
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

7

Optimization in Power Usage of Smartphones

Balaji A. Naik
CSE Department

SGGSIE&T, Nanded-431606

R.K. Chavan
CSE Department

SGGSIE&T, Nanded-431606

ABSTRACT

The demand for smartphones and mobile based applications is

growing very fast since past few years. Thousands of

applications on Google Play store received millions of

downloads. The growing smartphone functionalities have

increased its energy requirements. The applications provide

amazing features and rich user interfaces, make use of hi-tech

sensors leading to high power utilization. Many such

application contains various kinds of power bugs which leads

to unnecessary processes running in the system. There is large

scope to optimize power utilization in smartphones. This

paper identifies various components in smartphones that

utilize power causing unnecessary power wastage in the

system. It highlights various subsystems proposed by

researchers in order to optimize power consumption in

smartphones.

General Terms
Mobile computing, Smartphone Energy optimization.

Keywords

Smartphone, Applications, Power usage, Energy bugs,

Optimization.

1. INTRODUCTION
There has been an evolutionary change witnessed since past

few years in the mobile devices. Recent smartphones utilize

powerful hardware and sensors which provide greater

facilities to the users. Development in smartphone technology

increased the energy requirement of these devices.

Smartphones are battery driven to allow mobility to the user.

Many users would be satisfied if their smartphones simply

lasted for many days on a single charge. Unfortunately,

battery needs to be recharged several times a day under

normal usage. Power utilization is limiting the development of

smartphones as the improvement in battery capacity is

moderate compared to the increase in the complexity due to

new hardware and services [5]. Power consumption has

always been an issue in smartphones and applications written

by amateur programmers are making it even more difficult.

As batteries can store fixed amount of power, the operational

time a user can use its phone within one charging cycle is

limited. The operational time is one of the important factors

for consumers when they buy a new phone, therefore, the

smartphone industry is very keen in finding solutions to

extend the operational time.

Battery lifetime can be extended manually by managing

hardware components such as GPS, 3G, Wi-Fi, Bluetooth,

turning them off when they are not in use. However, this

method is frustrating as users struggle to remember when to

have different components on/off or they forget to enable a

device they need.

Optimizing power utilization has been investigated at various

levels such as system, circuit architectures, processors,

memories, displays, wireless subsystems, and software [2]. A

core requirement of effective and efficient management of

power is a good understanding of where and how the power is

used, how much of the system’s power is consumed by

different parts of the system.

This study identifies the power consuming components of

smartphone in section 2. Performance parameters of these

components under different usage scenarios are discussed in

section 3. Major causes of battery draining are enlisted in

section 4. Different solutions and methodologies, proposed by

various researchers are discussed in section 5. Related work

and conclusion are discussed in section 6 and section 7.

2. POWER CONSUMING

COMPONENTS OF SMARTPHONES
A study published in 2010 by Aaron Carroll and Gernot

Heiser [1] measured various key points of a smartphone. For

example, they measured each component, such as the GPS, all

under different power modes and usage levels. The power

drain of each component varies greatly on usage. For

example, calls drained 834mW and GPS 143- 166mW on the

average. Screen backlight amounts to between 7-8mW to

404mW depending on brightness. It should also be noted that

the testing device is a 2.5G phone and 3G drains more power.

Mobile devices sensors majorly contribute to the total power

utilization of the device. The most common today are the

Accelerometer, Camera, GPS, Compass, Gyroscope,

Gravitation sensors, Light sensor, Proximity sensors, Pressure

sensors etc. Mobile hardware such as Network Module, Flash

Card, RAM, Processor, Audio and Video Codecs are also

consumes lot of battery power. Figure 1 shows the major

components of the smartphone that utilizes battery power.

Based on the study by Carroll and Heiser [1] the power

utilizations of smartphone components are discussed below.

2.1 Display
The power consumed by the display backlight over the range

of an integer value between 1 and 255. This is controlled by

power management module. A typical Brightness control UI

gave the value between 30 and 255. The minimum backlight

power is approximately 7.8mW and the maximum 414mW.

The backlight consumes negligible power when disabled [1].

2.2 CPU and RAM
CPU and RAM uses a lot of power in overall system

approximately around 15% [1] and it increases with usage. It

is core part and needs to be awaken at all the time as long as

the phone is switched on. Certain processes such as video

streaming, internet browsing, CPU utilization rises it starts

consuming more battery. RAM& SD Card Both are memory

units and uses around 7-10% each [27] of the total battery

power while performing memory read/write operations [29].

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

8

Figure 1: Power consuming components of Smartphone

2.3 Network
Wi-Fi and GPRS are biggest contributor in utilization of

power. Wi-Fi showed a throughput of 660.1 ± 36.8 KiB/s, and

GPRS 3.8 ± 1.0 KiB/s. The increased CPU and RAM power

for Wi-Fi reflects the cost of processing data with higher

throughput. The effect of signal strength on power resulted in

an increase of GSM power of30%, but no effect on

throughput.

2.4 GPS
The power consumed by the GPS module in three situations

as shown below in Table 1 using only the internal antenna,

with an external active antenna attached, and when idle [28]

[1].

Table 1: GPS Energy Consumption

State Power(mW)

Enabled (Internal Antenna) 143.1 ± 0.05%

Enabled (External Antenna) 166.1 ± 0.04%

Disabled 0.0

2.5 Bluetooth
To measure Bluetooth power utilization, the audio output to a

Bluetooth stereo headset was played. The power difference

between this and the baseline audio benchmark should yield

the utilization of the Bluetooth module. The headset was

placed approximately 30 cm from the phone, and 10m in the

far benchmark as shown in Table 2.

Table 2: Bluetooth power under the audio benchmark

Benchmark Power (mW)

Total Bluetooth

Audio baseline 459.7 -

Bluetooth (near) 495.7 36.0

Bluetooth (far) 504.7 44.9

The major components are GSM module and display, LCD,

Touchscreen, Graphics, Accelerator, and the backlight. The

GSM module consumes a great deal of both static and

dynamic energy. During phone call, GSM consumes 800mW

on average. Dimming the backlight during a call saves up to

40% power even with the large GSM. The RAM, audio and

flash subsystems showed the lowest power utilization. Video

playing, is one of most data-intensive uses of mobile devices.

Table 3: Overall Power utilization for different parts of

the mobile phone [6] [7].

3. USAGE SCENARIOS
3.1 Audio playback
The audio subsystem typically consumes 33.1mW.

Approximately 58% of this energy is consumed by the codec,

with the remaining 42% used by amplifier. Overall, the audio

subsystem accounts for less than 12% of energy consumed.

The additional energy consumed in the high-volume

benchmark is less than 1mW compared with the low-volume

case [1].

3.2 Video playback
A video file of 5 minute was recorded without audio and

played on the same platform to measure the power usage. The

brightness levels with backlight power on were 30, 105, 180

and 255. GSM power was included in the measurements. The

CPU is biggest single contributor of power, the display

subsystems still account for 38% of aggregate power, up to

68% with maximum backlight brightness. Negligible power

requires to load the video from the SD card.

3.3 Phone call
The measurement of power utilization of a GSM phone call

includes loading the dialer application, dialing a number, and

making a 57-second call. Thus the time spent in the call was

approximately 40 seconds, assuming a 7-second connection

time. The total benchmark runs for 77 seconds. GSM power

clearly dominates in this benchmark at 832:4 ± 99:0 mW.

Android disables the backlight during the call.

3.4 Web Browsing
The power utilization for web-browsing workload using both

GPRS and Wi-Fi connections. The benchmark ran for a total

of 490 seconds which consisted of loading the browser

application, selecting a web site and browsing several pages.

Component Action Power

utilization[mW]

CPU usage 50% 462

Wi-Fi In connection 868

Idle 58

Downloading at

4.5Mbps

1450

Display Black background

20%intensity

63.0

White background

100%

527.05

Memory Saving 1 Mb on

drive

587.7

Voice Making a voice call

(3G)

1265.7

Video Making a video call

(3G)

2210

Bluetooth BT on 15

BT sending 432

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

9

Here the BBC News website used. After every run, the

browser cache was cleared. GPRS consumes more power than

Wi-Fi by a factor of 2.5. Other components do not display any

difference between the two benchmarks.

Overall, the contribution of different components to system

power utilization under Different Usage Scenarios is as shown

in Figure 2. In all usage scenarios, except GSM phone call,

static power accounts for 50% of the total. If the backlight is

included, this figure rises. This concludes that the most

effective power management method on mobile is to shut

down unused components and disable their power supplies.

Figure 2: Energy Consumption on a Typical Smartphone

4. CAUSES OF BATTERY DRAINING
There are many aspects to look at the problem of high energy

utilization in smartphones. Some of the major causes of

battery draining are discussed below.

4.1 Missing sensor Deactivation Bugs
To use a sensor, an application needs to register a listener with

OS, and specify a sensing rate [9].When use of sensors is

finished, its listener should be unregistered in time. Forgetting

to unregister sensor listeners can cause unnecessary sensing

operations.

4.2 Wake lock Registration Bugs
To keep a smartphone awake for operations, Applications

need to acquire a wake lock from OS and specify a wake

level. A full wake lock can keep a CPU awake and its screen

at full brightness. Acquired wake lock must be released as

soon as the computation finishes execution. Forgetting to

unregister wake locks can quickly drain the battery [10].

4.3 Sensory Data Underutilization
Sensory data are acquired at the cost of battery power. These

data must be effectively used by applications to produce

benefits to phone user. When an application’s program logic

becomes complex, sensory data may be “underutilized” in

certain executions. In such executions, the power cost for

acquiring sensory data may outweigh the actual usages of

these data.

4.4 No-Sleep power bugs in smartphone

applications
No-sleep bugs are power bugs resulting from miss-handling

power control APIs in an app, which keeps smartphone

components staying on for an unnecessarily long period of

time. No-sleep bugs form one important category of the

family of smartphone power bugs as errors in the mobile

system that causes an unexpectedly high power utilization by

the system as a whole.

4.5 Signal Dead Spots
Smartphone is always scanning for a signal and scanning is a

power consuming task. A major source of smartphone power

utilization is accessing the Internet through 3G or Wi-Fi. But

wireless channel can be noisy and signal strength can be low

or poor. The poor signal strength makes mobile try harder to

establish connection with the network and may leads to

several retransmissions [11]. Hence low signal strength or

signal dead spots can significantly inflate the actual power.

4.6 Multimedia streaming
Decoding and Display are often responsible for a large part of

power utilization, wireless interfaces can equally deplete the

same amount of power when running audio or video

streaming applications in mobiles. A typical Wi-Fi interface

can use three times the power required to decode audio or

video [15], whereas 3G interface requires five times the audio

decoding power [12].

4.7 Web browsing
The current smartphone internet browser wastes a lot of

power when downloading webpages. Wireless radio interface

consumes a large amount of power even in no network traffic.

Radio interface keeps connection established for further

communication. It keeps radio interface to be always on and

the radio resource cannot be released.

4.8 Heavy Computation programming
Large computing processes can drain smartphone battery

quickly. Executing such operations increases CPU utilization

to large extent. Instead Remote execution to reduce the power

needs of mobile devices. Applications can take advantage of

the resource-rich infrastructure by delegating code execution

to remote servers. For example Firefox OS available in recent

mobiles executes some of the heavy computing processes on

remote severs.

4.9 Abnormal Battery Draining
ABD refers to abnormally draining of a smartphone battery

that is not caused by normal usage. This power loss occur due

to some triggering events or overuse of some application or

hardware failure. ABD can occur while installing certain

application or upgrading the previously installed one. It may

also occur due to some misbehaving in the hardware while

rebooting the system. Many other operations can trigger ABD

such as downloading some malicious content, overusing an

application etc.

4.10 Other causes for Power wastage
Power wastage can occur due to many other reasons such as

keeping apps running in the background, improper charging,

keeping Wi-Fi, GPS and mobile data on, keeping brightness at

high level, keeping Bluetooth on, Overuse for gaming and

high resolution video playbacks etc.

5. OPTIMIZATION TECHNIQUES

5.1 Diagnosing Power Bugs in Applications
Yepang Liu, Chang Xu and S.C. Cheung [17] have proposed

Green-Droid: “An automated method to diagnosing power

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

10

problems in Android applications”. Although the root causes

of power problems can vary with different applications, many

of them (over 60 percent) are closely related to two types of

problems:

1. Missing sensor or wake lock deactivation.

2. Sensory data underutilization.

5.1.1 Missing Sensor or Wake Lock Deactivation
A full wake lock keeps a phone’s CPU awake and its screen

on at full brightness [10]. The acquired wake lock must be

released as soon as the operation completes. Forgetting to

unregister wake locks in time can quickly drain a phone’s

battery. To detect missing sensor and wake execution of an

application following two policies need to be implemented:

Sensor Management Policy: A sensor listener once registered,

must be unregistered eventually before the application

component that registered is destroyed.

Wake Lock Management Policy: A wake lock once acquired

must be released eventually before the application component

that acquired is destroyed.

5.1.2 Sensory Data Underutilization
The above method of Automated Diagnosis of applications

with Green-droid identifies smartphone applications that

collects sensory data. These data are obtained at high power

cost, so it should be utilized effectively by applications. This

method addressed two issues. One is, sensory data, once

received by an app, would be transformed to different forms

to be used by all components of the applications. This allows

sensory data usage to be tracked continuously. It tracks data

usage throughout the lifetime of an application by following

techniques:

Preparing and Tainting Sensory Data: The sample sensory

is fed to the application under analysis after each event

handler’s call. Object references for each sensory datum are

initialized with a unique taint mark before the datum is fed to

the application.

Propagating Taint Marks: Tainting policy comprises

12rules of taint propagation. Which handles the taint

propagations along data dependencies. Taint propagation

terminates when the application under analysis finishes its

handling of sensor event.

Analyzing Sensory Data Utilization: The program data with

taint marks associated with sensory data, analysis is done on

how sensory data are used in an Android application and

whether the uses are effective with respect to power cost.

Architectural diagram of Working of Green-Droid is

shown in Figure 3.

Figure 3: Green-Droid Architecture Overview

This method explores an application’s state space by

executing the application using Java Path Finder (JPF). It

monitors sensor and wake lock operations to detect missing

deactivation of sensors and wake locks. It also tracks usage of

sensory data and their utilization by the application using data

utilization metric. This approach can generate detailed reports

with information to assist developers in detecting power

problems.

5.2 Detecting No-Sleep Power Bugs in

Smartphone Apps
A study proposed by Pathak & Jindal [18] in 2012 is one more

attempt towards detecting the problems in applications. Study

is based on no-sleep power bugs in real world apps and

services. A “No-Sleep Bug” is a condition where at least one

component of the phone is woken up and is not put to sleep

due to a bug in power control APIs in applications [23].

Components which are woken up continues to drain the

battery for a long period of time. The No-Sleep Bug detector

program [18] developed by Pathak and Jindal uses following

approach. The bugs are collected by crawling Internet mobile

forums, bug repositories, commit logs of applications.

1) Characterization study of no-sleep energy bugs in

smartphone applications.

2) Automatically detect no-sleep power Bugs [22].

3) Detecting no-sleep bugs in Android apps and framework

[31].

5.3 Code Offloading to Improve Battery

Life
A study published in 2010 by E Cuervoy, A

Balasubramanianz, Dae-ki Cho [19] called MAUI to reduce

the power needs of mobile devices applications by delegating

code execution to remote servers. This idea of code execution

to the remote servers utilizes program partitioning, specifying

what components need to be remotely executed. Another

approach by J. Flinn, D. Narayanan [16] to use full process

[20] or full VM migration [13, 14] in which individual

applications can migrate to the infrastructure.

MAUI combines the benefits of both approaches: it

maximizes power savings through code offload. Second, it

uses programming to automatically identify the remote able

methods and extract only the program state needed by those

methods [30]. The Figure 4 provides a high-level architecture

of the MAUI which consists components such as an interface

to the decision engine, a proxy to handle the control and data

transfer for method which are offloaded and a profiler for

instrumenting the program and collecting measures of the

program’s power and data transfer needs.

Figure 4: MAUI Architecture High level view

MAUI consists of following four components:

5.3.1 Program Partitioning
MAUI helps developers to point out remote able methods and

classes that should consider offloading to a server. Code

which should not be marked remote able: 1) code that

implements user interface 2) Computation that interacts with

I/O devices where such interaction only makes sense on the

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

11

mobile device; and 3) code that interacts with any external

component that would be affected by re-execution.

5.3.2 Performing Code Offload
The proxies decides, that the method in question should be

executed locally or remotely based on input from profiler, and

the proxy handle both control and data transfer based on this

decision. Sever side proxy performs the necessary

serialization and transfers control back to the smartphone.

5.3.3 MAUI Profiler
MAUI determines whether the method invocation should run

locally or remotely. The MAUI profiler measures the device

characteristics at initialization time, the program and network

properties.

5.3.4 MAUI Solver
The MAUI solver uses data collected by the MAUI profiler.

The solver’s goal is to find a program partitioning strategy

that minimizes the smartphone’s power utilization.

5.4 Power Optimization in Web-Browsing
Another new approach is proposed by Bo Zhao, Qiang Zheng

and Guohong Cao [48] to optimize the power usage while

internet browsing in 3G based smartphones. Smartphone

based web browsing wastes a lot of power when downloading

webpages due to the special characteristics of the 3G radio

interface.

Smartphone browsers takes a long time for downloading and

processing all objects in a webpage. Which consumes lots of

power and decreases the network capacity. This method uses

two techniques. To reorganize the computation sequence of

the web browser to retrieve all data in the webpage quickly.

Next, it describes how to separate objects of different types.

For the execution to process HTML files, we scan them to

fetch the objects referred by URLs.

5.4.1 Intermediate Display
To improve user experience, original web browsers always

draw intermediate display and update it frequently when

loading pages on web. By parsing 1/3 webpage content, a

simplified intermediate display can be drawn. Because this

display does not need CSS rules [26] or style formats, it costs

little layout computation only and it can be displayed much

earlier than the original web browser.

It is seen that this method reduces the data transmission time

by 27%. This approach can reduce the power use by 30.9%.

Most of this power saving comes from reducing the data

transmission. This method is one of the best technique to

optimize mobile energy consumption.

5.5 Abnormal problems of battery draining
A tool eDoctor [49] is implemented by Xiao Ma, Peng Huang,

which is used to identify an abnormal problems of application.

ABD refers to abnormally fast draining of a smartphone’s

battery that is not caused by normal usage. Major reasons of

Abnormal Battery Draining are:

1) Android app problems.

2) Overuse or misuse of certain types of resources.

3) Installation of compromised smartphone application.

4) Upgrading existing app to a malicious version.

5) Changing configurations to be more power-consuming.

6) Entering a weak signal area.

eDoctor tool is to help users diagnose and resolve battery

drain problems. The tool diagnosis focuses on identifying

which app causes an ABD issue and which event is

responsible. Based on such diagnosis result, it then suggests

appropriate repair solutions [32].

This tool monitors CPU, GPS, sensors such as accelerometer

and compass, wake lock, audio, Wi-Fi, and network. It also

records battery utilization of every app in each recording

interval. It employs profile based power model instead of

expensive state-based power models [24, 25].The eDoctor

records two types of events, configuration changes and

maintenance events such as installation, updates. When users

recognizes ABD problems, eDoctor’s Diagnosis Engine,

pinpoints the culprit app and the causing events and suggest

suitable repair solutions.

Table 4: Comparative analysis of existing techniques

Algorithm Type of Analysis

Green-Droid

Analysis of application source

codes to find the energy bugs

related to Wake-locks and

sensor registrations.

No-Sleep Bug by Pathak and

Jindal

Analysis of applications to

find normal processes and

background processes that

keeps smartphone awake.

MAUI

MAUI based on delegating the

heavy code executions to

remote servers, in order to

minimize the processing load

of smartphone.

Web-Browser Optimization

While using the smartphone

browsers, a light weight

intermediate frame is inserted

to perform page loading faster

and hence minimizing energy

usage.

eDoctor For ABD

ABD (Abnormal Battery

Draining) caused due to some

triggering of events result to

significant energy wastage.

eDoctor is a tool to help users

diagnose and resolve battery

drain problems.

Optimizing Tools Like DU

Battery saver, Battery Doctor

etc.

There are practical tools which

directly optimize the power

usage by forcing the running

processes to stop and

configuring the smartphone

display, sensor settings for

minimum power usage.

6. RELATED WORK
Researchers have worked on many different issues in the

domain of smartphone energy utilization and resolved those

issues using many different strategies. MAUI [30] helped

offload “power-consuming” operations to resource-rich

infrastructures such as remote servers. EnTracked [38] and

RAPS [39] adopted various heuristics to guide an application

to utilize sensors like GPS in a smart way. Little Rock [40]

proposed a dedicated low energy processor for energy-

consuming operations. SALSA [46] helped to select optimal

data links for saving power in big data transmissions. Kim et

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

12

al [45] proposed to use power signatures on system hardware

states to detect power-greedy malware.

Zhang et al [44] proposed a taint-tracking technique for the

Android platform to detect power wastes due to unnecessary

network communications. Power Tutor [43] uses system-level

energy-utilization models to estimate the power consumed by

big system components at the time of the execution of mobile

applications. Different tools have been developed for

detecting resource leaks [41]. For example, QVM [41] is a

specialized runtime environment for detecting problems in

Java programs. It monitors apps executions and checks for

violations of resource safety policies.

Dynamic information flow tracking scans interesting data as

they propagate in a program execution [37]. Taint- Check [36]

uses Dynamic information Flow Tracking to protect

commodity software from memory corruption attacks such as

buffer overflows. Taint-Droid [35] prevents Android

applications from leaking users’ private data. It tracks such

data from privacy sensitive sources, and warns users when

these data leave the system. MobiBug [34] is a framework for

debugging mobile applications that focuses on how to perform

lightweight logging on resource-limited smartphones.

MobiBug is designed as a traditional bug tracing system, to

target bugs that result in app crashes. Pathak et al. [33]

proposed “Eprof”, a tool that performs fine-grained energy

profiling by tracing system calls.

7. CONCLUSION
Optimization in power usage of applications in smartphone

has become an important field for research in today’s IT

world. The major reasons for battery draining in smartphones

are Network Data Communication such as Multimedia

Streaming, GPS, Wi-Fi, and Signal Dead Spots. Usage

scenarios such as high level of Backlight, high resolution

Video Playbacks, Graphics Rich Gaming, and Heavy

Computing Processes are the main sources power

consumption. Other causes of power wastage are Application

Energy Bugs, No- Sleep Bugs, Unnecessary use of Sensors

and continuously running Background Processes. Wake Locks

and Sensors can also quickly drain the battery if the

programmers forget to unregister it in time. This study

highlighted the problems and the solutions for optimization of

energy consumption in smartphones.

8. REFERENCES
[1] A. Carroll and G. Heiser, “An analysis of power

utilization in a smartphone”, in Proceedings of the 2010

USENIX conference on USENIX annual technical

conference, USENIXATC10, (Berkeley, CA, USA), pp.

21-21, USENIX Association, 2010.

[2] Olsen, C.M. Narayanaswami, “Power-Nap: An efficient

power management scheme for mobile devices”, IEEE

Trans. On Mobile Computing, Vol. 5, No. 7, pp. 816-

828. 2006.

[3] “Nanowire battery can hold 10 times the charge of

existing lithium-ion battery”, Stanford technical report,

Stanford, 2007.

[4] Q. Naing, V. Hoffer, J. A. Weber, D. J.Kuo, A. D.

Donelan, J. M. Li, “Biomechanical power harvesting:

Generating electricity during walking with minimal user

effort”, Science, Volume 319, Issue 5864:807, 2008.

[5] Findlay Shearer, “Power management in mobile

devices”, chapter Hierarchical View of Power

Conservation, pages 32-75. Newnes, 2008.

[6] G.P. Perrucci, F.H.P Fitzek, J. Widmer, “Power

Utilization Entities on the Smartphone Platform”.

[7] www.forum.nokia.com/devices/n95.

[8] Sean Maloney, Ivan Boci, “Survey on Techniques for

Efficient power utilization in Mobile Architectures”,

March 16th, 2012.

[9] Android Sensor Management. (2013). [Online].

Available:http://developer.android.com/reference/androi

d/hardware/SensorManager.html

[10] Android power management. (2013). [Online].

Available:http://developer.android.com/reference/androi

d/os/PowerManager.html

[11] Ning Ding, Daniel Wagner, Xiaomeng Chen,

“Characterizing and Modelling the Impact of Wireless

Signal Strength on Smartphone Battery Drain”.

[12] Mohammad A. Hoque, MattiSiekkinen, and Jukka K.

Nurminen, “On the power efficiency of proxy-based

traffic shaping for mobile audio streaming”, in Consumer

Communications and Networking Conference.

[13] B.-G. Chun and P. Maniatis, “Augmented Smartphone

Applications through Clone Cloud Execution”, in Proc.

Of the 8th Workshop on Hot Topics in Operating

Systems (HotOS), Monte Verita, Switzerland, May 2009.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,

“The Case for VM-based Cloudlets in Mobile

Computing”, IEEE Pervasive Computing, 8(4), 2009.

[15] Surendar Chandra, Amin Vahdat, “Application-specific

network management for power-aware streaming of

popular multimedia formats”, in Proc. General Track of

the annual conference on USENIX Annual Technical

Conference, pages 329–342. USENIX, 2002.

[16] J. Flinn, D. Narayanan, and M. Satyanarayanan, “Self-

Tuned Remote Execution for Pervasive Computing”, In

Proc. of the 8th Workshop on Hot Topics in Operating

Systems (HotOS), Schloss Elmau, Germany, May 2001.

[17] Yepang Liu, Chang Xu, S.C. Cheung, “Green-Droid:

Automated Diagnosis of Energy Efficiency for

Smartphone Applications”, in proc. IEEE Transactions

on Software Engineering. Vol. 40 Sept 2014.

[18] A Pathak, A. Jindal, “Characterizing and Detecting No-

Sleep Energy Bugs in Smartphone Apps”, MobiSys’12,

June 25–29, 2012.

[19] Eduardo Cuervoy, Aruna Balasubramanianz, Dae-ki

Cho, “MAUI: Making Smartphones Last Longer with

Code Offload”, in MobiSys’10, San Francisco,

California, June 15–18, 2010.

[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The

Design and Implementation of Zap: A System for

Migrating Computing Environments”, in Proceedings of

the Fifth Symposium on Operating Systems Design and

Implementation (OSDI), 2002.

[21] J. Liu and L. Zhong, “Micro power management of

active 802.11interfaces”, in Proc. ACM MobiSys, 2008.

[22] A. Aho, M. Lam, R. Sethi, and J. Ullman, “Compilers:

principles, techniques, and tools”, Pearson/Addison

Wesley.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.18, June 2015

13

[23] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping

power debugging for smartphones: A first look at power

bugs in mobile devices”, in Proc. of Hotnets, 2011.

[24] Shye, A., Scholbrock, B., and Memik, G., “Into the Wild:

Studying Real User Activity Patterns to Guide Power

Optimizations for Mobile Architectures”, in Proceedings

of the 42nd Annual IEEE/ACM International

Symposium on Micro architecture(2009),Micro 42,

ACM, pp. 168–178.

[25] Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P.,

Mao, Z. M., and Yang, L., “Accurate Online Power

Estimation and Automatic Battery Behavior Based

Power Model Generation for Smartphones”, in Proc. of

the eighth IEEE/ACM/IFIP International Conference on

Hardware/software Code sign and System

Synthesis(2010), CODES/ISSS ’10, ACM, pp. 105–114.

[26] L. A. Meyerovich and R. Bodik, “Fast and parallel

webpage layout,” in Int’l Conf. on World Wide Web

(WWW), 2010.

[27] Snowdon, D. C., Le Sueur, E., Petters, S. M., And

Heiser, G. “Koala: A platform for OS-level power

management”, in Proceedings of the 4th EuroSys

Conference, Nuremberg, Germany, Apr. 2009.

[28] U-BLOX AG. ATR0630 Data Sheet, July 2006.

GPS.G4-X-06009-P2.

[29] Bircher, W. L., And John, L. K, “Analysis of dynamic

power management on multi-core processors”, in

Proceedings of the 22nd International Conference on

Supercomputing (Island of Kos, Greece, June 2008), pp.

327–338.

[30] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, “MAUI: Making

smartphones last longer with code offload,” in Proc. Int.

Conf. Mobile Syst., Appl. Serv., 2010,pp. 49–62.

[31] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, Samuel

P. Midkiff. “What is keeping my phone awake?

Characterizing and Detecting No-Sleep Energy Bugs in

Smartphone Apps”.

[32] Xiao Ma, Peng Huang, XinxinJin, Pei Wang, Soyeon

Park, Dongcai Shen. “eDoctor: Automatically

Diagnosing Abnormal Battery Drain Issues on

Smartphones”.

[33] Pathak, A., Hu, Y. C., and Zhang, M., “Where is the

Energy Spent inside My App: Fine Grained Energy

Accounting on Smartphones with Eprof”, In Proceedings

of the 7th ACM European Conference on Computer

Systems (2012), pp. 29–42.

[34] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl,

“There’s an app for that, but it doesn.t work. Diagnosing

mobile applications in the wild”, in Hotnets, 2010.

[35] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P.

McDaniel, and A. N. Sheth, “TaintDroid: An

information-flow tracking system for real time privacy

monitoring on smartphones”, in Proc. USENIX Conf.

Operating Syst. Des. Impl. 2010, pp. 393–407.

[36] J. Newsome and D. Song, “Dynamic taint analysis for

automatic detection, analysis, and signature generation of

exploits on commodity software”, in Proc. ISOC Netw.

Distrib. Syst. Security Symp., 2005.

[37] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.

Keromytis, “Libdft: Practical dynamic data flow tracking

For commodity systems”, in Proc. ACM Conf. Virtual Exe.

Env., 2012, pp. 121–132.

[38] M. B. Kjærgaard, J. Langdal, T. Godsk, and T. Toftkjær,

“Entracked: Energy-efficient robust position tracking for

mobile devices”, in Proc. Int. Conf. Mobile Syst. Appl.

Serv., 2009, pp. 221 234.

[39] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-

adaptive GPS-based positioning for smartphones”, in

Proc. Int. Conf. Mobile Syst. Appl. Serv., 2010, pp. 299–

314.

[40] B. Priyantha, D. Lymberopoulos, and J. Liu, “LittleRock:

Enabling energy-efficient continuous sensing on mobile

phones”, in IEEE Pervasive Compute., vol. 10, no. 2, pp.

12–15, Apr.–Jun. 2011.

[41] M. Arnold, M. Vechev, and E. Yahav, “QVM: An

efficient runtime for detecting defects in deployed

systems”, in ACM Trans. Software Eng. Methodology.,

vol. 21, pp. 2:1–2:35, 2011.

[42] I. Dillig, T. Dillig, E. Yahav, and S. Chandra, “The

CLOSER: Automating resource management in Java”, in

Proc. Int. Symp. Memory Manage, 2008, pp. 1–10.

[43] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M.

Mao, and L. Yang, “Accurate online power estimation

and automatic battery behavior based power model

generation for smartphones”, in Proc. Int. Conf.

Hardware/Software. Codes. Syst. Synthesis, 2010, pp.

105–114.

[44] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P.

Dinda, and L. Yang, “ADEL: An automatic detector of

energy leaks for smartphone applications” in Proc. 8th

IEEE/ACM/IFIP Int. Conf. Hardware/Software. Codes.

Syst. Synthesis, 2012, pp.363–372.

[45] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-

greedy anomalies and mobile malware variants”, in Proc.

Int. Conf. Mobile Sys. App., Serv., 2008, pp. 239–252.

[46] M. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H.

Krieger, and M. J. Neely, “Energy-delay tradeoffs in

smartphone applications”, in Proc. Int. Conf. Mobile

Syst. Appl. Serv., 2010, pp. 255–270.

[47] Narendran Thiagarajan, Gaurav Aggarwal and Angela

Nicoara. “Who Killed My Battery: Analyzing Mobile

Browser Energy Consumption”, in Proc. International

World Wide Web Conference2012 – Session: Mobile

Web Performance Lyon France April 16–20, 2012.

[48] Bo Zhao, Qiang Zheng, Guohong Cao, “Energy-Aware

Web Browsing in 3G Based Smartphones”, in Proc.

IEEE 33rd International Conference on Distributed

Computing Systems.2013.

[49] Xiao Ma, Peng Huang, XinxinJin, Pei Wang, “eDoctor:

Automatically Diagnosing Abnormal Battery Drain

Issues on Smartphones”.

IJCATM : www.ijcaonline.org

