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ABSTRACT 

Error Correction Codes are required to have a reliable 

communication within a channel having an unacceptable bit 

error rate and low SNR (signal to noise ratio). Channel coding 

for error detection and correction helps communication 

system designers in reduction of effects caused due to noise in 

the transmission channel. There exist two main forms of 

channel codes – block codes and convolution codes.  Block 

code is further classified into linear and cyclic code. In this 

paper, we have analyzed the performance of hamming code 

(linear), BCH code (cyclic) and convolution codes based on 

different designs and compared them by using bit error rate 

performance of a receiver in an absolutely fair manner using 

BPSK (Binary Phase Shift Keying). All simulation was done 

using MATLAB R2011b Simulink software.  
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1. INTRODUCTION 
Nowadays in the present world, communication plays a vital 

role in daily life. The objective of communication system is to 

transmit data with the minimum error rate through medium. 

The main problem arises when the reliable and consistent 

transmission of data is to be achieved. The use of forward 

error correcting codes in digital communication systems 

provides a solution of ensuring reliable communication. There 

are different types of error correcting codes based on the type 

of expected error and expected error rate within the medium 

of communication, and whether re-transmission is possible or 

not. The various error correcting codes, BCH, Reed Solomon, 

Hamming, turbo and LDPC differ from each other on the 

basis of their implementation and complexity. 
For a reliable communication that has an acceptable Bit Error 

Rate (BER) and High Signal to Noise Ratio (SNR) these 

codes are used. These are introduced in order to detect and 

correct a specified number of errors which may occur during 

transmission of message over channel. [1]-[4]. 

The technique evolving detection and correction of limited 

number of errors without retransmitting the data is called 

forward error correction (FEC). The two types of FEC are 

block codes and convolution codes.  

The block codes are linear as well as cyclic in nature. The 

hamming codes are an example of liner codes, while the BCH 

(binary) and reed-solomon (non-binary) codes are cyclic. The 

block codes are capable of correcting all random patterns of t 

errors, and are easily implemented. These codes represent the 

best compromise between efficiency and complexity.  

 

The convolution codes are vulnerable to burst error which 

means a series of consecutive errors. Unlike block encoders, 

convolution encoders are not memory less devices. A 

convolution encoder accepts a fixed number of message 

symbols and produces a fixed number of code symbols, but its 

computations depend on the current set of input symbols and 

on some of the previous input symbols.  

The performance criterion of various codes is commonly 

determined by BER which is simply: Number of error bits / 

Number of total bits. Noise in transmission medium disturbs 

the signal and causes data corruptions. Relation between 

signal and noise is described with SNR (signal-to-noise ratio). 

Generally, SNR is explained with signal power / noise power 

and is inversely proportional with BER. It means, the less the 

BER result is the higher the SNR and the better 

communication quality [5].  

This brief is organized as follows. Section 2 describes the 

theoretical background of codes under consideration. The 

performance analysis of BCH, Hamming and convolution 

codes individually, by varying the value of ‘N’ are presented 

in Section 3. Based on the proposed method, Section 4 

demonstrates the results based on the comparison among the 

codes at particular value of N, where ‘N’ is the number of 

bits. Finally, we conclude this brief in Section 5. 

2. THEORETICAL BACKGROUND 

2.1 BCH Codes 
The Bose, Chaudhuri, and Hocquenghem (BCH) codes are 

form of powerful random error-correcting codes. These codes 

have the ability to handle the errors which generates in the 

data streams. For any positive integer m, (m ≥ 3) and t 

(t<    ), the binary BCH Codes has the following 

parameters [1], where m is the :Block length: n=      

No. of parity check digits: n-k mt 

Minimum distance:     ≥ 2t+1 

This code is capable of correcting any combination of t or 

fewer errors in a block of n=     digits. This code is called 

as t-error-correcting BCH code. 

The generator polynomial of this code is specified in terms of 

its roots from the Galois field GF (  ).  

Let α be a primitive element in GF (  ). The generator 

polynomial g(x) of the t-error correcting BCH code of 

length       is the lowest-degree polynomial over GF (  ) 

which has α,   ,    , . . . ,.     As its roots [i.e., g(i) = 0 for 1 

≤ i ≤2t. 

For      BCH code can be reduced to,  

             g(x)= LCM   (x),   (x) …..       (x).              (1) 

Since the degree of each minimal polynomial is m or less, the 

degree of g(x) is at most m.t. 

Let us assume that a transmitted codeword is  

                   c(x) =  +  x+   
 ………..     

                 (2) 

And the transmission error results in following received 

vector i.e. c(x) +e(x). 
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The decoding process for BCH codes consists of three major 

steps [6]: 

1. Syndrome computation 

2. Determining error pattern 

3. Error correction 

The input to the syndrome block is the received codeword. 

The received polynomial may be corrupted with error pattern 

e(x). 

                               s(i)= r(  )= e(  ).                                  (4) 

Each syndrome component is computed by dividing received 

vector r(x) by the minimal polynomial mi(x), 1≤ i  2t. 

We have a set of equations that relate syndrome components 

and the error-location numbers   , 1    ≤ v. 

                               =         
   , 1≤i≤2t                            (5) 

To determine the error-location polynomial σ(x), we use 

Peterson’s algorithm or Berlekamp algorithm. The error 

locator polynomial  (x) will be, 

                  (x) =   +  x+   
 +…………   

 .                 (6) 

                  (x) = (1+  x) (1+  x)……… (1+  x),             (7) 

as we have considered   =   . 

Error location numbers are the reciprocals of the roots of    . 
The roots of σ(x) can be found by substituting 

1,α,  ,.….      into     . As   =1, and    =    , 

therefore if    is root of     , then      is an error location. 

The error correction process include Chine’s search algorithm. 

A method of achieving this using sequential substitution has 

been presented by Chien. The Chien search sum is given by, 

   +   
 +   

  +…………   
  . Where j=(0, 1,…k-1)     (8) 

If the Chien search sum is equals to zero then    will be a root 

of the polynomial. In the decoding process, the final step is 

error correction. The erroneous bits can be corrected by 

simply flipping the bits at the positions of errors. Therefore, 

output of the BCH decoder is the corrected codeword. 

2.2 Hamming Code 
Errors will occur while decoding when noise in the channel 

changes the transmitted codeword so that its Hamming 

distance is closer to one of the other   codeword. Because of 

this, the distance between codeword is relevant to probability 

of a decoding error. The minimum Hamming distance of a 

code is the smallest distance between any of its    codeword. 

If a code consists of two codeword that are a distance of      

apart, a word has to be within a distance [(    -1)/2] of a 

codeword in order that it is mapped to that codeword. 

Therefore it results that a code can correct up to t= [(    -

1)/2] errors. As the number of errors a code can correct is 

directly related to      , it is advantageous to find the code of 

a given size with the largest     . A perfect t-error correcting 

code has the property that every word in the Hamming space 

lie within a distance of t from exactly one codeword [7]. For 

any positive integer m > 3, there exists a Hamming code with 

the parameters as the code length denoted by ‘n’ is n=    , 

the number of information symbols denoted by ‘k’ is, 

k=      , the number of parity symbols denoted by, 

m=n-k, and the error correcting capability is always 1, i.e. 

t=1(    =3). 

The hamming code parameters obtained is, 

Code length, n=        , 
Number of information symbols is, k=             
No. of parity symbols, n-k = m 

Minimum distance,      ≥ 3 

If the syndrome s is zero, we assume that no error occurred 

during the transmission. If s is nonzero and contains odd 

number of 1’s it is assumed that there is single error. 

Therefore, the error pattern of a single error corresponding s is 

added to receive vector for correcting errors. If s is non zero 

and contains even number of 1’s, an uncorrectable error 

pattern is received. 

The single and double error correcting hamming codes are 

widely used in computer storage. Hamming proves that this is 

the most efficient use of parity checks for single detection, 

correction and double detection as in this the distance between 

codeword is maximized. But the hamming codes have a 

problem that they are relatively inefficient when sending 

small amounts of data, but they get increasingly inaccurate as 

the number of bits increases. Regardless of the length of 

codeword, they can only correctly locate one flipped bit for 

each codeword. 

2.3 Convolution Code 
2.3.1  Convolution Encoder 

Convolutional encoding of data is accomplished using shift 

register and associated combinatorial logic that performs 

modulo-two addition. Convolution codes do not have a 

predefined word length like block codes [8]. These codes are 

pushed into a frame structure by periodic truncation. Zero bits 

are appended onto the message, for flushing the shift registers. 

Code rate can fall below k/n because of the bits added to it 

which do not carry any information along with them. In order 

to stabilize code rate large truncation period is required.  

To describe an encoder, set of m connection vectors having 

the same dimension as that of K (shift registers) are required. 

These connections describe which shift register is connected 

to m adders. A value of ‘0’ in the     position will indicate 

that not a single connection exits between the stage and adder 

and the value of ‘1’ demonstrate, that shift register is 

connected to the adder.  

2.3.2 Viterbi Convolutional Decoding Algorithm 
This algorithm was devised and analyzed by Viterbi [9].  In 

this algorithm maximum likelihood decoding is performed 

which is defined as process which decreases the 

computational load. It does so by taking the average of a 

particular structure in the code trellis. This advantage of this 

algorithm over brute-force decoding is that the complexity is 

not defined in terms of the number of symbols in the encoded 

sequence [10]. The resemblance between the received symbol 

and transmitted symbol is measured by hamming distance and 

the paths which are not suitable for maximum likelihood are 

rejected by this algorithm. If there is more than one path that 

emerges from the one particular state, then the state having 

the lowest path metric is selected and this path is called the 

surviving path [11]. Thus, for every state this process of 

selecting the surviving path is done. 

By this way, the decoder proceeds deeper into the trellis, 

assembling results by rejecting the paths having high metric. 

This early elimination of the paths with high metrics 

minimizes the complexity of decoder. 

3.  SIMULATION 
To analyze the performance of different error correction codes 

BPSK modulation scheme and AWGN channel is used as a 

noise source. The performance of BCH (7, 4), Hamming (7, 4) 

and convolution (2, 1, 5) code is analyzed individually by 

varying the value of ‘N’.  All the simulations are performed 

using MATLAB R2011b. Table 1 shows the simulation 

parameters for BCH, Hamming and convolution code. 

Table 1. Simulation Parameters 

S.no Experimental Parameters Values 

1 Size of data 1000, 5000, 10,000 



International Journal of Computer Applications (0975 – 8887) 

Volume 119 – No.24, June 2015 

45 

2 Message length of block codes 4 

3 Code length of block codes 7 

4 Message length of convolution 

codes 
2 

5 Code rate of convolution codes ½ 

6 Constraint Length 5 

7 Range of SNR -2 to 2 dB. 
 

Fig.1 shows performance analysis of BCH code at different 

values of ‘N’ as 1000, 5000, and 10,000. Similarly, Fig.2 for 

hamming, and Fig.3 for convolution code, based on the same 

parameters. During the simulation, the performance is 

evaluated for SNR value ranging from -2 to 2 dB. The Error 

rate calculation block compares the input data and the data 

received after demodulation and calculates the error rate. The 

display shows the BER when the simulation ends. 

 
Fig no.1-The BER performance analysis of BCH Codes, 

for N=1000, 5000, and 10,000 

The convolution codes is been implemented using 

convolutional encoder with Viterbi decoder. The encoder here 

was considered for different values of code rates and the 

number of memory registers. The code rates taken here is 1/2 

and the number of memory registers considered was 2. These 

code rates were used with each of the two values of memory 

[12]. From Table 2, we concluded that on increasing the total 

number of bits the averaging is good as the interpolation is 

better. Therefore, the curve appears smoother.  

 
Fig no.2-The BER performance analysis of hamming code, 

for N=1000, 5000 and 10,000 

 
Fig no.3-The BER performance analysis of convolution 

code for N=1000, 5000, and 10000 

Table 2.Simulation Results 

codes 
Bit Error Rate 

N=1000 N=5000 N=10,000 

Hamming 0.238 0.265 0.247 

BCH 0.038 0.036 0.044 

Convolution 0.0275 0.0265 0.0295 
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4.  RESULT AND DISCUSSION 

Fig.4. performance comparison of BCH, hamming and 

convolution for N=1000 

The figure 4, 5 and 6 represents the overall performance of 

convolution, BCH, and hamming code codes used in the 

simulation. Results in the Figure 4, depicts that initially at 

N=1000, the performance of BPSK with BCH code is better 

than the BPSK with hamming codes. At SNR=0 dB, BER 

with linear code i.e. hamming code is found to be 0.415 while 

with Cyclic code i.e. BCH code, it is 0.073. After that the 

performance improves when SNR is greater than 0.5 (dB). At, 

SNR=0.5 dB when number of bits are 5000, the BER with 

hamming code is found to be 0.28 while with Cyclic BCH 

code it is 0.145. This shows that BCH code have better 

performance over hamming codes. The performance of BCH 

and convolution code when analyzed in Figure 5 where 

number of bits are 5000 showed that initially the performance 

of BCH is found degraded. Then the BCH BER curve crosses 

when SNR equals 1 db and there after performance improves 

comparatively. The BCH codes are particularly well suited for 

correction of burst errors and shows poor BER performance 

for lower SNR values, because of mainly the random errors 

generated by the AWGN. Similarly, as the number of bits 

increases the performance improves. In fig.6 for N=10,000, at 

SNR=0 dB, BER with BCH code is 0.064 while for hamming 

code it is 0.28. 

In case of BCH Codes, performance could be further 

improved by adding more redundant bits. From the analysis it 

is found that among Hamming and BCH, BCH is the most 

effective code in terms of error detecting and correcting error 

capability. From the graph in Figure 4, the performance of 

Convolution (2, 1, 5) is better than the Hamming (7, 4) codes 

and BCH (7, 4). For N=10,000, at SNR=0 Db, BER of BCH 

code is found to be 0.064 while with Convolution (2, 1,5) is 

0.00.037 and with Hamming (7, 4) codes it is 0.28. The BER 

curve of Convolution (2, 1, 5) crosses the BER curve with 

BCH (7, 4) codes at SNR equals to 1.9 (dB). It is quite clear 

that on comparison among various codes the performance of 

convolution code is far better than the linear Hamming and 

cyclic BCH code. 

 
Fig.5. performance comparison of BCH, hamming and 

convolution for N=5000 

 

Fig.5. performance comparison of BCH, hamming and 

convolution for N=10,000 

5.  CONCLUSION 
The FEC technique is particularly suited for a white Gaussian 

noise (AWGN) channel, which have been implemented using 

block codes, i.e. hamming codes and BCH and also the 

convolution encoder and decoder using hard decision 

decoding. Via this paper we present the deep and clear 

understanding of different error correcting codes making them 

simpler and easier to understand and implement. The 

simulation shows that the performance of convolution error 

control codes compared to linear and cyclic codes is better, 

and among the block code itself, the performance of BCH is 

better comparatively. It was concluded that the BER 

performance improves as the number of bits increases. 
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Furthermore, this project basically aims at using error control 

techniques ensuring reliable data transfer, which results in 

maximum efficiency of the correction coding. 

Another objective of the project was to investigate the 

advantages and limitations of different FEC’s regarding the 

performance. The presented work could be further extended 

with a hardware implementation of various codes 

encoder/decoder. A linear, cyclic and convolutional 

encoder/decoder operating at low data rate could be initially 

implemented with a FPGA. 
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