
International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

6

A Review on Software Maintenance Issues and How to

Reduce Maintenance Efforts

Uttamjit Kaur
Department of Computer Science

GIMET
Amritsar

Gagandeep Singh
Department of Computer Science

GIMET
Amritsar

ABSTRACT

Software Maintenance and evolution are identifying by their

huge cost and slow speed of implementation. Survey showed

that around 60% of the maintenance effort was on the total

cost of software. But after delivering the software to the

client, the maintenance work begins. This paper suggests

some issues and problems faced by software maintenance

process. There are some issues of software maintenance i.e.:

database size, system age, maintenance budget, system size,

staff size or restructuring for change. This paper presents

several ways to reduce cost and efforts involved in software

maintenance. Software maintenance costs can be reduced

significantly if the software architecture is well defined,

clearly documented, and creates an environment that promotes

design consistency through the use of guidelines and testing

quality.

General Terms:

Software Maintenance, maintenance cost reduction.

Keywords

Software maintenance, issues and problems in software

maintenance, cost and challenges in maintenance,

maintenance cost reduction.

1. INTRODUCTION
Software does not get tired, it need to meet some new

requirements that enhanced the software system. The changes

made in the software system can be performed by software

maintenance. Software Maintenance comes under process

when a software team delivers a successful project to its client

within a fixed time. Software Maintenance is the modification

of a software product after delivery. The Modification can be

done to improve performance, correct faults and to adapt the

product to a modified environment [4].According to ISO,

software maintenance used to check modification and

documentation for a problem that need for improvement. To

update the existing software product then changes can be

preserving by holding its originality. To change the software

after some operation performed as: Enhancement of

capabilities, election of problem capabilities and optimization.

The cost of software maintenance is rising more than 90% of

the total cost of software [1].In addition, software

maintenance serves the following:

1.1 Improving the software to support user

requirement
User request for new requirement, to enhance the performance

or functionality of the software. User desire some functions

changes that can be accommodated.

1.2 Supporting Upgrades
Upgrades required when some changes in government

regulations. The need for upgrades used to maintain software

that exist in same category.

1.3 Providing Continuity of Service
Maintenance focus on recovering from failures such as

hardware or software and changes in the operating system.

Three type of software maintenance considered: Corrective

Maintenance used for emergency program fixes and routine

debugging: Adaptive Maintenance used to making changes in

response to technology changes: Perfective Maintenance used

to improve documented and requested enhancement

[3].Survey showed that around 75% of the maintenance effort

was on the adaptive and perfective maintenance. Or 21%

consumed by error correction [4].Maintenance costs depend

on the Number of changes and the costs of change depend on

the maintainability. Important issues of software maintenance

are limited understanding. Limited understanding refers to

how quickly a software engineering can understand where to

make a change or correction. In software 40-60% of the

maintenance effort is devoted to this task. Limited

understanding is to produce documentation. Documentation is

lacking or incomplete and the people who know the software

leave or retire without being replaced. Other issues i.e.

customer priorities, staffing, and cost estimation with some

technical issues i.e. testing, maintainability. If we want to

reduce the overall cost of software, the goal of development

should be reduce the maintenance effort [1].

2. MAINTENANCE PROBLEMS
Maintenance costs are due to software improvement rather

than corrections. Most problems of software maintenance are

associated with the software development process [3]. In

software process, software engineer develop the part of the

software, which may maintaining the software, has to get to

get with the detailed design and functioning of the source

code. Maintenance cost and effort is very important part of a

planning process to estimate them. Estimate helps to plan

maintenance staff. Maintenance is not only concerned with

technical issues, but also the department and organizational

issues [3]. The problems may be either technical or

organizational as follows:

2.1 Program Comprehensive
Maintenance engineer used to modify the behavior,

functionality, understanding, adding new features and

changing the system. The objectives of maintenance can be

generated only when the attributes of system are understood.

It is the central research problem; once the change and its

impact have been understood, it is relatively simple to make

it. It is a prerequisite of the change and it has been a subject of

extensive research. It consumes more than half of all

maintenance resources [8].

2.2 Change impact analysis
Change impact analysis is a major challenge faced by the

maintenance process, to determine the effects of a new

modification on other parts of the system. The software

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

7

changing can have impact on the rest of the system. In new

modification, it involves the identification of the system’s

parts that need to be modified. Change impact analysis is the

activity by which components that will be impacted by the

change [8]. It indicates that how costly the change is going to

be.

2.3 Change Implementation
Change implementation may consist of several steps, each one

specific software component. If the visited components are

modified, it may no longer fit with other components because

it no longer properly interacts with other. Then secondary

changes must be made in neighboring components. This

process called Change propagation. Successful change starts

and ends with consistent software, during the change

propagation the software are often inconsistent [8].

2.4 Regression Testing
The process of testing a system after it has been modified is

called regression testing. This type of testing is important to

confirm that system is free of errors after it has been modified

and also ensure that the rest of the system has not been

affected by the modification. This testing can be reuse, if

needed. The Software changes, when a new module is added

as part of integration testing. If new modules are added then

new control logic, new input/output and new data flow paths

are established. The modification or change cause a problem

with functions that worked previously. According to

integration test strategy, regression testing is used to ensure

that changes may not affect the software or it is the Re-

execution of subset of tests that have already been conducted.

Successful tests can be conducted by, identify the errors and

errors must be corrected. When software is corrected, the

program, its documentation or data it supports is changed.

Regression testing helps to ensure that changes do not add

some additional errors. Regression testing can be done

manually, by Re-execution the test cases of subsets or using

automated with some Capture/playback tools. The

Capture/playback tool used to capture the test cases by

software engineer [7].

The regression test suite, the subset of tests to be executed by

three different classes of test cases:

1. All Software functions that exercise the tests must

represent sample.

2. New additional software functions are affected by

the change.

3. Software components that are tests have been

changed.

The numbers of regression tests become large, as the testing

proceeds. The design of regression test suits must address one

or more classes of errors in each program functions. Once the

change has occurred, every test for program function become

impractical and inefficient.

2.5 Programmer Time Availability
It refers to maintenance programmer shortage, programmer

turnover and programmer increasing demand [3].

2.6 User Knowledge
User knowledge refers to problems caused by user

expectations, lack of user training and understanding. Limited

understanding means that how quickly a user can understand,

where a change or correction to make in siftware.40-60% of

the maintenance effort conducted by this task [2].Limited

understanding used to produce poor documentation and other

supporting descriptions. Survey showed shows that comments

and source code are the important facts to understanding

software to be maintained.

2.7 User Demand and Expectations
User expected to change their software quickly [3] and used

foe enhancement the performance to the current systems. This

type of requirement makes a MIS department heavy burden.

2.8 Relationship of software product and

environment
According to the operational and organizational environment,

software product changes its relationship. However, it is very

important to choose those changes that are necessary for the

software product.

2.9 Relationship of the software product

and user
According to the new requirements from user, software

product modified its relationship. Hence, it is very important

to choose the Software those are necessary for the user to

accept the changes after modification.

2.10 Relationship of software product and

software maintenance team
According to the maintenance team members to keep track of

the software product to change its relationship. Maintenance

team analyzes the changes and effect on the software product.

2.11 Database Size
Database size is measured by number of data files and the

number of characters in database. As per the required of the

customer during the maintenance and modification in the

software product may lead to the modification of the database.

So it is not an easy task to modify database again and again

[1].

2.12 Product Quality
It refers to quality of original design specification and quality

of original programming. The unavailability of up-to-date

systems documentation affects maintenance product quality.

2.13 System Age
It correlated with the use of corrective maintenance. Older

systems which are entering the growth phase should have

more problems with lack of user knowledge, product quality

and programmer time [3].

2.14 Staff Size
Staff size describes the number of people who are engaged in

the development process of software under application

development. After delivering the project, customers need

some changes and then the software team which is engaged in

the other development projects. If software organization

assigns the maintenance work to new developers or

programmers then the organization needs to provide training

to the programmer, which leads to the increment in time, cost

and efforts for the maintenance [3].

2.15 Staff Turnover
It is survey that, when staff turnover is high, then maintenance

is not properly performed in the software. The ratio of number

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

8

of individuals that leaves the organization during a specified

period of time. Software product are replaced by new

personnel who spend the maintenance effort in understanding

the system [2].

2.16 Operating Environment
Operating environment include are hardware and software

reliability, software failure, data integrity and documentation.

A large system increases the errors and with large database, a

greater amount of change in data and files, as well as a greater

need for hardware and software upgrades. Hardware and

software made advantage to technological advances [3].

2.17 System Size
It can be measured by number of program modules and

number of source statement contained in the system. Large

systems are more complex and harder to maintain.

2.18 Maintenance Budget
It used to measure the importance of maintenance as reflected

in the budget. System with more resources devoted to

maintenance should have fewer problems [2].

2.19 Documentation Quality
If the documentation is poor, then it becomes very costly to

find any faults that are involved in the system. This indicates

that documentation quality has a effect on maintenance effort

[2].

2.20 Restructuring for Change
Changes can be restructure due to architecture do not support

the change as the change are delocalized [8].

2.21 Development Experience of maintenance

staff
It is very clear that, if the maintenance staffs have greater

experience with system development, then there would be

fewer problems with programmer and product quality.

2.22 Legacy Software
Software legacy was one of the major software problems, but

it has become less recently. Legacy software is not so much a

technological problem as an organizational and management

problem. If current technology uses i.e. component,

middleware, enterprise etc will provide the ultimate answer to

all problem, then there will be no more legacy software there

will be no more legacy software. Over fifteen years in

technology solutions to legacy systems, much effort has been

expended. This is clear from detailed and practice papers in

the literature [8].

In the section on servicing, we carefully avoided introducing

new terminology, and concentrated on the need for better

methods for program comprehension, it support by code

improve. The existing legacy system may now be the only

source of information about the organization’s business rules.

1. It is predict that modern technology can be use

instead of existing legacy; maintenance can be

cheaper/easier. It has been argued earlier that the

maintenance for many new technologies is not

understood.

2. High and low level design helps maintenance, but

little detailed that this helps maintenance staff who

have responsibility for only part of the system. If

several representations of software exist, it is only

the source code that is maintained other become

inconsistent.

3. It is not clear that how much business rules may be

of little value. It requires large amounts of time

from highly skilled software engineers and experts.

4. Sometimes the source codes are not available, for

many components and their behavior may be very

expensive.

Sometimes Domain knowledge and Business rules are

recorded, where the place of legacy code, and the

development of a new modified system may have knowledge

that encapsulated in the old system. In short, legacy software

can be identified as” Large software system that we don’t

know how to handle it and encapsulate it but that are

important to our organization”. Legacy systems can be

managed by a numbers of options. Some solutions are: leave

the legacy system and building a replacement system; stop the

system and its components can be use in anew replacement

system; maintain the system and; change the system to give

another period of life [2].

Modification can be identifying by complexity and reduction

of size to Re-documentation, Re-engineering and

Restructuring or wrapping and migration. Migration solution

explore when we do not know what future software system

will look like. It is to be expected that the problem is raised

from addressing code to addressing components in distributed

system.

3. HOW TO REDUCE MAINTENANCE

EFFORT
There are several ways to reduce cost and efforts involved in

software maintenance. Software maintenance costs can be

reduced significantly if the software architecture is well

defined, clearly documented, and creates an environment that

promotes design consistency through the use of guidelines and

testing quality are describe as:

3.1 (Re) Documentation
Maintenance cost can be reduced by (Re) documentation.

Without documentation programmer spent 21.5%

understanding of code. With documentation, we could save

12% of the cost of maintenance .Without documentation the

good and bad programmer skill level disappeared.During the

past decade, CARE has developed by Omnext, a concept that

helps to cost reduction. CARE Stands for “Computer Aided

(Re) documentation and evaluation. This concept can be used

to improve the principal [6]. CARE may generate up to 50%

of saving on the cost, impact analysis, documentation and

testing. It also used to increases the quality of software. This

concept comprises the technical and functional

documentation. CARE helps to monitoring the software

system’s size and quality.

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

9

Figure 1: CARE [6]

1. Intake: A CARE environment is depending on the

environments that have a software documentation

and software evaluation [6]. The result, generated

by the CARE must be analyzed, the standards, and

the method of documentation and evaluation.

2. Monitor: CARE based on monitoring, in order to

analyze the sources automatically or manually. The

result generated by the CARE with quality and size.

For documentation purposes, it may contain

structure and relationship between application

sources [6].

3. Report: The different types of reports can be

generated from the object. These reports may

contain the information about quality, size, and

development [6]. For documentation purposes,

technical documentation was developed and

functional documentation that used to adapt the

changes in the application.

4. Analyze: Analysis is used to carry out signals,

quality, and productivity, and results generated for

improvement. For documentation purposes, the

functional documentation is also analyzed from the

signals [6].

5. Improve: Improvement can be occurred by

implementing and updating the functional

documentation [6]. The updating can be carried out

manually or by automatically that used for tools. If

required, the CARE definition can be updated on

the basis of advanced insight.

3.2 Decreasing Turnovers
Maintenance cost can be reducing turnovers by internal and

external. Internal turnovers result from moving internally and

external turnovers are the results of people moving out. To

reduce maintenance cost through work scheduling and

reducing number of internal moves through strict policy.

3.3 Eliminating Dead Code
Dead code means unnecessary code that can be removed

without affecting the program that are never called.30% of the

software in an older system can be dead code by eliminating

dead code, we reduce the code size [6].

3.4 Reduce Complexity
Saving can be achieved by monitoring and improving the

technical quality of a system. Maintenance costs affected by

the existing software complexcity.25% of maintenance cost

should be total life-cycle costs.

3.5 Testing Quality
The number of errors can be reduced by applying an effective

testing strategy. With reduced errors, maintenance effort can

be quite low. So better testing quality reduces maintenance

effort.

3.6 Eliminating Bugs
Bugs in software are costly and difficult to find and fix.

Techniques and tools have been developed for automatically

finding bugs by analyzing source code [8].

3.7 Understand-ability
It is important that the maintenance gain a complete

understanding of the structure, behavior and functionality of

the system being maintained [10]. “If we have more

information, the test will be smarter”.

1. The design is well understood.

2. Dependencies between internal, external, and shared

components are well understood.

3. Changes to the design are communicated.

4. Technical documentation is instantly accessible.

5. Technical documentation is well organized.

6. Technical documentation is specific and detailed.

7. Technical documentation is accurate.

Bach suggested the attributes of software configuration i.e.,

programs, data, and documents that can be used by software

engineer [10] to develop a relevant testing. “Good” test have

following attributes:

1. High probability-A good test has a high probability

to finding an error. To achieve this, s understood by

the tester to develop a blueprint of how the software

fails. Example: If failure in a graphical user

interfaces (GUI), then to recognize proper mouse

position. Then the tester used to recognize an error

in mouse position. Software being

2. No Redundancy-A good test is not redundant. Time

of testing and resources are limited. One test cannot

conduct the same purpose as other test. Every test

must have a different purpose. For example, a

module of the Safe Home software is designed to

recognize a user password to activate and deactivate

the system. In an effort to uncover an error in

password input, the tester designs a series of tests

that input a sequence of passwords. Valid and

invalid passwords (four numeral sequences) are

input as separate tests. However, each valid/invalid

password should probe a different mode of failure.

For example, the invalid password 1234 should not

be accepted by a system programmed to recognize

8080 as the valid password. If it is accepted, an error

is present. Another test input, say 1235, would have

the same purpose as 1234 and is therefore

redundant. However, the invalid input 8081 or 8180

has a subtle difference, attempting to demonstrate

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

10

that an error exists for passwords “close to” but not

identical with the valid password.

3. Best of breed-A good test should be “best of breed”.

Time and resources are limited that migrate towards

the execution for test. In such cases, the whole class

of errors should be uncovering be used.

4. Simple and complex-A good test should be neither

too simple nor too complex. Sometimes a group of

tests combines to test in one test case; the mask

errors can be associated with this approach. In

general, group of tests should be separately

executed,

3.8 Eliminating Cloned Code
Large software systems typically contain large redundant

code. When applying new functionality, many programmers

cannot copy and customize existing pieces of code [8]. Large

software systems contain 10-25% redundant code. If

redundant code were removed, spend the budget savings on

new problems and enhancing the efficiency of the

organization.

3.9 Software Reengineering
Re-engineering a software system can be used to better

understand and maintain [8] it long been accepted within the

software maintenance. Software Re-engineering can be used

as:

1. It is used to improve software understanding.

2. It improves software itself, for reusability and

maintainability.

3. It is an activity that absorbs the information

regarding resources.

4. It helps to reduce an organization’s evolution risk.

5. Its capability extends CASE toolsets.

6. It makes software easier to change.

Software re-engineering is not completely automated, tools

process the complex Re-engineering. These can be used to

help in moving a system to a new maintenance environment

[8]. This is the activity that performs only by the human

being. Success in software re-engineering requires more than

tools. Few steps to be considered while planning Re-

engineering project: Justification to project, it determine that

which system enhanced by business value; Analysis, the

application Re-engineered based on quality and value of

business; Cost estimation, it is used for projects to estimate

the cost; Cost-benefits Analysis, Costs and expected return are

compared, and; Contracting, it determine the task

identification and effort distribution.

3.9.1 Reverse engineering
Reverse engineering can be defined as “the process of

analyzing a subject system to identify the system’s

components and their relationship and to create system in

another form or at a higher level of abstraction” [9].The

reverse engineering has its origins in the hardware. The

companies want to understand the design of a hardware

product for effort “secrets”. These secrets can be understood

easily when the design specification were obtained. But,

during reverse engineering these documents are unavailable to

the company.Succrssful reverse engineering derived more

than one design and manufacturing specification to produce

actual exiting of the product.

Reverse engineering for software is similar as hardware. In

most cases, the program in reverse engineering are not

competitor’s but often done by company many years earlier.

Therefore, reverse engineering for software is the process of

analyzing a program in an effort to create a representation of

the program at a higher level of abstraction than source code.

Reverse engineering is a process of design recovery. Reverse

engineering tools extract data, architectural, and procedural

design information from an existing program.

3.9.2 Forward engineering
In an ideal world, using a automated “Reengineering engine”,

application can be rebuilt. The existing system fed into the

engine, analyzed, re-structured and generated in a form of

software quality. In the short term,” engine” appear, but

CASE included the limited subset that application are

implemented using a specific database system. The tools are

increasly used in reengineering. It is also called, Reclamation

or renovation [9]. Forward engineering not only covers the

information of design from old software, but uses its

information to modify the existing system in an effort to

enhance or increases the overall quality. It also used to

improve the performance, by generating additional new

functions.

3.10 Restructuring
Software Restructuring used to change the source code or data

to ensure that the changes applicable to the future or effort can

be handle by software [9]. In general, Restructuring does not

change the overall program architecture. Restructuring mainly

focus in the design detail rather than individual modules and

structure within modules. If the Restructuring effort becomes

beyond of its boundaries, then restructuring and software

architecture become forward engineering. The benefits, when

software is restructuring:

1. Higher quality has programs with better

documentation, modern standards and less

complexity.

2. Improving productivity, it makes case of learning

and conflict among software engineers must be

reduced.

3. Effort required to perform maintenance activities is

reduced.

4. Easier to test and debug the software.

Restructuring occurs when the basic architecture of an

application is solid, even though technical internals need

work.

3.10.1 Code Restructuring
Code Restructuring is used to performed the same function of

design that produces the higher quality than the original

system. In general, code restructuring is a program logic using

Boolean algebra applies a rule transformation that

restructuring the logic [9]. The objective to produce the

structural programming and other tools proposed by using

restructuring techniques. A resource exchange diagram maps

each program module and the resources (data types,

procedures and variables) that are exchanged between it and

other modules. The program architecture can be restructured

to achieve minimum coupling among modules.

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No. 1, May 2015

11

3.10.2 Data Restructuring
Before data restructuring can begin, a reverse engineering

activity called analysis of source code must be conducted. All

programming language contains data definition, interface

descriptions, input/output and file descriptions are evaluated.

The goal is to explore the data items, to get information on

data flow, so that existing data structure can be understand in

detail that have been implemented. This activity is sometimes

called data analysis [9]. If the data analysis completed, then

redesign of data committed. When restructuring moves

beyond standardization and rationalization, physical

modifications to existing data structures are made to make the

data design more effective. This may mean a translation from

one file format to another, or in some cases, translation from

one type of database to another.

4. REFERENCES

[1] Bennett, K. H., “Legacy Systems: Coping with Success”,

IEEE Software, 12(1):19-23, 1995.

[2] Bennett, K. H., Ramage, M., Munro, M., “Decision

Model for Legacy Systems”, IEE Proceedings on

Software, 146(3):153-159, 1999.

[3] “Challenges during Software product maintenance”

Deepak Kumar, Parul 1 Assistant Professor, Directorate

of Distance Education, Kurukshetra University

Kurukshetra 2Shri Baba Mastnath Engineering College,

Rohtak.

[4] International Journal of Technical Research and

Applications e-ISSN: 2320-8163, www.ijtra.com

Volume 2, Issue 6 (Nov-Dec 2014),”DEVELOPMENT

OF A SOFTWARE MAINTENANCE COST

ESTIMATION MODEL” 4TH GL PERSPECTIVE

Mohammad Islam1, Dr. Vinodani Katiyar2 1Research

Scholar, Shri Venkateshwara University,Gajraula, UP,

India 2Professor, SRM, University, Lucknow, UP, India

1mohdislam3@gmail.com, 2drvinodani@gmail.com.

[5] ”MAINTENANCE ISSUES IN SOFTWARE

ENGINEERING” Praveen Chandra Kidambi Department

of Computer Science Louisiana Tech University.

[6] Omnext white paper, March 2010 “How to save on

software maintenance costs”.

[7] “Problems and issues in application software

maintenance management” Prashant Palvia the

University of Memphis, Aaron Patula University of

Minnesota, John Nosek Temple University.

[8] “Software Maintenance and Evolution: a Roadmap” K.

H. Bennett V.T Rajlich Research Institute for Software

Evolution Department of Computer Science University

of Durham Wayne State University UK Detroit, MI

48202 DH1 3LE USA.

[9] Software Maintenance Gerardo Canfora and Aniello

Cimitile, cimitile@unisannio.it University of Sannio,

Faculty of Engineering at Benevento Palazzo Bosco

Lucarelli, Piazza Roma 82100, Benevento Italy

[10] Top ten ways to reduce software costs PRACTICAL

TIPS FOR SOFTWARE ASSET MANAGEMENTTop

ten ways to reduce software costs PRACTICAL TIPS

FOR SOFTWARE ASSET MANAGEMENT.

[11] W. Li and S. Henry. Maintenance Metrics for the Object

Oriented Paradigm. In IEEE Proc. of the 1st Int. Sw.

Metrics Symposium, pages 52{60, May 1993.

IJCATM : www.ijcaonline.org

