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ABSTRACT
In this paper, a novel systematic design procedure is presented
for a class of uncertain nonlinear systems. Such design proce-
dure can remove the control input terms which contain the un-
known nonlinearities as the control coefficients, and provides the
following advantages: it not only avoids a possible singularity
problem completely, but also simplifies the control design pro-
cess. Moreover, the proposed design procedure can provide sim-
ple control structure under the relaxed conditions, which is easy
to implement and can be applied to a wider class of systems.
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1. INTRODUCTION
Due to its capable of improving a control system performance and
stability, adaptive control is a potentially promising technology and
has been receiving an increasing amount of attention within control
systems society ([1]-[3] and the references therein). Compared with
the traditional fixed-gain controller, the distinct feature of adaptive
control is the design parameter adaptation which makes it accom-
modate system uncertainties and improve the control system per-
formance. Nonetheless, such a feature causes a challenge when the
control coefficient b(x) is unknown and is approximated by the
approximation b̂(x, Ŵ ). Although the controlled systems are as-
sumed to be controllable, i.e., |b(x)| 6= 0, the approximation model
may lose its controllability at some points as b̂(x, Ŵ ) → 0 during
the parameter adaptation period, which is referred to the so-called
singularity problem.

For the control of nonlinear system with the unknown control coef-
ficient, additional precautions have to be made to handle the afore-
mentioned problem, such as choosing the initial parameter suffi-
ciently close to the ideal value by off-line training before the op-
eration [4], or applying a projection algorithm to project the esti-
mated parameters in a feasible set, in which b̂(x, Ŵ ) 6= 0 (some a
priori knowledge is required for the feasible parameter set, and no

systematic procedure is available for constructing such a set) [5]-
[8], or requiring the upper bound of the first time derivative of b(x)
being known a priori [7], [9]. Recently, several elegant adaptive
control schemes were proposed for a special class of nonlinear sys-
tems [10, 11], where singularity problem was avoided based on the
independence of b(x) on xn was assumed. Such structural assump-
tion was removed in [12] by introducing an integral-type Lyapunov
function, and a singularity-free adaptive neural controller was pro-
vided under the assumptions that b0 (i.e., the lower bound of b(x))
and some extra a priori knowledge were needed. Due to the integral
operation, this method led to complex and difficult to implement
controllers. Improvements on the result of [12] were addressed in
[13, 14], and drawn two points. The one point was proposed adap-
tive controllers with lower dimensionality of neural networks, the
other point was relaxed certain restrictions in [12], such as b0 was
not required to be known in [13, 14], and some knowledge in [12]
were relaxed to be unknown in [13].

This paper follows up the works of [10]-[14], and presents a novel
systematic procedure for the design of a new singularity-free adap-
tive control. All the signals in the closed-loop system are guaran-
teed to be bounded and the output of the systems is proven to con-
verge to a small neighborhood of the desired trajectory. The rela-
tionship between the transient performance and the design param-
eters is explicitly given to guide the tuning of the controller.

The main contributions of this paper are as follows.

(i) For the considered systems, the control input term b(x)u is di-
vided into two parts— b0u and (b(x)− b0)u. A systematic pro-
cedure is developed for the design of an adaptive control such
that, for the derivatives of Lyapunov function candidates, the
former part can be guaranteed to be stabilized and the latter
part can be guaranteed to be non-positive. Due to the negative
semi-definiteness, the latter part can be removed in the deriva-
tives of Lyapunov function candidates, which not only simplifies
the control design process, but also tackles the aforementioned
possible singularity problem without using projection algorithms
[5, 6], or the upper bound of the first time derivative of b(x) [7],
[9].

(ii) Compared with the results in [12]-[14], the stabilities and con-
trol performances in this paper are achieved without the assump-
tions that b0 is required to be known in [12], or some knowledge
on unknown function is known a priori in [12]-[14].
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(iii) The proposed design procedure results in more simple control
structures than that of [10]-[14], which implies that the proposed
controllers are easier to implement and more reliable for practi-
cal purposes.

The rest of the paper is organized as follows. Section 2 presents
the problem formulation. In Section 3 we describe the proposed
adaptive control along with the main theoretical results. Section 4
provides a simulation example to illustrate the effectiveness of the
proposed approach. Finally, in Section 5 we draw our conclusion.

2. PROBLEM STATEMENT
Consider the adaptive control problem for nonlinear systems trans-
formable to the following canonical form ẋi = xi+1, i = 1, 2, · · · , n− 1

ẋn = a(x) + b(x)u
y = x1

(1)

where x = [x1, x2, · · · , xn]T ∈ Rn, u ∈ R, and y ∈ R are
the state variables, system input and output, respectively; a(x) and
b(x) are unknown smooth functions. The control objective is to
synthesize an adaptive tracking control for system (1) such that the
output y tracks a desired smooth trajectory yd.

ASSUMPTION 1. The sign of b(x) is known, and there exists an
unknown constant b0 > 0 such that |b(x)| ≥ b0, ∀x ∈ Rn.

In the above assumption, |b(x)| ≥ b0 poses a controllable condition
on system (1), and implies that the smooth function b(x) is strictly
either positive or negative. Without loss of generality, assume that
b(x) ≥ b0 > 0,∀x ∈ Rn.

REMARK 1. Assumption 1 is more relaxed than the assump-
tions made in many control schemes (Kristic et al. [15], Sepulchre
et al. [16], Ge et al. [17] and references therein), where, besides
the conditions in Assumption 1, a(x) is required to be bounded by
a known continuous function [12, 14]-[17], and in [12] b0 is even
required to be known a priori.

ASSUMPTION 2. xd = [yd, ẏd, · · · , y(n−1)
d ]T is available, and

xd ∈ Ωxd ,∀t ≥ 0, with Ωxd ⊂ Rn being a compact set.

3. ADAPTIVE CONTROL DESIGN AND
STABILITY ANALYSIS

In this section, two singularity-free direct adaptive control schemes
are presented without using integral-type Lyapunov functions. A
new control scheme is first proposed to develop a simple control
algorithm. Then another control scheme is proposed to result in a
lower dimensions of function approximators.

For the control of system (1), define the tracking error e1 = y− yd
and

e = x− xd = [e1, e2, · · · , en]T

s =

(
d

dt
+ λ

)n−1

e1 =
[
ΛT 1

]
e (2)

where Λ = [λn−1, (n− 1)λn−2, · · · , (n− 1)λ]
T with constant

λ > 0.
From (1) and (2), the time derivative of s can be written as

ṡ = a(x) + b(x)u+ v (3)

where v = −y(n)
d + [0 ΛT ]e.

REMARK 2. As mentioned in [12, 20], the tracking error e1

in (2) can be expressed as e1 = H(s)s, with H(s) a proper sta-
ble transfer function, which has the following properties: (i) on the
time-varying hyperplan s = 0 in Rn, e1 converges to zero asymp-
totically; (ii) if e(0) ∈ Ωe and |s(t)| ≤ c,∀t ≥ 0, with constant
c > 0 and

Ωe =
{
e : |ei| ≤ 2i−1λi−nc, i = 1, 2, · · · , n

}
then, e(t) ∈ Ωe,∀t ≥ 0; (iii) if e(0) /∈ Ωe and |s(t)| ≤ c, ∀t ≥ 0,
then e(t) will converge to Ωe within a time-constant (n−1)/λ and
remain inside Ωe.

Constructing a Lyapunov function candidate Vs = (1/2)s2, its
derivative is

V̇s = b0s
[
ā(x, v) + u+ b̄+(x)u

]
(4)

where ā(x, v) = a(x)+v
b0

, b̄+(x) = b(x)
b0
− 1 > 0.

The basic idea of the control design in this paper is to guarantee
Vs to be a Lyapunov function by setting the terms involved in (4)
suitably. This can be accomplished by choosing u∗ such that (i)
u∗ = −ks − ā(x, v), where k > 0 is a design constant, and (ii)
b̄+(x)su∗ ≤ 0. After these manipulations, Vs becomes a Lyapunov
function, and s = 0 is thus asymptotically stable.

3.1 Control Scheme I
Since a(x) and b0 are unknown, ā(·) in u∗ is an unknown smooth
function of x and v. Due to their great capabilities in function ap-
proximation, several function approximators can be applied for ap-
proximating the unknown smooth function, e.g., radial basis func-
tion neural networks, high-order neural networks or fuzzy sys-
tems. Such approximators can be described as WTS(Z), where
Z ∈ ΩZ ⊂ Rq is the input vector, W ∈ Rl is the weight vector,
l > 1 is the node number, and S(Z) ∈ Rl is the basis function vec-
tor. Universal approximation results indicate that any continuous
function over a compact set Z ∈ ΩZ ⊂ Rq can be approximated
to any arbitrary accuracy by using WTS(Z) and choosing l suffi-
ciently large. Thus, ā(x, v) can be written as

ā(x, v) = W ∗TS(Z) + ε,∀Z = [x v]T ∈ ΩZ (5)

where ε is the approximation error,W ∗ is the ideal constant weights
such that |ε| ≤ ε∗, ∀Z ∈ ΩZ with constant ε∗ > 0.

REMARK 3. Since signals x and xd are known, v = −y(n)
d +

[0 ΛT ]e is available. To use less neurons, [x v] ∈ Rn+1 is chosen
as the input toWTS(Z) rather than [x xd] ∈ R2n. Thus, the online
computation load is lightened.

Design the control input u as

u = −ks−$ŴTS(Z) (6)

where Ŵ is the estimate of neural weightsW ∗, and$ = tanh
(
ω
ε

)
with ω = ŴTS(Z)s and a small constant ε > 0.

According to Assumption 1, the following inequality holds

b̄+(x)su = −b̄+(x)
[
ks2 + tanh

(ω
ε

)
ω
]
≤ 0 (7)

Consider a Lyapunov function candidate V as

V =
1

2
s2 +

b0
2
W̃TΓ−1W̃ (8)
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where W̃ = Ŵ −W ∗, and Γ = ΓT > 0 is an adaptation gain
matrix.

Using (4)-(7), the derivative of V is

V̇ ≤ b0
[
− ks2 +W ∗TS(Z)s−$ω

+ W̃TΓ−1 ˙̂
W + sε

]
(9)

Consider the facts that

W ∗TS(Z)s−$ω + W̃TΓ−1 ˙̂
W

= ω − tanh
(ω
ε

)
ω + W̃TΓ−1

[
˙̂
W − ΓS(Z)s

]
(10)

and the following nice property of function tanh(·) [21]:

0 ≤ |ω| − ω tanh
(ω
ε

)
≤ 0.2785ε,∀ε > 0,∀ω ∈ R (11)

Design adaptation law for Ŵ as

˙̂
W = Γ

[
S(Z)s− σ|s|Ŵ

]
(12)

where σ > 0 is a design parameter.

LEMMA 1. For adaptive algorithm (12), there exists a compact
set

ΩŴ =
{
Ŵ : ‖Ŵ‖ ≤ cNN

σ

}
(13)

such that if Ŵ (0) ∈ ΩŴ , then Ŵ (t) ∈ ΩŴ ,∀t ≥ 0, where
‖S(Z)‖ ≤ cNN with constant cNN > 0.

PROOF. similar to the proof procedure in [14, Ch.8].

From (11) and (12), (10) becomes

W ∗TS(Z)s−$ω + W̃TΓ−1 ˙̂
W

≤ 0.2785ε− σ|s|W̃T Ŵ (14)

Using Young’s inequality [18], we have

−σ|s|W̃T Ŵ ≤ −σ|s|
∥∥∥W̃∥∥∥2

+ σ|s|
∥∥∥W̃∥∥∥ ‖W ∗‖

≤ σ|s| ‖W ∗‖2

4
≤ ks2

4
+
σ2 ‖W ∗‖4

16k
(15)

sε ≤ k

4
s2 +

1

k
ε2 (16)

Substituting (14)-(16) into (9), we have

V̇ ≤ − b0k
2
s2 +

b0
k
ε2 + η (17)

where η = b0

(
0.2785ε+ σ2‖W ∗‖4

16k

)
.

Based on the above analysis, the following theorem states the sta-
bility and control performance of the closed-loop system.

THEOREM 2. Consider the closed-loop adaptive system con-
sisting of the plant (1) satisfying Assumptions 1 and 2, the con-
troller (6) and the weight updating law (12). Assume that there ex-
ists sufficiently large compact set ΩZ such that Z ∈ ΩZ ,∀t ≥ 0.
Then, for bounded initial conditions,

(i) all the signals in the closed-loop system are bounded, and there
exists a constant T > 0, for all t ≥ T the state vector x remain
in

Ω% =
{
x : |ei| ≤ 2i−1λi−n%, i = 1, 2, · · · , n, xd ∈ Ωxd

}
(18)

where % =

√
2
k

(
0.2785ε+ σ2‖W ∗‖4

16k
+ ε∗2

k

)
.

(ii) the mean square of output tracking error satisfies

lim
t→∞

1

t

∫ t

0

s2dτ ≤ ρ (19)

where ρ = 2η
b0k

+ 2
k2

limt→∞
1
t

∫ t
0
ε2dτ .

PROOF. (i) From (17), V̇ < 0 when s outside the compact set:

Ωs = {s : |s| ≤ %} (20)

where % is defined in (18).

Considering Lemma 1 and following the boundedness theorem
(e.g., Theorem 2.14 in [19]), we obtain that s and Ŵ are uniformly
ultimately bounded. From Remark 2.1 in [12], the boundedness of
s implies that there exists a computable constant T > 0, for all
t ≥ T the state vector x remains in Ω% defined in (18). Using (6),
control u are also bounded. Thus, all the signals in the closed-loop
system remain bounded.

(ii) Integrating (17) over [0, t] leads to

b0k

2

∫ t

0

s2dτ ≤ V (0)− V (t) +
b0
k

∫ t

0

ε2dτ + ηt (21)

Noting that the positivity of V , (21) follows that∫ t

0

s2dτ ≤ 2

b0k
V (0) +

2

k2

∫ t

0

ε2dτ +
2

b0k
ηt (22)

which proves (19).

3.2 Control Scheme II
To further reduce the dimensionality of the input of the approxima-
tor (5), we rewrite (3) as

ṡ = b0

[
a(x)

b0
+
v

b0
+ u+ b̄+(x)u

]
(23)

where b̄+(x) is defined in (4).

LEMMA 3. For (23) satisfying Assumptions 1 and 2 with as-
suming that a(x) and b0 are known exactly and b̄+(x)su ≤ 0,∀t ≥
0, if a desired controller is designed as

ū∗ = −k̄s+ ū∗1 (24)

where ū∗1 = −a(x)
b0

, k̄ = k + kvv
2 > 0 with kv > 0 being a

design constant and k > 0 defined previously, then s converges to
an adjustable neighborhood of zero.

PROOF. Consider Vs = (1/2)s2 and the assumption that
b̄+(x)su ≤ 0, ∀t ≥ 0. Its time derivative

V̇s = b0s

[
−k̄s+

v

b0
+ b̄+(x)u

]
≤ b0

[
−ks2 − kvv2s2 +

|vs|
b0

]
(25)

13



International Journal of Computer Applications (0975 8887)
Volume 119 - No. 16, June 2015

Using Young’s inequality [18], we have

|vs|
b0
≤ kv(vs)2 +

1

4kvb20
(26)

Substituting (25) into (26) yields

V̇s ≤ −2kb0Vs +
1

4kvb0
(27)

This implies that s eventually converges to the compact set

Ωs =

{
s : Vs ≤

1

8kkvb20

}
(28)

where kv, k are design parameters.

Since a(x) and b0 are unknown, ū∗1 in (24) is an unknown
smooth function of x. Thus, ū∗1 can be approximated by employ-
ing WTS(x), i.e., ū∗1 can be written as

ū∗1 = W ∗TS(x) + ε, x ∈ Ωx (29)

where W ∗ and ε is defined in (5).

Motivated by the desired controller structure (24), the control input
u (6) can be modified as

u = −k̄s−$ŴTS(x) (30)

According to Assumption 1, the following inequality holds

b̄+(x)su = −b̄+(x)
[
k̄s2 + tanh

(ω
ε

)
ω
]
≤ 0 (31)

Under the control (30) and proceeding in the same manner as in
3.1, it is not difficult to prove the following theorem.

THEOREM 4. Consider the closed-loop adaptive system con-
sisting of the plant (1) satisfying Assumptions 1 and 2, the con-
troller (30) and the weight updating law (12). Then, for bounded
initial conditions,

(i) all the signals in the closed-loop system are bounded, and and
there exists a constant T > 0, for all t ≥ T the state vector x
remain in

Ω%̄ =
{
x : |ei| ≤ 2i−1λi−n%̄, i = 1, 2, · · · , n, xd ∈ Ωxd

}
(32)

where %̄ =
√
%2 + 1

kkvb40
− 2kvv2

k2(k+kvv2)
(ε∗2 + σ2||W ∗ ||4

16
) with %

being defined in (18).
(ii) the mean square of output tracking error satisfies

lim
t→∞

1

t

∫ t

0

s2dτ ≤ ρ̄ (33)

where ρ̄ = ρ + 1
kkvb40

− 2kvv
2

k2(k+kvv2)
(limt→∞

1
t

∫ t
0
ε2dτ +

σ2||W ∗ ||4
16

).

4. SIMULATION STUDIES
To illustrate the effectiveness of the proposed control approach, the
following nonlinear system is considered ẋ1 = x2

ẋ2 = a(x) + b(x)u+ d(t)
y = x1

(34)

where a(x) = −4(sin(4πx1)/(πx1))(sin(πx2)/(πx2))2, b(x) =
2− sin(3π(x1 − 0.5)) and d(t) = 0.1 cos(0.01t) cos(x1).

The control objective is to make the outputs y tracks the desired
reference trajectories yd, which are the outputs of the famous van
der Pol oscillator [22] ẋd1 = xd21

ẋd2 = −xd1 + β(1− x2
d1)xd2

yd = xd1
(35)

where the output yd approaches a limit cycle when β > 0.
The adaptive controllers and the design parameters for system (34)
are chosen as follows:

u = −ks−$ŴTS(Z) (36)

where s = −y2
d − [0 λ]T (x−xd), $ = tanh

(
ŴT S(Z)s

ε

)
and Ŵ

are updated by ˙̂
W = Γ[S(Z)s − σ|s|Ŵ ] with Z = [x, v]T ∈ R3,

k = 2,Γ = diag{2.0}, σ = 0.1, ε = 0.1. In the following simula-
tion studies, ŴTS(Z) is constructed using neural network, which
contains 27 nodes (i.e., l = 27), with widths υk = 2 (k =
1, 2, · · · , l) and centers µk (k = 1, 2, · · · , l) evenly spaced in
[−2.5, 2.5]× [−2, 2].
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Fig. 1. Output y1 (“—”) follows yr1 (“- -”)
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Fig. 2. Control input u
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Fig. 3. Unknown function ν (“—”) and its estimate $WTS(Z) (“- -”)

Figs. 1–3 show the simulation results of applying controller (36) to
system (34) for tracking reference signals yd with β = 0.001 and
the initial conditions x = [0.5; 2; 1.3], xd = [1.5; 0.8], Ŵ = 0.
Figs. 1 show the fairly good tracking performance. From Figs. 2,
it follows that the control signals u is bounded and become peri-
odic signals after 2s. Figs. 3 illustrate the learning ability of neu-
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ral networks by plotting the nonlinear function as well as its esti-
mate. Note that the tracking performance improves with increase of
matching between the nonlinear function and its estimate. Hence,
the proposed adaptive controller possesses the abilities of learning
and controlling the unknown nonlinear system.

5. CONCLUSION
For a class of uncertain nonlinear systems, this paper have pre-
sented a novel systematic design procedure, which not only elimi-
nates the possible singularity problem completely, but also simpli-
fies the control design process and provides simple control struc-
ture. The proposed controllers are easy to implement and can be
applied to a wider class of systems due to their relaxed conditions.
In the future, investigation on a general class of nonaffine nonlinear
systems will be interesting research topics in this field.

6. ACKNOWLEDGEMENTS
Supported by National Natural Science Foundation of China
(61374003), Foundation for Distinguished Young Talents in Higher
Education of Guangdong Province of China (2014KQNCX173),
Doctor scientific research of Guangdong Polytechnic Normal Uni-
versity, Project of Guangdong Polytechnic Normal University
(14KJY12), Foundation for 1st batch Distinguished Talents in
Higher Education of Guangdong Province of China, 2013’.

7. REFERENCES
[1] Chen Z. F., Ge S. S., Zhang Y., Li Y. 2014. Adaptive neural

control of MIMO nonlinear systems with a block-triangular
pure-feedback control structure. IEEE Transactions on Neural
Networks and Learning Systems. 25(11), 2017-2029.

[2] Chen Z. F., Zhang Y. 2014. Robust control of a class of non-
affine nonlinear systems by state and output feedback. Journal
of Central South University, 21(4), 1322-1328.

[3] Zhang L., Li K., Bai E. W. 2013. A new extension of newton
algorithm for nonlinear system modelling using RBF neural
networks. IEEE Trans. Automat. Contr. 58(11), 2929-2933.

[4] Chen F. C., Liu C. C. 1994. Adaptively controlling nonlinear
continuous-time systems using multilayer neural networks.
IEEE Trans. Automat. Contr. 39, 1306-1310.

[5] Sastry S. S., Isidori A. 1989. Adaptive control of linearizable
systems. IEEE Trans. Automat. Contr. 34, 1123-1131.

[6] Polycarpou M. M., Ioannou P. A. 1992. Modeling, identifica-
tion and stable adaptive control of continuous-time nonlinear
dynamical system using neural networks. Proc. Am. Contr.
Conf. Chicago, IL, 36-40.

[7] Wang L. X. 1994. Adaptive Fuzzy Systems and Control: De-
sign and Analysis. Englewood Cliffs, NJ: Prentice-Hall.

[8] Spooner J. T., Passino K. M. 1996. Stable adaptive control
using fuzzy systems and neural networks. IEEE Trans. Fuzzy
Syst. 4, 339-359.

[9] Sanner R. M., Slotine J. E. 1992. Gaussian networks for direct
adaptive control. IEEE Trans. Neural Networks, 3, 837-863.

[10] Ge S. S., Hang C. C., Zhang T. 1999. A direct method for ro-
bust adaptive nonlinear control with guaranteed transient per-
formance. Systems & Control Letters. 37, 275-284.

[11] Zhang T., Ge S. S., Hang C. C. 1999. Design and performance
analysis of a direct adaptive controller for nonlinear systes.
Automatica. 35, 1809-1817.

[12] Zhang T., Ge S. S., Hang C. C. 2000. Stable adaptive control
for a class of nonlinear systems using a modified Lyapunov
function. IEEE Trans. Automat. Contr. 45, 129-132.

[13] Huang S. N., Tan K. K., Lee T. H. 2003. Further results on
adaptive control for nonlinear systems using neural networks.
IEEE Trans. Neural Netw. 14(3), 129-132.

[14] Huang S. N., Tan K. K., Lee T. H. 2004. An improvement on
stable adaptive control for a class of nonlinear systems. IEEE
Trans. Automat. Contr. 49(8), 1398-1403.

[15] Krstić M., Kanellakopoulos I., Kokotović P. V. 1995. Non-
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