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ABSTRACT
In the present communication, two exponential fuzzy information
measures are introduced and characterized axiomatically. To show
the effectiveness of the proposed measure, it is compared with the
existing measures. Two fuzzy discrimination and symmetric dis-
crimination measures are defined and their validity are checked.
Important properties of new measures are studied. Their applica-
tions in pattern recognition and diagnosis problem of crop disease
are discussed.
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1. INTRODUCTION
Uncertainty is natural behaviour in real systems. Probability has
been traditionally used in modeling uncertainty. Since [24] insti-
gated the idea of fuzzy sets, fuzziness becomes another way to
model uncertainty. On the other hand, measuring the fuzziness of
fuzzy sets is an important step in fuzzy systems. Measures of fuzzi-
ness by contrast to fuzzy measures try to indicate the degree of
fuzziness of a fuzzy set. The entropy of fuzzy sets is a measure of
fuzziness between fuzzy sets. [2] first introduced the axiom con-
struction for entropy of fuzzy sets with reference to Shannon’s
probability entropy. [3] suggested five properties for a entropy of
fuzzy sets to satisfy. [16]− [17] proposed higher order and expo-
nential entropies. More surveys on measuring fuzziness were given
by [18] and [15]. Recently, [13] considered new defined fuzzy vari-
ables and discussed about entropies on fuzzy variables. In [12], they
first proposed the notion of credibility measure and then considered
entropy of credibility distributions for fuzzy variables.
A perception-based theory of probabilistic reasoning with impre-
cise probabilities has also been explained by [25]. Some work re-
lated with uncertainty management for intelligence analysis was
reported by [23] whereas the generalized information theory, its
aims, results and some open problems were discussed by [8]. The
fuzzy information measures have found wide applications to En-
gineering, Fuzzy traffic control, Fuzzy aircraft control, Computer
sciences, management and Decision making, etc.
Many researchers have studied various generalized fuzzy informa-
tion measures. [4] generalized Fuzzy information measure and in-
troduced R-norm fuzzy information measure. [7] defined fuzzy en-

tropy by combining the concepts of [22] and [18]− [19]. [6] also
characterized [2] entropy as generalized Fuzzy information mea-
sure and R-norm fuzzy information measure. [5] characterized the
measures of fuzzy information analogous to the sub additive infor-
mation measures due to [20]. [21] generalized exponential fuzzy
information measure and studied essential and some other proper-
ties. Later on [14] defined new measure of weighted fuzzy informa-
tion, the findings of which have been applied to study the principle
of maximum weighted fuzzy information. [27] developed trigono-
metric and tangent inverse trigonometric fuzzy information mea-
sures and applied these measures in strategic decision making. [28]
proposed the fuzzy mean code word lengths of degree β and type
(α, β) and discussed the behaviour of the proposed fuzzy mean
code word lengths.
In the present paper, we introduce two new exponential fuzzy infor-
mation measures and study their validity in section 2. In section 3,
some comparisons are made with some existing information mea-
sures to show the effectiveness of the proposed one. Two exponen-
tial fuzzy discrimination measures are defined and the properties
of these exponential fuzzy discrimination measures are studied in
section 4. In section 5, the applications of these exponential fuzzy
symmetric discrimination measures to the pattern recognition and
diagnosis of crop disease are discussed.

2. NEW EXPONENTIAL FUZZY INFORMATION
MEASURES

The following notations are used in this section. R+ = [0, ∞ [, let
FS(X) be the set of all fuzzy sets on a universal set X and P (X)
be the set of all crisp sets on the universal setX. µA(x) is the mem-
bership function ofA ∈ FS(X), [a] is the fuzzy set ofX for which
µ [a](x) = a, ∀x ∈ X (a ∈ [0, 1]) . For fuzzy set A, we use Ac to
express the complement of A, i. e. µA c(x) = 1 − µA(x), ∀x ∈
X. For two fuzzy setsA andB, A∪B, the union ofA andB is de-
fined as µA∪B(x) = max {µA(x), µB(x)} ,A ∩B, the intersec-
tion of A and B is defined as µA∩B(x) = min {µA(x), µB(x)}.
A fuzzy set A∗ is called a sharpening of A, if µA∗(x) ≥ µA(x)
when µA(x) ≥ 1

2
and µA∗(x) ≤ µA(x) when µA(x) < 1

2
.

Definition 2.1 ([24]). A fuzzy set A defined in a finite universe of
discourse X = {x1, x2, ..., xn} is given by

A = {(xi, µA (xi)) : µA (xi) ∈ [0, 1] ;∀xi ∈ X} ,
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where µA(xi) represents the degree of membership and is defined
as

µA (xi) =

{
0, if xi /∈ A and there is no ambiguity,
1, if xi ∈ A and there is no ambiguity,
0.5, there ismax ambiguitywhetherxi /∈ Aorxi ∈ A.

[2] first gave axioms for information measure of fuzzy sets as fol-
lows:
Definition 2.2 ([2]). A real function H : FS(X) → R+ is called
fuzzy information measure on FS(X), if H have the following
properties:

(1) H(D) = 0, ∀D ∈ P (X);

(2) H
([

1
2

])
= maxA∈FS(X)H(A);

(3) H(A∗) ≤ H(A), for any sharpening A∗ of A;
(4) H(A) = H(Ac), ∀A ∈ FS(X).

In this section, we introduce the following two new exponential
fuzzy information measures:

H(A) =

n∑
i=1

[
e− µA(xi)eµA(xi) − (1− µA(xi))e(1−µA(xi))

]
(1)

Hα(A) =

n∑
i=1

[
eα − µA(xi)eαµA(xi) − (1− µA(xi))eα(1−µA(xi))

]
,

(2)
where α > 0, α 6= 1.

Theorem 1. The measure (1) is a valid measure of fuzzy informa-
tion.
Proof: To prove that the measure (1) is a valid fuzzy information
measure, we show that four postulate (P1) to (P4) hold.
(P1) (Crispness): If H(A) = 0 then

n∑
i=1

[
e− µA(xi)eµA(xi) − (1− µA(xi))e(1−µA(xi))

]
= 0

Either µA(xi) = 0 or 1 ∀i = 1, 2, ......, n.
A is a crisp set.
Conversely, let A be a crisp set, then either µA(xi) = 0 or 1 ∀i =
1, 2, ......, n.
It implies

[
e− µA(xi)eµA(xi) − (1− µA(xi))e(1−µA(xi))

]
= 0

n∑
i=1

[
e− µA(xi)eµA(xi) − (1− µA(xi))e(1−µA(xi))

]
= 0

H(A) = 0.

Hence H(A) = 0 if and only if A is non-fuzzy set or crisp set.
(P2) (Maximality): Differentiating H(A) with respect to µA(xi),
we have

dH(A)

dµA(xi)
=

n∑
i=1

[−eµA(xi) − µA(xi)eµA(xi) + eµA(xi)

+(1− µA(xi))e(1−µA(xi))], (3)

which vanishes at µA(xi) = 0.5.
Again differentiating (3) with respect to µA(xi), we get

d2H(A)

dµA(xi)2
= −

n∑
i=1

[2eµA(xi) + µA(xi)e
µA(xi) + 2e(1−µA(xi))

+(1− µA(xi))e(1−µA(xi))],

and it is less than zero at µA(xi) = 0.5.
Hence H(A) is maximum at µA(xi) = 0.5 for all i = 1, 2, ......, n.
(P3) (Resolution): LetA∗ be sharpened version of A, which means
that
if 0 ≤ µA(xi) < 0.5, µA∗(xi) ≤ µA(xi) for all i =
1, 2, ......, n and
if 0.5 < µA(xi) ≤ 1, µA∗(xi) ≥ µA(xi) for all i =
1, 2, ......, n.
Since H(A) is an increasing function of µA(xi) in the region
0 ≤ µA(xi) < 0.5 and H(A) is a decreasing function of µA(xi)
in the region 0.5 < µA(xi) ≤ 1, therefore

(1) µA∗(xi) ≤ µA(xi)⇒ H(A∗) ≤ H(A) in [0, 0.5]

(2) µA∗(xi) ≥ µA(xi)⇒ H(A∗) ≤ H(A) in [0.5, 1].

Hence above conditions together give

H(A∗) ≤ H(A).

(P4) (Duality): It is evident from the definition that

H(A) = H(A),

where A is complement of A obtained by replacing µA(xi) by
1− µA(xi).
Hence H(A) satisfies all the essential four properties of fuzzy in-
formation measures. Thus it is valid exponential fuzzy information
measure.
Proceeding on similar lines, it can easily be proved that the expo-
nential measureHα(A) proposed in (2) is a valid exponential fuzzy
information measure of order α.

3. COMPARISONS AND RESULTS
The linguistic hedges, like “very”, “more or less”, “slightly”, are
habituated to represent the modifiers of linguistic variables. Fuzzy
sets are conventionally utilized as linguistic variables. Thus, the
hedges may be viewed as operations on fuzzy sets (visually per-
ceive [26]). In this section, we consider these operations on fuzzy
sets and then make comparisons of the proposed information mea-
sure of fuzzy sets with others.
For a given fuzzy set A = {(x, µA(x)) | x ∈ X} , the modifier
An for the fuzzy set A is defined as follows:

An = {(x, (µA(x))n) | x ∈ X} .

We then define the concentration and dilation of A with concen-
tration: CON(A) = A2 and dilation DIL(A) = A1/2. The con-
centration and dilation are mathematical models frequently to be
used for modifiers. Thus, we can use these mathematical operators
to define the linguistic hedges on a fuzzy set A as follows

V ery A = CON (A) = A2, more or lessA = DIL (A) = A1/2,

Quite V ery A = A3, V ery V ery A = A4.

Let us consider a fuzzy set A1 of X = {6, 7, 8, 9, 10} is defined
as

A1 = {(6, 0.1), (7, 0.3), (8, 0.4), (9, 0.9), (10, 1)} .
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By taking into account the characterization of linguistic variables,
we regarded A as “Large” on X. We can generate the following
fuzzy sets:

A
1/2
1 = {(6, 0.316), (7, 0.548), (8, 0.632), (9, 0.949), (10, 1)} ,

A2
1 = {(6, 0.01), (7, 0.09), (8, 0.16), (9, 0.81), (10, 1)} ,

A3
1 = {(6, 0.001), (7, 0.027), (8, 0.064), (9, 0.729), (10, 1)} ,

A4
1 = {(6, 0), (7, 0.008), (8, 0.026), (9, 0.656), (10, 1)} .

The hedges represented by the above fuzzy sets are described as
follows:
A

1/2
1 may be treated as “More or Less Large”,

A2
1 may be treated as “Very Large”,

A3
1 may be treated as “Quite Very Large”,

A4
1 may be treated as “Very Very Large”.

For the following information measures for fuzzy sets, the compar-
ison of results are shown in Table 1:

HK(A) =
dp(A, Anear)

dp(A, Afar)
; [9]

HPal(A) =
1

n

n∑
i=1

[
µA(xi)e

1−µA(xi) +(1− µA(xi)) eµA(xi)
]
; [17]

HLL(A) =

n∑
i=1

S (Cr(ξA = xi)) ; [12]

HHY (A) =
1

(1− e−1/2)

n∑
i=1

[(
1− e−µAc (xi)

)
I[µA(xi)≥1/2]

+
(
1− e−µA(xi)

)
I[µA(xi)<1/2]

]
; [7]

H(A) =

n∑
i=1

[
e− µA(xi)eµA(xi) − (1− µA(xi))e(1−µA(xi))

]
.

Table 1 Comparison of the measures of fuzziness with different
information measures

Fuzzy Set HK(A) HPal(A) HLL(A) HHY (A) H(A)

A
1/2
1 0.220 1.389 0.810 0.505 3.200

A1 0.311 1.331 0.723 0.397 2.720
A2

1 0.099 1.202 0.378 0.212 1.655
A3

1 0.078 1.151 0.870 0.167 1.236
A4

1 0.082 1.1.36 0.692 0.165 1.116

From the Table 1, we see that

HK(A
1/2
1 ) < HK(A1) > HK(A2

1) > HK(A3
1) < HK(A4

1),

HPal(A
1/2
1 ) > HPal(A1) > HPal(A

2
1) > HPal(A

3
1) > HPal(A

4
1),

HLL(A
1/2
1 ) > HLL(A1) > HLL(A

2
1) < HLL(A

3
1) > HLL(A

4
1),

HHY (A
1/2
1 ) > HHY (A1) > HHY (A

2
1) > HHY (A

3
1) > HHY (A

4
1),

H(A
1/2
1 ) > H(A1) > H(A2

1) > H(A3
1) > H(A4

1).

Consequently, on the basis of above results of the information mea-
sures HPal(A), HHY (A) and H(A) represents better ramifica-
tions than others. Further, we display the result only for HPal(A),
HHY (A) and H(A).
Let us consider another fuzzy set A2 of X = {6, 7, 8, 9, 10} de-
fined by

A2 = {(6, 0.2), (7, 0.3), (8, 0.4), (9, 0.7), (10, 0.8)} .

Table 2 Comparison of the measures of fuzziness HPal(A),
HHY (A) and H(A)

Fuzzy Set A
1/2
2 A2 A2

2 A3
2 A4

2

HPal(A) 1.501 1.513 1.386 1.094 1.241
HHY (A) 0.653 0616 0.577 0.393 0.298
H(A) 4.299 4.223 3.171 2.451 1.971

We generate A1/2
2 , A2

2, A3
2, A4

2 using above mentioned notion.
The results for the information measures HPal(A), HHY (A) and
H(A) are exhibit in Table 2. From the Table 2, the consequences
of ramifications are

HPal(A
1/2
2 ) > HPal(A2) > HPal(A

2
2) > HPal(A

3
2) > HPal(A

4
2),

HHY (A
1/2
2 ) > HHY (A2) > HHY (A

2
2) > HHY (A

3
2) > HHY (A

4
2),

H(A
1/2
2 ) > H(A2) > H(A2

2) > H(A3
2) > H(A4

2).

Consequently, the order of the proposed information measure
H(A) and HHY (A) represent better ramifications than HPal(A).
From the anterior comparisons, the proposed information measure
is authentically better for representing the quantification of fuzzi-
ness for fuzzy sets.

4. EXPONENTIAL FUZZY DISCRIMINATION
MEASURES

[11] defined the measure of directed divergence of probability dis-
tribution P from the probability distribution Q as

D(P : Q) =

n∑
i=1

pi log
pi
qi
. (4)

[10] also suggested the measure of symmetric divergence as

J(P : Q) =

n∑
i=1

(pi − qi) log
pi
qi
. (5)

The simplest fuzzy directed divergence measure and symmetric di-
vergence measure suggested by [1] are

IBP (A,B) =

n∑
i=1

[µA(xi) log
µA(xi)

µB(xi)

+(1− µA(xi)) log
(1− µA(xi))
(1− µB(xi))

], (6)

and

DBP (A,B) =

n∑
i=1

[
{µA(xi)− µB(xi)} log

µA(xi)(1− µB(xi))
µB(xi)(1− µA(xi))

]
.

(7)

3
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Thus (7) can be written as

DBP (A,B) = IBP (A,B) + IBP (B,A) (8)

Let us consider A, B ∈ FS(X), then the exponential measures
of information discrimination of A against B based solely on the
membership functions µA(xi) and µB(xi) are given by

I
′
(A,B) =

n∑
i=1

[
µA(xi)e

µA(xi)

µB(xi) + (1− µA(xi))e
(1−µA(xi))

(1−µB(xi)) − e
]

(9)
and

I
′
α(A,B) =

n∑
i=1

[µA(xi)e
α
(
µA(xi)

µB(xi)

)

+(1− µA(xi))e
α
(

(1−µA(xi))

(1−µB(xi))

)
− eα], (10)

where α > 0, α 6= 1.
However, it may be noted that (9) and (10) are undefined if
µB(xi) = 0 for any xi ∈ X .
So, in view of [13], (9) and (10) are taken as given below:

I(A,B) =

n∑
i=1

µA(xi)e

µA(xi)

1
/2(µA(xi)+µB(xi))

+(1−µA(xi))e

(1−µA(xi)){
1−1/2(µA(xi)+µB(xi))

}
−e], (11)

and

Iα(A,B) =

n∑
i=1

[µA(xi)e

α

(
µA(xi)

1
/2{µA(xi)+µB(xi)}

)

+(1− µA(xi))e

α

 (1−µA(xi)){
1−1/2(µA(xi)+µB(xi))

}
− eα]. (12)

Since I(A,B) and Iα(A,B) are not symmetric with respect to
its arguments, therefore, the corresponding exponential fuzzy sym-
metric discrimination measures are defined as

D(A,B) = I(A,B) + I(B,A) (13)

and

Dα(A,B) = Iα(A,B) + Iα(B,A). (14)

To prove the measures I(A,B) and Iα(A,B) are valid measures,
we show that I(A,B) ≥ 0 and Iα(A,B) ≥ 0 with equality if
µA(xi) = µB(xi) for each i = 1, 2, ......, n.
Let
∑n

i=1
µA(xi) = s and

∑n

i=1
µB(xi) = t, then

n∑
i=1

[µA(xi)e

µA(xi)

1
/2(µA(xi)+µB(xi))

+(1− µA(xi))e

(1−µA(xi)){
1−1/2(µA(xi)+µB(xi))

}
− e]

≥

s e s

1
/2(s+t) + (n− s)e

(n−s){
n−1/2(s+t)

}
− n e

 . (15)

From (15), we have

I(A,B) ≥
[
s e

2s
(s+t) + (n− s)e

2(n−s)
(2n−(s+t)) − n e

]
.

Further Let ψ(s) =
[
s e

2s
(s+t) + (n− s)e

2(n−s)
(2n−(s+t)) − n e

]
, then

ψ
′
(s) =

[
e

2s
(s+t) +

2st

(s+ t)2
e

2s
(s+t) − e

2(n−s)
{2n−(s+t)}

− 2(n− s)(n− t)
{2n− (s+ t)}2

e
2(n−s)

{2n−(s+t)}

]
,

and

ψ
′ ′
(s) =

{
e

2s
(s+t)

(
2t

(s+ t)2
+

2t(t− s)
(s+ t)3

+
4st2

(s+ t)4

)

+e
2(n−s)

{2n−(s+t)}

(
2(n− t)

{2n− (s+ t)}2
+

2(n− s)(n− t)
{2n− (s+ t)}3

+
4(n− s)(n− t)2

{2n− (s+ t)}4

)}
,

which shows that ψ(s) is convex function of s whose minimum
values arise when s

t
= n−s

n−t = 1 and are equal to zero. Hence
ψ(s) > 0 vanishes only when s = t.
Hence I(A,B) > 0 and it vanishes when A = B. Thus (11)
is valid discrimination information measure for FS(X). Conse-
quently, D(A,B) is valid symmetric discrimination information
measure for FS(X).
Similarly, it can easily be proved that the exponential fuzzy
discrimination measure Iα(A,B) proposed in (12) is a valid fuzzy
discrimination measure of order α. Consequently, Dα(A,B) is
valid symmetric discrimination measure for FS(X) of order α.
Now, we study the important properties of the exponential fuzzy
discrimination measures I(A,B) and Iα(A,B) given by (10) and
(11) respectively.

Theorem 2. Let A and B be two fuzzy sets in a fixed universe
of discourse X. Let A(xi) = µA(xi) and B(xi) = µB(xi)
satisfying either A ⊆ B or B ⊆ A, then the following holds:
(a). I (A ∪B,A) + I (A ∩B,A) = I (B,A) ;
(b). I (A ∪B,C) + I (A ∩B,C) = I (A,C) + I (B,C) ;
(c). I ((A ∪B)c, (A ∩B)c) = I (Ac ∪Bc, Ac ∩Bc) .
Proof: Let us separate X into X1 and X2, where
X1 = {x ∈ X : A(x) ⊆ B(x)} and
X2 = {x ∈ X : B(x) ⊆ A(x)} . It implies that
X1 = {xi : µA(xi) ≥ µB(xi),∀xi ∈ X} and
X2 = {xi : µA(xi) < µB(xi),∀xi ∈ X} .
Using the notions elaborated above in introduction, we have
In set X1,
A ∪B = Union of A and B
⇔µA∪B(xi) = max {µA(xi), µB(xi)} = µA(xi),
A ∩B = Intersection of A and B
⇔µA∩B(xi) = min {µA(xi), µB(xi)} = µB(xi).
In set X2,
A ∪B = Union of A and B
⇔µA∪B(xi) = max {µA(xi), µB(xi)} = µB(xi),
A ∩B = Intersection of A and B

4
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⇔µA∩B(xi) = min {µA(xi), µB(xi)} = µA(xi).
(a).

I (A ∪B,A) =
n∑
i=1

[µA∪B(xi)e

µA∪B(xi)

1
/2(µA∪B(xi)+µB(xi))

+(1− µA∪B(xi)) e

(1−µA∪B(xi)){
1−1/2(µA∪B(xi)+µB(xi))

}
− e],

=
∑
xi∈X1

[µA(xi)e

µA(xi)

1
/2(µA(xi)+µA(xi))

+(1− µA(xi)) e

(1−µA(xi)){
1−1/2(µA(xi)+µA(xi))

}
− e]

+
∑
xi∈X2

[µB(xi)e

µB(xi)

1
/2(µB(xi)+µA(xi))

+(1− µB(xi)) e

(1−µB(xi)){
1−1/2(µB(xi)+µA(xi))

}
− e]. (16)

Similarly,

I (A ∩B,A) =
n∑
i=1

[µA∩ B(xi)e

µA∩B(xi)

1
/2(µA∩B(xi)+µB(xi))

+(1− µA∩ B(xi)) e

(1−µA∩ B(xi)){
1−1/2(µA∩B(xi)+µB(xi))

}
− e],

=
∑
xi∈X1

[µB(xi)e

µB(xi)

1
/2(µB(xi)+µA(xi))

+(1− µB(xi)) e

(1−µB(xi)){
1−1/2(µB(xi)+µA(xi))

}
− e]

+
∑
xi∈X2

[µA(xi)e

µA(xi)

1
/2 (µA(xi)+µA(xi))

+(1− µA(xi)) e

(1−µA(xi)){
1−1 /2 (µA(xi)+µA(xi))

}
− e]. (17)

From (16) and (17), we have

I (A ∪B,A) + I (A ∩B,A)

=
∑
xi∈X1

[µB(xi)e

µB(xi)

1
/2(µB(xi)+µA(xi))

+(1− µB(xi)) e

(1−µB(xi)){
1−1/2(µB(xi)+µA(xi))

}
− e]

+
∑
xi∈X2

[µB(xi)e

µB(xi)

1
/2(µB(xi)+µA(xi))

+(1− µB(xi)) e

(1−µB(xi)){
1−1/2(µB(xi)+µA(xi))

}
− e],

=

n∑
i=1

[µB(xi)e

µB(xi)

1
/2(µB(xi)+µA(xi))

+(1− µB(xi)) e

(1−µB(xi)){
1−1/2(µB(xi)+µA(xi))

}
− e],

= I (B,A) .
Thus

I (A ∪B,A) + I (A ∩B,A) = I (B,A) .

Similarly, (b) and (c) can be proved.

Theorem 3. Let A,B ∈ FS(X), and A(xi) = µA(xi) and
B(xi) = µB(xi) satisfying either A ⊆ B or B ⊆ A, and α > 0
and α 6= 1, then the following holds:
(a). Iα (A ∪B,A) + Iα (A ∩B,A) = Iα (B,A) ;
(b). Iα (A ∪B,C) + Iα (A ∩B,C) = Iα (A,C) + Iα (B,C) ;
(c). Iα ((A ∪B)c, (A ∩B)c) = Iα (A

c ∪Bc, Ac ∩Bc) .
Proof: The results (a) to (c) are evident and can easily be verified.

Theorem 4. Let A and B be two fuzzy sets in a fixed universe of
discourseX , then it satisfies the following
(a). I (A,Ac) = I (Ac, A) ;
(b). I (Ac, Bc) = I (A,B) ;
(c). I (A,Bc) = I (Ac, B)
(d). I (A,B) + I (Ac, B) = I (Ac, Bc) + I (A,Bc) .
Proof:
(a).

I(A,Ac) =

n∑
i=1

[µA(xi)e

µA(xi)

1
/2(µA(xi)+µAc (xi))

+(1− µA(xi)) e

(1−µA(xi)){
1−1/2(µA(xi)+µAc (xi))

}
− e],

I(A,Ac) =

n∑
i=1

[
µA(xi)e

2µA(xi) + (1− µA(xi)) e2(1−µA(xi)) − e
]

(18)
and

I(Ac, A) =

n∑
i=1

[µAc(xi)e

µAc (xi)

1
/2(µA(xi)+µAc (xi))

+(1− µAc(xi)) e

(1−µAc (xi)){
1−1/2(µA(xi)+µAc (xi))

}
− e]
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I(A,Ac) =

n∑
i=1

[
µA(xi)e

2µA(xi) + (1− µA(xi)) e2(1−µA(xi)) − e
]
.

(19)
From (18) and (19), we get

I(A,Ac) = I(Ac, A).

Proceeding on the similar line, we can prove (b), (c) and (d).

Theorem 5. Let A, B ∈ FS(X), α > 0 and α 6= 1, then the
following holds:
(a). Iα (A,Ac) = Iα (A

c, A) ;
(b). Iα (Ac, Bc) = Iα (A,B) ;
(c). Iα (A,Bc) = Iα (A

c, B) ;
(d). Iα (A,B) + Iα (A

c, B) = Iα (A
c, Bc) + Iα (A,B

c) .
Proof: The results (a) to (d) are evident and can effortlessly be
verified.

5. APPLICATIONS
Fuzzy Sets are suitable tools to cope with imperfectly defined facts
and data as well as with imprecise knowledge. In this section, we
discuss the application of the exponential fuzzy symmetric discrim-
ination measure given by (13) to pattern recognition and diagnosis
of crop diseases.

5.1 Pattern Recognition
Let us consider the problem of three known patterns P1, P2 and P3,
which have classifications C1, C2 and C3 respectively.
The patterns are represented by the following FSs in X =
{x1, x2, x3}:

P1 = {(x1, 0.9), (x2, 0.8), (x3, 0.7)} , (20)

P2 = {(x1, 0.8), (x2, 0.9), (x3, 0.9)} , (21)

P3 = {(x1, 0.6), (x2, 0.8), (x3, 0.9)} . (22)

Given an unknown pattern Q, represented by the FS

Q = {(x1, 0.5), (x2, 0.6), (x3, 0.8)} . (23)

Here our aim is to classify Q to one of the classes C1, C2 and C3.
According to the principle of minimum discrimination measure be-
tween FSs, the process of assigning Q to Ck∗ is described by

k∗ = argmin
k
{D (Pk, Q)} . (24)

Table 3 presents D(Pk, Q), k ∈ {1, 2, 3} . We can observe that Q
has correctly being classified to C3.

Table 3 Symmetric exponential fuzzy discrimination measure
D (Pk, Q) , with k ∈ {1, 2, 3}

P1 P2 P3

Q 2.1292 1.3127 0.6374

Thus, Q has classification C3, since k∗ = 0.6374 is minimum.

5.2 Diagnosis of Crop Diseases
The exponential fuzzy symmetric discrimination measure is
applied to diagnose the common diseases in the crops. For that
let us consider the data of agriculture department provided by

Belahata gram panchayat of Satna District (M. P.), India.
The data consists of the set of crops C = {Wheat, Rice, Onion red,
Carrot}, the set of diseases D = {Bacterial, Fungal, Nematodes,
Viroid, Phytoplasmal} and the set of factors F = {Temperature,
Soil moisture, Insect, pH value, Humidity} mainly affecting the
crops in the region. Table 4 presents the associated characteristic
for the various diseases. The factors required for each crops are
given in Table 5. Each element of the table is given in the form
of the membership values, e.g., in Table 4 the temperature for
bacterial is described by (µ = 0.6) .

Table 4 Set of Symptoms Characteristic for Diagnosis

Bactarial Fungal Nematodes Viroid Phytoplasmal

Temperature 0.6 0.8 0.5 0.4 0.7
Soil Moisture 0.7 0.6 0.9 0.6 0.2
Insect 0.8 0.6 0.3 0.6 0.9
pH value 0.8 0.5 0.5 0.6 1.0
Humidity 0.8 0.9 0.7 1.0 0.3

Table 5 Set of Symptoms Characteristic for the Crop Consid-
ered

Temperature Soil moisture Insect pH value Humidity

Wheat 0.6 0.6 0.8 0.7 0.6
Rice 0.8 1.0 0.9 0.9 0.9
Onion red 0.9 0.8 0.5 0.5 0.8
Carrot 0.4 0.9 0.6 0.6 0.9

For proper diagnosis, we calculate ci ∈ C for each crop, where
i ∈ {1, 2, 3, 4} , the exponential fuzzy symmetric discrimination
measure for FSs D (f(ci), dk) between crop symptoms and the
set of symptoms that are characteristic for each diagnosis dk ∈ D
with k ∈ {1, ......, 5} . Similarly to (24), the proper diagnosis
dk∗ for the ith crop is derived as given below:

k∗ = argmin
k
{D (f(ci), dk)} (25)

We assign to the ith crop the diagnosis whose symptoms have the
lowest exponential fuzzy symmetric discrimination measure from
crop symptoms. The results for the crops considered are given in
Table 6.

Table 6 Symmetric exponential Fuzzy Discrimination Measure
Dj (f(ci), dk) among each Crop’s Symptoms and the Consid-
ered Set of Possible Diagnoses

Bacterial Fungal Nematodes Viroid Phytoplasmal

Wheat 0.3171 1.1558 1.8697 1.8950 2.3660
Rice 0.9180 1.8679 2.8611 2.5981 4.4129
Onion red 1.3647 0.3835 0.9964 1.9773 5.6814
Carrot 0.8800 1.2097 0.6862 0.7607 5.9645

From the Table 6, we infer that Wheat and Rice are most affected
by Bacterial Disease, Onion red is most affected by Fungal and
Carrot is affected by Nematodes.

6. CONCLUSIONS AND FUTURE WORK
In this paper, two new exponential fuzzy information measures are
introduced and proved their validity. The exponential fuzzy dis-
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crimination measures and exponential fuzzy symmetric discrimi-
nation measures of these exponential fuzzy information measures
are also developed. Further, the properties of the exponential fuzzy
symmetric discrimination measures are listed and finally, the pro-
posed exponential fuzzy symmetric discrimination measure has
been applied to problem of pattern recognition. Diagnosis of crop
disease using exponential fuzzy symmetric discrimination measure
is done. The method provides the maximum possibility of the crop
to be affected by particular diseases. It is worth mentioning that ex-
ponential fuzzy symmetric discrimination measures given by (13)
and (14) have lot of potentiality for application in study of various
new challenges of pattern recognition, medical diagnosis, image
processing etc.
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