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ABSTRACT  
The online information available on world wide web is in 

enormous amount. Search engines like Google, Yahoo were 

developed to retrieve information from the databases. But 

actual results were not obtained as the electronic information 

is increasing day by day. Thus automatic summarization came 

into demand. Automatic summarization gathers several 

documents as input and provides the shorter summarized 

version as output which is informative, unambiguous, save 

valuable time. Research was done on a single document and 

moved towards multiple documents. This review categorizes 

single and multiple summarization methods.   
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1. INTRODUCTION 
Internet is a wide source of electronic information. But the 

outcome of information retrieval becomes a tedious task for 

humans. Thus automatic summarization came into demand 

which automatically retrieves the data from documents by 

utilizing our precious time. H.P. Luhn was the first one who 

invented automatic summarization of text in 1958 [24]. 

NLP community invented the subfield of summarization. 

Radev et al [28] says that one or more documents are 

processed and a short summary is produced which is less than 

the size of original documents. He portrayed his definition as: 

 One or more documents can produce summary. 

 Important information is not lost. 

 Short length is maintained. 

There are approaches which are helpful to generate a 

summary – extraction and abstraction. Extraction is domain 

independent and picks up the important sentences and gives a 

summary while on the other hand, abstraction is domain 

dependent and takes the human knowledge by understanding 

the whole text and prepares a goal and produce a summary 

[25]. 

Summarization is of two types [1]: 

 Single document text summarization 

 Multi-document text summarization 

The idea of single document summarization dropped after 

2002 [26]. The major focus was on multi-document 

summarization because it believes in size reduction, gathering 

ideas from several documents and compare them, maintaining 

the syntax and semantic relationship [27]. 

The paper organization is as follows. Section 2 describes the 

related work done by the pioneers in single and multi-

document summarization. Section 3 provides the 

classification among the methods used by single and multi-

document summarization. Section 4 concludes this paper. 

2. RELATED WORK 
Single Document Summarization: Various technical 

documents were focused in single-document summarization. 

Luhn in 1958 shows the significance of words based on 

frequency measures. He deleted the stop words and rest words 

are given a hierarchy starting from root and index describes 

the significance of each word. This is calculated on the 

number of occurrences in a document called as significant 

factor and are ranked. Based on ranking top sentences are 

selected to form a summary [17]. 

Baxendale in 1958 focused on sentence position to find the 

salient features. He took 200 paragraphs and examined that in 

85% of paragraphs topic sentences are placed in the beginning 

while in rest 7% he found, it occurred in the last [18]. 

Edmundson in 1969 proposed a typical structure that produces 

extracts. In the beginning he took around 400 technical 

documents and build a protocol producing manual extracts. 

He addressed the above two features (word frequency, word 

position) and gave the two new features named cue words and 

skeleton (title or heading). Also the weights were attached 

with these. He evaluated and found that 44% machine extracts 

matched with manual extracts [19]. 

Various other pioneers were there who applied different 

techniques in single document summarization: 

 In 1961 G.J. Rath [29] used lexical indicators to 

determine the relevant information from documents. 

 In 1995 Julian Kupiec [30] used algebraic method to 

determine different features like uppercase words, 

length, position of words by using naïve-bayes 

classifier. 

 In 1997 ChinYew Lin [31] determine the position of 

sentences by using algebraic methods. 

 In 1999 Eduard Hovy [32] used symbolic word 

knowledge with strong NLP processing to show the 

concepts relevancy. 

 In 2005 S.P Yong [33] used neural netwok. He 

showed Summarization = Text pre-processing sub-

system + Keywords Extraction sub-system + 

Summary production sub-system. 

 In 1976 M.A. K. Halliday [34] used lexical 

semantic relationships to build lexical cohesion 

blocks and their patterns. 

 In 1984 Ruqaiya Hasan [35] used lexical cohesion 

to identify  similarity chains. 
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 In 1988 William C.Mann [36] used RST (rhetorical 

structure theory) to encode the terminal nodes of a 

tree. 

 In 1991 Jane Morris [37] used cohesion chains to 

determine the sequence of associated words. 

 In 1997 Branimir Boguraev [38] used saliency-

based content characterization to rank the important 

sentences in unstructured document. 

 In 2010 Li Chengcheng [39] used RST to analyze 

candidate sentence, discover rhetoric relations and 

give the construction. 

 In 2000 Hongyan Jing [40] used human abstraction 

concept by taking the closely realated sentences and 

eliminating the extra ones. 

Multi-Document Summarization: The major contribution was 

done by McKeown and Raedev in 1995 (NLP group) at 

Columbia University and SUMMONS was build [20]. 

Similarity measures were used and extractive techniques were 

applied. McKeown et al. in 1999 and Radev et al. [20]  in 

2000 identified common themes using clustering while 

Barzilay et al. [21] in 1999 produced composite sentences 

from cluster whereas Carbonell and Goldstein [22] in 1998 

used maximal marginal relevance (MMR). A major 

contribution where multi-document summarization was 

concatenated to multilingual environment by Evans in 2005 

[23]. 

Various other pioneers has worked in this field using different 

techniques. 

 G.Salton in 1989 [41] used TFI X IDFI techniques 

to evaluate the frequency. 

 Jun’ichi Fukumoto in 2004 [42] generate abstract by 

using TF/IDF for single and multiple documents. 

 You Ouyang in 2009 [43] used word hierarchial 

technique for most frequent terms at the top. 

 Vikrant Gupta in 2012 [44] used kernel which serve 

as a guideline to choose other sentences for 

summary by using statistical measures. 

 Inderjeet Mani in 1997 [45] used graph based 

method to discover the nodes by applying a 

spreading activation technique. 

 Rada Mihalcea in 2004 [46] used graph based 

method by adding a vertex for every sentence by 

creating links for similar sentences. 

 Xiaojun Wan in 2008 [47] used graph based method 

by introducing two-link graph for both sentences 

and documents. 

 Kathleen McKeown in 1995 [48] used time based 

technique which focuses on how the trends of 

events change with respect to time. 

 Shanmugasundaram Hariharan in 2012 [49] used 

sentence co-relation method where sentences are 

extracted on the basis of vote casting, scores and 

positions to get extracts. 

 Tiedan Zhu in 2012 [50] emphasized on logical-

closeness rather than topical-closeness using 

sentence co-relation method. 

 Jade Goldstein in 2000 [51] used clustering, 

coverage, anti redundancy and summary  cohesion 

for minimizing redundancy and maximizing both 

relevance and diversity, 

 Judith D.Schlesinger in 2008 [52] combines 

clustering, linguistics, statistics for summarization 

by using clustering based method. 

 Nitin Agarwal in 2011 [53] used query-oriented 

approach with unsupervised approach with the help 

of clustering based method. 

3. CLASSIFICATION OF AUTOMATIC 

TEXT SUMMARIZATION 
Automatic Text Summarization can be characterized into 

single document text summarization and multi document 

summarization. 

Single-Document Summarization: The biggest challenge in 

summarization is to identify or generalize the most important 

and informative sentences from a document because the 

information in the document is non-uniform usually [1].  

There are certain ways for single document summarization: 

Naïve-Bayes [2]: Here a classification function namely naïve-

bayes is used to distinguish whether sentences are likely to be 

extracted or not.  

Rich Features and Decision Trees [3]: Generally the text is 

portrayed in a predictable discourse structure and the 

important sentences occur at specific locations. This method 

is known as “position method” which shows the position of 

sentences. 

Hidden Markov Model [4]: Conroy et al used hidden markov 

model (HMM) and identified the problem of sentence 

extraction from a document. 

Log Linear Model [5]: Osborne used log-linear models and 

showed that existing approaches used feature independence 

and these models produce better extracts than naïve-bayes 

model. 

Neural  Networks [6]: Due to its outperforming statistical 

significance, neural network overcome the problem of 

extractive summarization. 

Deep Natural Language Analysis Method [7]: Here a set of 

heuristics are used to make document extracts. Also they 

model the discourse structure of texts. 

Multi-Document Text Summarization:  Since 1990’s, single 

document extraction has moved to multiple document 

extraction in the domain of news articles. Various news 

articles like Google News [8], Columbia News Blaster [9] and 

News In Essence [10] were inspired from multi-document 

summarization. Though single document puts contradictory 

results by overlapping the information   because of multiple 

documents availability [1]. So the major focus on summary is 

that summary should follow the completeness, correctness, 

erroneous property. 

There are certain ways for multi-document summarization: 

Abstraction and Information Fusion [11,12]: Here a summary 

is built by fusing multiple documents by giving input to 

process the text  and then extracting the important information 

to produce a well structured summary. 
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Topic-driven Summarization and MMR [13]: Here the main 

focus is on the query and the information retrieved from text 

retrieval to topic-driven summarization. In maximal marginal 

relevance (MMR), the redundant sentences are less rewarded 

by some similarity measures. 

Graph Spreading Activation [14]: In this a document is treated 

as a graph and each node represents the word with its position. 

Also a node can have various links like adjacency links (ADJ) 

which shows the adjacent words, Same links which shows the 

number of occurrences of a word, Alpha links encodes the 

meanings. Also Phrase links binds the sequence of adjacent 

nodes in a phrase whereas Name and Coref links checks the 

occurrence of co-referential name. 

Centroid-based Summarization [15]:  Here articles are 

grouped together which describes the same event. Every 

cluster constitutes of 2-10 articles from different sources and 

are arranged in chronological order. This step is called as 

topic detection. An agglomerative clustering algorithm adds 

documents to clusters by using TF-IDF vector and recomputes 

the centroids. Thus centroids are known as pseudo-documents 

because a cluster formation occurs with the help of TFIDF 

scores. After this sentences are identified from each cluster 

which describes the topic by using centroids. 

Multilingual Multi-document Summarization [16]: Here 

multiple documents are there in multiple languages. First, a 

translation system is applied for translation of document in a 

single preferable language. Then similar sentences are 

searched in the documents. If found relevant then they are 

included in summary directly rather than translating. This is 

useful for news applications that take information from other 

agencies of different language. 

4. CONCLUSION 
This literature review mainly focused on the pioneered work 

by great personalities who contributed in the field of 

automatic summarization. Also a brief classification is 

explained by various methods. In this era of abundant online 

information for a single topic, multi-document summarization 

is necessary as due to the abundant electronic information 

which is a known problem in terms of big data.  
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