
International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

1

An Aspect Oriented Approach to Introduce

Aspects in the Operating System

Jatin Arora

Chitkara University
Rajpura, Punjab, India

Pavneet Kaur
Chitkara University

Rajpura, Punjab, India

ABSTRACT

Software systems are very inflexible towards modification of

already existing functionalities such as security, dynamic re-

configurability, robustness etc. In such functionalities if need

arises for any enhancements then it affects large fractions of

the code. Thus results in difficult to implement. Such

functional enhancements in any component of the system that

affect large fractions of the program code, are often called

crosscutting concerns. Such cross-cutting concerns can be

solved by the new emerging extension to object oriented

paradigm i.e. Aspect Oriented Programming (AOP). The

main idea in AOP is the programmer’s ability to affect the

execution of core code by writing aspects. Aspects are pieces

of code that are run before, or after core function for which

aspect is written. The quantification part means that

programmer can define points in the main program. Aspects

should affect the main program by using some definition

language that is usually a declarative one. The obliviousness

means that the affected code does not need to know anything

about aspects.

General Terms

Operating system, point-cut, cross cutting concerns, Join

points, aspects, advice.

Keywords

Dependency injection, AOP, cross cutting concerns, Nachos,

logs, security, authentication.

1. INTRODUCTION
We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.
Computers devices can perform operation in fraction of

seconds and without any error which normal human require

his lifetime to do. But computers as such are useless without

the software to run on them. And all the software’s are useless

too without the Operating system which is the important part

of computer system. Operating system is responsible for all

the other programs to run on the computer. Various

programming strategies have been applied for the

development of operating system. Originally operating system

was developed using assembly language or C language. Using

C programming in the development of Operating system

caused many problems, because C is a procedural language.

Programming practices were not modular in the early

computer’s age and they weren’t easily modifiable, but with

the advent of modern computers, modular configuration is

possible[5]. The performance of an OS is not as important as

it was in the past because now day’s computers are more

advanced and powerful. The priority now is given to security

and stability of OS rather than on its processing time and

memory usage. Moreover, modern operating systems are

highly complex to develop them in low-level programming

languages, so a solution proposed to this problem is to use a

high-level language.

Many new high level languages such as C++ and other object

oriented programming languages have been used for

improving the development of OS[3]. Various research

operating systems have been developed using high level

language but still, operating systems face problem with

modularity. Complex interactions due to dependencies

between the modules of the system threats module’s

boundaries and make them highly susceptible to errors.

Security, authentication checks, exception handling, statistics,

dynamic re-configurability are the major modules of any

operating systems but if any modifications are required in

these modules then it effects on the large fraction of code

which is difficult to implement.

Problems related to dependency and understandability of

these modules such as security, authentication etc are of

highest concern. Program code of these modules are scattered

almost in every module of the program so in order to modify

these modules, we can’t ensure that a change will require an

effort proportional to the amount of code involved when key

concerns lack locality. Such functional enhancements in any

module of the OS that affect large fractions of the program

code, are often called crosscutting concerns. These cross-

cutting concerns can be handled by the new emerging

extension to object oriented paradigm that is Aspect Oriented

Programming (AOP)[1]. AOP deals with separation of

concern in software development. Also, the significant feature

of AOP is that the cohesion and modularity of a system

increases the understandability and easing the maintenance

burden.

Furthermore, in the era of the frequent changing specifications

of customer, software needs to be modified, updated or even

changed from time to time. To meet these modification

requirements, developers of the software or even those

programmers who are not familiar with that particular

software have to meet this task. In either case, they need to

read and understand the source code and fulfill the required

changes. So, readability and understandability of the software

is mandatory otherwise false conclusions will be made and

applied which again leads to erroneous software. This results

in lack of software quality which is the most important

attribute of software development process[4]. Therefore, in

order to maintain software quality software design should be

built in such a way so as to make them easily understandable,

testable, alterable, and preferably stable.

To achieve software quality, AOP is applied to an OS kernel

to develop various aspects that can be used to introduce new

features in the operating systems. This is achieved by using

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

2

the AspectJ compiler, which is an addition to standard Java

compiler that makes it possible to use aspects, the modules

defining crosscutting concerns, with Java programming

language. In the proposed work with the inclusion of aspects,

functionality of OS will be enhanced without affecting the

entire OS code. This is done by designing code that will

enclose all the major modules into aspects. Now any

modification if required can be applied to aspects rather than

whole OS code. Thus, it overcomes the limitation of scattered

code, and provides flexibility for enhancing the core

functionalities. The performance comparison of aspect

implementation Vs existing OS implementation in java, is

done on the basis of no of line of code added, execution time ,

number of locations affected in the cross cutting code. Also

dependency among the various cross cutting modules is being

migrated to aspects which in turn will lead to the reusability

and the ease in understandability of the main code.

The operating system used for this work is Nachos and it is

designed for research purposes. It is a rather small and simple

operating system but still has all the important features of a

real operating system.

2. ASPECT-ORIENTED

PROGRAMMING APPROACH
Aspect-oriented programming is based on the concept of

separation of cross cutting concerns[6]. This term refers to the

division of a system into modules containing common

program features or behaviors, often called concerns. Without

this, it might be hard for a developer making a change in

program code to identify specific concerns if they are

scattered across multiple modules or possibly mixed with

code implementing other concerns. The more a programming

paradigm supports separation of concerns, the less that

concerns are dependent and scattered across programs, which

is especially important from the point of view of the

maintenance and evolution of software. Separation of

concerns is supported by all modern programming paradigms,

such as OOP through the decomposition and composition

mechanisms. Although the idea of separation of crosscutting

concerns appeared much earlier with subject-oriented

programming and adaptive programming, the aspect oriented

programming paradigm proposed hereby is much more

practical. AOP works because of the mechanisms for

orthogonal isolation of so-called cross cutting concerns into

separate modules. As a result, the program code created is

more reusable and less tangled. This code consists of two

parts: base code that is more purpose specific and additional

code that is represented by aspects. An aspect contains advice,

additional code executed at a join point, a particular point in

the execution of a program, such as method invocation, or

field access. An executable program is produced through the

process of merging both code parts, often referred to as

weaving aspects into classes. Weaving rules or point cuts are

written in aspects or in the base code, depending on the

implementation technology; they specify rules that join points

need to satisfy. Overall, this mechanism allows developers to

concentrate on business logic and cross-cutting concerns

separately.

The main idea in AOP is the programmer’s ability to affect

the execution of core code by writing aspects. Aspects are

pieces of code that are run before, after or instead of some

core function. The quantification part means that the

programmer can define points in the main program that

aspects should affect by using some definition language that is

usually a declarative one. The obliviousness means that the

affected code does not need to know anything about aspects.

For example logging is a good example of using aspects. To

log all function calls the programmer simply needs to define a

logging aspect that is executed before and after each function

call in the program. This logging aspect then writes the name

of the called function to the log file. In this way the logging

code is neatly separated in its own module and the logged

program does not even need to know that it is being logged.

3. NACHOS
Nachos is research operating system which is developed by

University of California in Berkeley[7]. Originally Nachos

was written in C++ language; however, Java version is used

for the present work. Nachos simulate the real operating

system in the sense that it has all the important features as real

operating system does for e.g. Nachos includes interrupts

handling, virtual memory management and process

management. The difference which lies between Nachos and a

real operating system are that Nachos runs as a UNIX process,

which is not the case with real operating system as it runs on

hardware machine itself.

Nachos is simple and smaller OS to study and maintain as

nachos does not run directly on hardware, it runs as a UNIX

process so it is free from the task of performing I/O which is

the work of real OS[8]. Thus, Researchers can easily perform

experiments in Nachos as now they don’t have to switch

between development environment and the Nachos. In Nachos

user programs are written in binary format which can be used

with MIPS compiler and make Nachos work as real OS. MIPS

simulator executes MIPS instructions in user programs as real

MIPS CPU executes taking into account concept of looping,

fetching MIPS instructions and executing them using

simulated machine memory and registers which acts as data

structures in nachos program.

In this work Nachos 5.0 j version is used. Nachos java version

is more useful and popular than Nachos C++ version as Java

is much simpler than C++. Because Java is type-safe language

while C++ is not type-safe. Java is portable. Also, In Java,

low level errors cannot occur or if even occur is catch by

exception handling mechanism while this feature is not

supported in C++ language.

Nachos is more advanced and powerful than the other

simulated OS in the following ways:

1) In nachos, the program which runs on it is required to be

compiled in MIPS, without interrupting the working of

host OS i.e. cross-compiler is needed only to run an

instructional OS (which is Nachos) while in other

instructional OS such as OS/161 cross-compiler is

needed for two purposes, one is for the programs which

run under simulated OS and one the host OS itself[9].

2) There is another major difference between Nachos and

other instructional operating system which is other

simulated OS are written in C/ C++ Language while

Nachos is present in C, C++ as well as Java language.

3) In Nachos one can absolutely simulate the concept of

network of workstations, by connecting a UNIX socket

to all the Nachos machines which are running UNIX

process. Thus threads on one machine can communicate

with others using simulated networks.

4) In Nachos timer is responsible for deterministic

simulation. It increments the clock whenever instruction

is executed by user programs or whenever interrupts

occurs.

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

3

5) Machine-dependent interface Layer of Nachos provides

hardware simulation which is hidden from user.

Software Industry is growing at a fast pace. To meet the daily

changing requirements of customers, software companies

have to develop smart software’s which are able to compete

with the market values. Due to this huge target, software are

made complex day by day which in turn badly effects

understandability, simplicity and maintainability like quality

attributes of software. A product is known by its quality, if

quality degrades then the product has no utility. So, software

developers should develop software which is easy to

understand as well as maintained. Understandability is an

important attribute of software, as it is rightly said that one

cannot maintain or modify software that one doesn’t

understand. If maintainer is not able to understand what

developer has developed, then no fruitful work can be

achieved. Thus understandability enhances the maintainability

of software which can be achieved if developer sticks to the

simplicity of software.

Software system which is considered in this work is Operating

System. It is so complex that it cannot be managed by

dividing it into sub-modules. Even it has problem with

modularity also[3]. Interdependencies among modules results

in disappearance of their boundaries and so it is difficult to

debug and understand. The major components which are

highly affected from this drawback are security, error

management and logging. Coding modules that are used to

implement these components are dispersed throughout the

whole software due to which these components are

categorized as cross cutting concern. These concerns don’t

follow the mechanism of dividing the system into modular

units as their main goal is to provide functionality to the

various modules so their code cannot be modularized into

single unit [16].

Cross cutting concerns are difficult to implement as their

coding and placement required lot of effort because there is no

fix location of their placement as well if any modification is to

be applied to them then every occurrence of these concerns

need to be changed which is error prone as they are dispersed

throughout the system which makes this task complicated and

time consuming [15]. Due to lack of modularization and inter

dependencies associated with these concerns, a solution is

being demanded. In present work, solution to this problem is

proposed which is adoption of Aspect Oriented Programming.

AOP deals with such code handling and provides a

mechanism that can be applied on such modules. It introduces

the concept of aspects which are powerful units, in the sense

that they have capability to centralize the scattered or

distributed functionality. To execute AOP, AspectJ language

is used which is open-sourced and is an extension to already

built Java. AspectJ offers many advantages as it is based on

java and implements features like aspects. By using AspectJ

one can easily program without much burden of tangled and

complicated code. Also software developed with AspectJ is

easy to debug, document, reusable, refactor, maintainable and

modifiable.

Figure 1: How the major pieces in Nachos fit together

3.1 Architecture of NachOS
In modern personal computers, operating system is the most

important piece of software. It is the link between computer

hardware and computer software. Operating system allows

other programs to use computer resources and peripherals in a

hardware independent way, without worrying about the low-

level implementation details [19]. Most modern operating

systems also allow execution of multiple programs at the

same time while making this process completely transparent

to the application programmer. A virtual operating system[9]

accomplishes the same tasks as a regular operating system,

only it doesn't run on a real hardware but rather on a virtual

computer often called the virtual machine. Nachos simulate a

real CPU along with memory management, interrupt handling

and hardware devices. Nachos.machine of nachos includes the

following simulations [8].

3.1.1 Boot Process
On running, nachos invokes nachos.machine.Machine.main

file. Nachos devices like timer, interrupt handler, serial

console, and processor are initialized by Machine.main

class.passes control to the Auto Grader which will create a

Nachos kernel and start the OS.

3.1.2 Nachos Hardware Devices
The Nachos machine simulation includes several hardware

devices. Nachos.machine.machine provides access to the

hardware devices which are listed below:

• Machine.interrupt()

• Machine.timer()

• Machine.console()

• Machine.networkLink()

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

4

3.1.3. Interrupt Handler

Interrupts are handled by Interrupt class of nachos.machine

which maintains an event queue with a clock. The clock is

maintained in software and ticks are executed depending on

the following criteria:

• One tick is implemented for a MIPS instruction.

With one tick of MIPS simulator, clock is advanced by one

tick.

• Ten ticks are executed to re-enable the interrupts.

After any tick, interrupt checks for pending interrupts also.

Device event handler services these pending events. It is to be

noticed that device event handlers which are part of hardware

simulation is used for this purpose and not software interrupt

handlers. Important methods which are accessible to other

hardware simulation devices are:

schedule() takes two arguments- time, device event handler

and then accordingly schedules the specified time with respect

to the specified handler.

 tick() consists of a Boolean value(i.e. either 1 or 10 ticks).

Depending upon Nachos status of user or kernel mode clock is

advanced 1 or 10 tick.

 setStatus() is called when interrupt is enabled from disabled

mode and for each user instruction

Processor.run() is executed. checkIfDue() calls event

handlers for due interrupts. tick() is responsible for calling

these handlers.enable() and disable() interrupts are invoked

by simulators of Interrupt class. Other hardware devices of

Nachos rely on interrupt device only.[18]

3.1.4. Timer

Real-time clock is simulated by Timer class of Nachos, which

at regular intervals generates interrupts. Machine.timer() is

executed to generate event driven interrupt which is applied to

implement Timer. getTime() and setInterruptHandler() are the

two operations which Timer class supports. From the

initializing of the Nachos getTime() is responsible for

counting and returning the number of ticks till Nachos halts.

Stats.TimerTicks ticks occurs when setInterruptHandler() is

invoked by Timer class which sets the timer interrupt handler.

Preemption is responsible using Timer.

3.1.5. Serial Console

Out of three classes which Nachos provides for I/O devices,

serial console is considered as the simplest one. SerialConsole

class specifies the serial console which simulates the working

of serial port. Machine.console() returns the serial console of

a machine. Further, serial console consists of unblocking read

and write primitives.

Read operation checks and returns the data byte if it is to be

returned, else it returns -1. On arrival of another data byte,

receive interrupt is executed. But as only one data byte is

handled at a time therefore interrupts for two received bytes

cannot be generated without having one read operation in

between them. Transmission of data byte by a write operation

takes place and control is immediately returned after one

write. Now a send interrupt takes place if required. No two

writes can occur without having read in between them. If such

situation occurs then data which is actually transmitted is

undefined.

3.1.6. Simulated Disk

Static data is stored in a Disk. It works on a simple concept of

consisting of a surface which is divided into tracks and tracks

are further divided into sectors. Sectors can be read or write

asynchronously one at a time by the operating system. Disk

interrupts is generated when a request is fulfilled. Disk or

Unix file saves the data of simulated disk.

3.1.7. Network Link

Network Link class is responsible for communication of

different instances of Nachos over a communication channel.

Machine.networkLink() returns an instance of this class.

Network Link sends and receives messages in the form of

packets at a time whereas Serial Console send and receives

bytes at a time. Other than this difference no major

dissimilarity is found in Network Link interface and Serial

Console interface.

Packet class in network link creates instances of packets.

getLinkAddress() provides a link address which is a unique

number associated with each link on the network. Packet

comprises of two field - one is header in which the link

address of source machine who is sending the packet is

enclosed and second is information of no of data bytes in the

packet is mentioned. Network hardware only analyzes the

header of the packet and not the data bytes. Header also

contains the destination link address where packet is to be

dropped, so a specific link who is selected to transfer the

required packet transmits the packet to header destination link

address.

Working of rest of the NetworkLink interface is similar to

SerialConsole interface i.e. now the receive() is invoked by a

kernel to check the arrival of a message. If packet has not

arrived then it returns null otherwise it generates interrupt.

Kernel can further transmit packet using send() or it waits for

send interrupt.

4. ASPECTJ
AspectJ is an aspect-oriented extension of the Java

programming language[13]. It resulted from research into

aspect-oriented programming at Xerox Parc in the 80s and 90s

and saw its first release in 1998. It is now being developed as

part of the Eclipse project. Of the several different

implementations of aspect-oriented ideas, AspectJ is, as of

this writing, by far the most popular, both in industry and in

academia.

AspectJ in AOP allows programmers to have the advantage of

modularization for cross cutting concerns that are present in

almost every part of software[2]. In OOPs like C++ or Java,

class is considered as modular unit. Similarly in AOP aspects

provide the same functionality to the cross cutting concerns

which provides functionality to more than one class. Program

in AspectJ is compiled with its compiler and is then run with a

runtime library.

One of the goals of the AspectJ project is for it to function as

a large scale software engineering experiment to validate the

ideas of aspect-oriented programming in real-world

contexts[5]. Consequently, its design has been driven by the

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

5

desire to develop a large and active developer community by

making the language easy to learn for current Java

programmers and by making it easy to incorporate elements

of AspectJ into extant Java systems. As such, AspectJ is a

strict extension to Java: every valid Java program is a valid

AspectJ program. Furthermore, AspectJ compiles to normal

Java byte code that can be executed in a standard JVM, not

requiring a specialized runtime environment. AspectJ extends

Java with a new top-level construct: the aspect. The aspect is

AspectJ’s unit of modularization for crosscutting concerns. A

concern whose implementation, in Java, was inevitably

scattered across multiple classes or methods, entangled with

the implementations of other concerns, should, in AspectJ, be

neatly encapsulated within an aspect.

AspectJ is an asymmetric aspect-oriented language in that it

distinguishes between core and crosscutting concerns,

specifying them differently. Core concerns continue to be

implemented in pure Java, modularized within classes and

methods. Their implementation is referred to as the base

program. Crosscutting concerns are implemented in aspects,

using an extended syntax of Java. The aspects and base

program are composed together to produce the complete

program. The features AspectJ provides for implementing

crosscutting concerns in aspects can be classified into two

groups: dynamic crosscutting features and static crosscutting

features. The dynamic crosscutting features are those that

implement crosscutting concerns by modifying the runtime

behavior of a program; static crosscutting features modify the

static type structure of a program.

The following sections will provide a brief introduction to

these AspectJ features.

4.1 Dynamic Crosscutting

An aspect is analogous to a class in many ways. Like a class,

it can have methods and fields[14]. It can extend another class

or aspect and can itself be extended. It can be concrete or

abstract. An aspect, however, may also contain several special

AspectJ constructs: point-cuts, advice, and intertype

declarations. The first two implement dynamic crosscutting,

and is discussed in this section; the latter implements static

crosscutting and are discussed below.

The dynamic crosscutting features of AspectJ are those that

implement crosscutting concerns by means of modifying the

dynamic behavior of the program. The nature of these features

can be illustrated by analogy to the observer pattern.

Conceptually, an aspect may be considered an observer, with

the execution of the whole program the subject. The aspect

observes the execution of the whole program, and at particular

points within the execution, modifies the behavior of the

program by executing new code. The points at which new

code can be injected are called join points, and the code that is

injected is called advice. A point-cut is a pattern that selects

join points of interest, and every piece of advice has an

associated pointcut.

To actually implement AspectJ in this fashion would be

terribly inefficient. It would also require special VM support

(which would conflict with AspectJ’s goal of easy adoption

by Java developers). Instead of a literal implementation of

aspects as observers, aspects and base program are composed

statically in a form of partial evaluation. This is known as

weaving. A join point shadow is the static counterpart of a

join point. Or, equivalently, a join point is a particular

execution of a join point shadow. The weaver inserts

instructions at join point shadows to execute the advice that

would apply to the corresponding join points. Since a single

join point shadow may correspond to an arbitrary number of

join points, and since not entire join points may be matched

by a particular pointcut, the weaver often needs to add a

runtime check to the code inserted at the join point shadow.

This is known as a dynamic residue. If the dynamic residue

specifically tests the applicability of advice at a given join

point, it is called an advice guard.

4.2. Join Points
Join points are the most fundamental of the concepts AspectJ

adds to Java. A join point is a particular point in the execution

of a program, a specific runtime event. An aspect-oriented

language’s join point model defines what runtime events are

exposed as join points. In AspectJ’s case, the following events

are exposed as join points:

• method call and execution

• constructor call and execution

• field get and set

• class initialization

• object initialization and pre-initialization

• exception handling

• advice execution

Not every possible join point is exposed. These particular

events have been chosen because they are relatively stable in

the face of compiler optimizations and some code refactoring.

Other potential join points, such as entry into a loop or other

control flow structure, are much more volatile in the face of

such code transformations and so are not exposed. It is

important to realize that a join point is not an atomic point,

but rather a region of execution. A join point has a beginning,

it has an end, and it can contain other join points.

4.3. Pointcuts

A pointcut is a pattern that matches join points[14]. A

pointcut may also specify some context that should be

exposed to advice at a join point—the target object or the

arguments of a method call join point, for example. Pointcuts

are specified by the programmer in the pointcut definition

language, whose syntax is distinct from that for the rest of

AspectJ. A pointcut is either a primitive pointcut or a

compound expression composed of other pointcuts and

Boolean operators.

Primitive pointcuts can be classified into three groups: those

that match join points by their kind; those that match join

points based on their static context; and those that match join

points based on their dynamic context. The first two groups

can be matched statically, while matching of the third may

require dynamic residues.

4.4. Advice

“Is a method-like construct that contains additional behavior

to be added at the matched joint point”. The advice is what is

inserted into the join points. The advice is used to express the

cross-cutting actions that must happen within the method

body at the matched join point. Advice generally represents a

fragment of control and data that must be added to the body of

an existing method. There are three kinds of advices: before

advice, after advice, and around advice. Before advice: A

before advice executes its body before executing the body of

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

6

the matched join point. After advice: An after advice executes

after executing the body of the matched join point. Around

advice: An around advice body surrounds the match join

point. Around advice may change the execution of the

matched join point, or may even replace it.”

4.5. Aspects

Aspects, as described at the beginning of this chapter, are the

basic modular units of crosscutting concerns, and are very

similar to classes in many ways. Aspect is the part of code

describing how point-cuts and advices should be combined

together. Here this is referred to as a point cut definition; it

defines a certain join point and “cuts” into the classes to get

references to certain variables inside.

4.6. Weaver

The weaver is a sort of compiler. It takes the advices and

inserts the advices at the appropriate Point cuts and creates the

additional code needed. It “weaves” the source-code and

advices together with the aspects as the template.”

5. WORKING MODEL
The working model of the work is represented by the flow

diagram in figure 2. The cross cutting concerns are

implemented by using Aspect Oriented concepts as well as by

using Object oriented paradigm i.e Java. The comparison can

be done on the basis of LOC, Execution time, reconfiguration.

6. CONCLUSION
After much research Nachos operating system was found

suitable with the requirements of the work to be done. Nachos

java version is used in which AspectJ can be embedded.

Nachos is not only simple but it also provides ease to

programmers to modify and implement its code. With the use

of aspects in Nachos, the tangled code is shifted from the

main module into the aspect module thus making the design

and implementation of OS clearer and understandable. The

maintainability of Operating system is also enhanced in the

AOP implemented code as the design consists of separated

concerns and the required changes are applied only to the

particular aspect that is associated with module to be

maintained. While adding aspects in the system, its severity

and tangling of the code should be taken into consideration. If

necessity arises to include aspects then only it should be

made. Unnecessary inclusion of aspects in the system should

be avoided because work required for it is entirely wasted due

to unwanted weaving process. Also another point which

should be focused while using such paradigm is that there are

more source code files if an application is implemented by

AOP. The programmer of the code has to do more efforts by

frequent switching among the aspect files. This makes it a bit

difficult to understand the design and program control flow.

But this is overcome by the fact that the understandability of

the core code is very high even when the new and extended

features are encapsulated into the aspects

7. FUTURE SCOPE
It is a known fact that it is complicated and difficult to

develop a new and good software system. So, research has to

be conducted out on aspect-oriented paradigms and compilers

too. In future, work can be done upon reducing the number of

source code files, if an application is implemented by purely

aspect oriented paradigm. As of now the programmer has to

do more efforts by frequent switching among the aspect files.

This makes it a bit difficult to understand the design and

program control flow.

Fig 2 Working model of Nachos using AOP

International Journal of Computer Applications (0975 – 8887)

Volume 119 – No.11, June 2015

7

7. REFERENCES

[1] Hanenberg, S., Kleinschmager, S., and Walter, M. 2009

“Does Aspect-Oriented Programming Increase the

Development Speed for Crosscutting Code”, Third

International Symposium on Empirical Software

Engineering and Measurement, IEEE, Feb 2009

[2] Zhang, Y., et.all, 2009 “Implementing and Testing

Producer-Consumer Problem using AOP”, Fifth

International Conference on Information Assurance and

Security, IEEE, 2009

[3] Coady, Y., Kiczales, G., and Feeley, M. 2000

“Exploring an Aspect-Oriented Approach to Operating

System Code”, September 2000.

[4] Rashid, A., Cottenier, T., Greenwood, P. and Chitchyan,

R. 2010 “Aspect-Oriented Software Development in

Practice”, Computer Society IEEE, Feb 2010.

[5] Murphy, G.C., Walker, R. J., and Baniassad, E. L.A.

1999. “Evaluating Emerging Software Development

Technologies: Lessons Learned from Assessing Aspect-

Oriented Programming”. IEEE transactions on software

engineering, vol. 25, no. 4, July 1999

[6] Murphy, G., and Schwanninger, C. 2006. “Aspect-

Oriented Programming”, Computer Society, IEEE, 2006

[7] Christopher, W. A., Procter, S. J., and Anderson, T. E.

2005 “The NachOS Instructional Operating System”,

2005.

[8] Narten, T. 1995. “A road map through NachOS”, 1995

[9] Niu, J. 2003. “NachOS Overview”, Operating Systems,

CS-CCNY, Fall, September 2003

[10] Chiba, S., and Ishikawa, R. 2005. “Aspect-Oriented

Programming Beyond Dependency Injection”, Springer-

Verlag Berlin Heidelberg 2005

[11] Brichau, J., et all. 2006 “A Model Curriculum for

Aspect-Oriented Software Development”, IEEE

Software, December 2006

[12] Anderson, C. L., and Nguyen, M. 2005. “A survey of

contemporary Instructional Operating System for use in

Undergraduate Courses”. JCSC 21, Oct 2005

[13] Laddad, R. 2003. ” AspectJ in Action- Practical Aspect-

Oriented Programming”, Manning Publications co. 2003

[14] Gradecki, J.D. 2003. “Mastering AspectJ-Aspect

Oriented Programming in Java”, Wiley Publishing, Inc,

2003

[15] Lieu, W. L., Lung, C. H., and Ajilla, S. “Impact of

Aspect Oriented Programming on Software Performance:

A Case Study of Leader/Followers and Half-Sync.

[16] Lamping, J., and Kiczales, J. 1993. “The Need for

Customizable Operating systems”, IEEE, 1993

[17] Ceccato, M., and Kessler, F. B. 2007. “Migrating Object

Oriented code to Aspect Oriented Programming”,

Software Maintenance, ICSM International Conference,

IEEE, 2007

IJCATM : www.ijcaonline.org

