from internal

threats sitting on the same network or attackers recording the

transmission from the another node in the network such as a

wireless hub[1].

Figure 5: Sequence diagram representing Vulnerability

The sequence diagram of secure strategy design pattern shows

the vulnerability in Figure 2. In the diagram points v3 and v2

describe the likely target point of highest level and moderate

level of vulnerability respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

12

Figure 6: Class diagram of SSDP with proposed solution

The class diagram of driver information page for secure

strategy design pattern shown in Figure 3. It illustrates the

functionality of the web page; the subclasses of class vehicle

are attached for the web functionality. The abstract classes of

vehicle info are bike, care, van and APV, while

Encryption/Decryption and Fuel Type class is aggregated with

vehicle information. The Encryption/Decryption is an

encryption and decryption scheme that is used for the

authentication for selection of bike, car, van, APV etc.

First user registers itself on the website. After that it has to

login to the website. If the person has its own vehicle then he

has to enter driver information. The driver information page

require the information as License No, Engine No, Vehicle

capacity, Available sets, Fuel system, Vehicle type, License

issue date, License expiry date and at the end website ask for

the required code that is for security purpose. If the user enter

correct code, which admin of this website has allotted to user

,then the option submit appear and user can submit

information otherwise he would be ask 2 times more to enter

valid code otherwise user will be logout from the website and

all sessions will be destroyed. In fact, system will consider

such person as hacker who will try to enter information by

entering wrong passwords. Invalid user cannot use this site

any more due to session destruction. At this point if such

hacker tries to snip password then such hacker will again

remain unsuccessful because, security passwords will be

secured due to usage of encryption/decryption technique.

After valid data entry it first shows the price that owner of the

vehicle bear the expected cost for his vehicle. The strategy

design pattern is used to develop this page shows that when

we change the type of vehicle the result in cost that have to

bear by vehicle owner changes. The view of driver

information page before data entry is given in Figure 7.

Figure 8 Driver Information page without data entry

2.4 Secure Builder Design Pattern
First of all, the user of this system, request the system to

submit the Route Information of his route which is used for

office, weekend or official trip. System asks valid password of

required route. If a user enters enter valid password, which

admin of website allotted to him, system allows user to submit

route information. Otherwise system gives two more chances

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

13

to user for entering valid code. If user failed to enter valid

code, then system considers such user as attacker and logout

such user. System destroys all session information of that

user. Therefore, attacker remains unable to harms such

system. If attacker attacks on system’s database, to steal

password for route information. Then such attacker again

failed to enter required password because password stored in

the database is in encrypted form and user will not be able to

decrypt such password because he does not know which

password technique of encryption and decryption is used in

this system. This encryption or decryption technique will save

system. Use case diagram for Secure Design Pattern is shown

in Figure 9.

Figure 10: Use case diagram representing vulnerability

The sequence diagram of SBDP shows the vulnerability in

Figure 6. In the diagram points v3 and v2 describe the likely

target point of highest level and moderate level of

vulnerability respectively. The class diagram of route

information page for SBDP shown in Figure 7.

Figure 11: Sequence diagram representing Vulnerability

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

14

Figure 12: Class diagram of SBDP with proposed solution

It illustrates the functionality of the web page; the subclasses

of class RouteBuilder are attached for the web functionality.

The derived classes of RouteBuilder are HomeToOffice,

HomeToWeekend, and OfficialTrip, while

Encryption/Decryption is associated with RouteDirector.

RouteDirector class is aggregated with RouteBuilder class.

The Encryption/Decryption is an encryption and decryption

scheme that is used for the authentication for selection of

HomeToOffice, HomeToWeekend, or OfficialTrip etc. The

display of route information page before data entry is

presented in Figure 13.

Figure 14 : Route Information without data entry

3 CONCLUSION & FUTURE WORK

3.1 Conclusion
As the developers during application development just focus

on extendibility and neglect software design result in the

application failure due to compromise on vulnerability. The

applications developed randomly by developers contain more

vulnerable points than the application developed by using

classes and security class. The method proposed by us makes

application more secure against vulnerabilities. Moreover,

usage of design pattern reduces vulnerable points than

ordinary development method. Therefore, we developed this

application by using secure software design used

encryption/decryption technique SHA-1 for the security

purpose. DP’s are used to develop the application and

encryption/decryption class is associated with DP to make it

secure design pattern. The application now shows highly

secure and proves that if developer foster websites by using

such design patterns in association with encryption/decryption

technique then security risk may be diminished. This

encryption/decryption technique used in this website by

applying security class may also implement on other design

patterns. Hence, we conclude that security class used in this

website for security reasons proved that our website is highly

secure from attackers and this method is useful for other

patterns to make secure them.

3.2 Future Work
The SSDP and SBDP are two techniques proposed in this

paper are the result on the working of Strategy Design Pattern

and Builder Design Pattern[4]. In future, we plan to expand

this security feature to other design patterns to make them

secure form attackers and vulnerable points at the application.

As for as this web site concern, we plan to add more pages

and features developed by using other securities patterns and

apply our security technique to make them secure form

attackers and reduce vulnerable points. There are many

encryption or decryption techniques like SHA-1, SHA-256

and SHA-512 etc. We also have planned to develop other

applications by using these or new encryption/decryption

technique with newly developed algorithm for more security.

There are also many security techniques like security

questions and matching images. We planned to use such

techniques to make our website more secure.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.10, June 2015

15

4 REFERENCES
[1] T. Richardson and C. N. Thies, Secure software design:

Jones & Bartlett Publishers, (2012).

[2] C. Alexander, S. Ishikawa, and M. Silverstein, "A

Pattern Language: Towns, Buildings, Construction

(Center for Environmental Structure Series)," (1977).

[3] Beck, Kent, Cunningham, and Ward, "Using Pattern

Languages for Object-Oriented Programs, Design

Methodology for Object-Oriented Programming, Panel

Session, OOPSLA," ACM, (1987).

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: elements of reusable object-oriented

software: Pearson Education, (1994).

[5] K. Lano, "Design patterns: applications and open

issues," in Cyberpatterns, ed: Springer, (2014), pp. 37-

45.

[6] E. Fernandez, M. Larrondo-Petrie, T. Sorgente, and M.

VanHilst, "Layers and non-functional patterns," Procs of

ChiliPLoP, Phoenix, vol. 1, pp. 10-15, (2003).

[7] Fernandez, E. B, and X. Yuan, "Semantic analysis

patterns," in Conceptual Modeling—ER 2000, ed:

Springer, (2000), pp. 183-195.

[8] Fernandez, E. B, and J. Hawkins, "Determining role

rights from use cases," in Proceedings of the second

ACM workshop on Role-based access control, (1997),

pp. 121-125.

[9] C. Alexander, Notes of the Synthesis of Form vol. 5:

Harvard University Press, (1964).

[10] Hoglund, Greg, McGraw, and Gary, "Exploiting

Software: How to Break Code," Addison Wesley, (2004).

[11] L. Rising, "Understanding the power of abstraction in

patterns," Software, IEEE, vol. 24, pp. 46-51, (2007).

[12] D. C. Schmidt, "Using design patterns to develop

reusable object-oriented communication software,"

Communications of the ACM, vol. 38, pp. 65-74, (1995).

[13] C. R. Dougherty, K. Sayre, R. Seacord, D. Svoboda, and

K. Togashi, "Secure design patterns," Software

Engineering Institute, (2009).

IJCATM : www.ijcaonline.org

