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ABSTRACT 
Support vector machine (SVM) is a recent method to classify the 

data. SVM has been proved as a powerful tool for solving 

classification problem. The problem with complex dataset incurs 

significant complexity while classifying and its efficiency also 

cost very much. We propose a reduced set support vector 

machine based on Eigen structure, to classify dataset having 

multiple features. In this paper, Eigen vectors use to present the 

whole data in reduced dimensions. This minimize the task of 

classification by propose method and cost is reduced while 

efficiency is improved with the increase complexity of data. The 

proposed method takes a random chunk of data followed by 

Eigen structure use to reduce the dimension of the data. So as 

classification problem solve efficiently. We have compared the 

proposed method with SVM and RSVM. The result signifies that 

the proposed method gives better result in comparison to SVM 

and RSVM.    
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1. INTRODUCTION  
Support vector machine (SVM) is a statistical technique used to 

classify the data. It is a supervised method which used training 

data to identify a model. This model contains the support 

vectors. A support vector machine construct a hyper plane or set 

of hyper plane in a high-or-infinite dimensional space which 

can be used for classification, regression or other tasks, a good 

separation is achieved by the hyper plane that has the largest 

distance to the nearest training data point of any class, since in 

general the larger the margin the lower the generalization error 

of the classifier. 

The original SVM algorithm was invented by Vladimir N. 

Vapnik and Alexey Ya.Chervonenkis in 1963. The current 

standard incarnation (soft margin) was proposed by corning 

Cortes and Vapnik in 1993 and published in 1995. [1] 

SVM is mostly used in field of machine learning and pattern 

recognition. It is based on structural risk minimization. That 

means it searches for a decision boundary, which aims at 

providing a trade-off between hypothesis space complexity and 

quality of fitting the training data. SVM finds hyper-plane for 

linearly separable data as well as for linearly not separable (non 

linear) data. This hyper plane gives the largest minimum 

distance (margin) to the training example. For non linear data it 

uses different types of kernel function like Gaussian Radial basis 

function, multilayer perceptron, Quadratic kernel, polynomial 

kernel etc. 

The SVM has been applied for different applications like pattern 

recognition, geometric camera calibration, text categorization, 

handwritten character recognition, face recognition and in 

classification of object into discrete classes. 

In next section we will see Reduced Support Vector Machine 

(RSVM). 

1.1 RSVM 
Recently the Reduced Support Vector Machine (RSVM) was 

proposed as an alternate of the standard SVM. Motivated by 

resolving the difficulty of handling large data sets using SVM 

with non-linear kernels, it preselects a subset of data as support 

vectors and solves a smaller optimization problem. 

The procedure has two steps: 

a. It finds a sample/ template data 

b. Applying SVM on selected Template  

In order to deal with large data sets, the reduced support vector 

machine (RSVM) was proposed for the practical objective to 

overcome some computational difficulties as well as to reduce 

the model complexity.  

Basically RSVM is used from the view point of sampling 

design, its robustness, and the spectral analysis of the reduced 

kernel [2].  

Our main concern is to reduce the size of training set as well as 

to increase the efficiency. 

In next section we have describe the RSVM algorithm given by 

Su-Yun Huang and Yhu-Jye Lee [2].  

1.2 RSVM Formulation 
Consider the problem of classifying points into two classes, A- 

and A+. We are given a training data set 

{ 𝑥𝑖𝑦𝑖 }𝑖=1
𝑚 , where is an input vector and  

𝑦𝑖𝜖 { −1, 1} is a class label, indicating one of the two classes A- 

and A+, to which the input point belongs. We represent these 

data points by an m×n matrix A, the ith row Ai corresponds to 

the ith input data point. We use alternately Ai (a row vector) and 

xi (a column vector) for the same ith data point depending on the 

convenience. The main goal of the classification problem is to 

find a classifier that can predict correctly the unseen class labels 

for new data inputs. It can be achieved by constructing a linear 

or nonlinear separating surface f(x)=0, which is implicitly 

defined by a kernel function. We classify a test point x to A+ if 

f(x) ≥0, otherwise, to A-. In conventional SVM as well as many 

kernel-based learning algorithms [3]-[5], generating a nonlinear 

separating surface has to deal with a fully dense kernel matrix 

with the size of the number of training examples. When training 

a nonlinear SVM on a massive data set, the huge and dense full 

kernel matrix will lead to some computational difficulties as 

follows: 

a. The size of a mathematical programming problem. 

b. Dependency of the nonlinear separating surface on 

most     of the data set, which creates unwieldy storage 

problems that hinder the use of nonlinear kernels for 

massive data sets. 

To avoid these difficulties and to cut down model complexity, 

the RSVM uses a very small random subset of size m̃, where 

m̃<<m, for building up the separating surface which plays a 

similar role of support vectors . We denote this random subset by 

Ã, which is used to generate a much smaller rectangular matrix 

K (A, Ã`) ϵ Rm× m̃. The reduced kernel matrix K (A, A`), is to cut 

problem size, computing time, and memory usage as well as to 

simplify the characterization of the nonlinear separating surface. 
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We now briefly describe the RSVM formulation for binary 

classification, which is derived from the generalized support 

vector machine (GSVM) [3] and the SSVM [6]. The RSVM 

starts from a standard two-norm soft margin SVM, and next it 

appends the term γ2/2to the objective function to be minimized 

and result in the following minimization problem: 

min
(𝑢,𝛾 ,𝜖)

𝐶

2
‖𝜖‖2

2 + 
1

2
(‖𝑢‖2

2 + 𝛾2) 

            𝐷 𝐾 𝐴, 𝐴′ 𝑢 − 1𝛾 ≥ 1 − 𝜀               ε 0 

Where, C is a positive number, for balancing training error and 

regularization term in the objective function. We call it weight 

parameter. We note that the nonnegative constraint ϵ≥0 can be 

removed because of the term 

∥ 𝜀 ∥2
2 in the objective function. We use an m×m diagonal matrix 

D, where Dii=yi ϵ {-1, 1}, to specify the corresponding class 

membership of each input point. If we let v=Du, then 

∥ 𝑣 ∥2
2=∥ 𝑢 ∥2

2. Thus, the previous problem is equivalent to  

      min(𝑢,𝛾 ,𝜖)
𝐶

2
‖𝜖‖2

2 +  
1

2
(‖𝑣‖2

2 + 𝛾2)                                    (1) 

  𝐷 𝐾 𝐴, 𝐴′ 𝑣 − 1𝛾 ≥ 1 − 𝜀                      (2) 

At a solution ɛ takes the form ɛ= (1-D {K (A, A`) v-1γ}) +. Next, 

we convert the problem given by (1) and (2) into an equivalent 

SVM, which is an unconstrained optimization problem as 

follows: 

min
 𝑣,𝛾 𝜖𝑅𝑚 +1

𝐶

2
∥  1 − 𝐷 K A, A` v − 1γ  +∥2

2+
1

2
(∥ 𝑣 ∥2

2+ 𝛾2) 

                                                                                       (3) 

Instead of using the full kernel matrix K (A, A`), we replace it 

with a reduced kernel matrix K (A, A`), where Ã consist of m̃ 

random columns from A, and the problem becomes  

min
 ṽ,𝛾 𝜖𝑅𝑚 +1

𝐶

2
∥  1 − 𝐷 K A, A` ṽ − 1γ  +∥2

2+
1

2
(∥ ṽ ∥2

2+ 𝛾2) 

                                (4) 

In solving the RSVM (4), a smooth approximation p (z, α) to the 

plus function is used [6]. The p function defined below can 

provide a very accurate approximation. The RSVM then solves 

the following approximation unconstrained minimization 

problem for a general kernel K (A, Ã`): 

min
 ṽ,𝛾 𝜖𝑅𝑚+1

𝐶

2
∥  1 − 𝐷 K A, A` ṽ − 1γ , 𝛼 +∥2

2

+
1

2
(∥ ṽ ∥2

2+ 𝛾2) 

      (5) 

  Where p (z, α) is defined component wise by 

 The function p (z, α) converges to (z) + as α goes to infinity. 

Since the RSVM has already reduced the model complexity via 

using a much smaller rectangular kernel matrix (corresponding 

to using less support vectors in constructing the decision 

boundary), we will suggest to use a larger weight parameter C in 

the RSVM than in a conventional SVM. The solution to the 

minimization problem (4) or (5) leads to a nonlinear separating 

surface of the form 

 ṽk 𝐴᷈𝑖, 𝑥 − 𝛾 = 0

m̃

𝑖=1

 

In fact , the reduced set Ã is not necessarily t o be a subset of 

training set [8]. The minimization problem (5) retains the strong 

convexity and differentiability properties in the space for any 

arbitrary rectangular kernel. Hence, we can apply the Newton-

Armijo method [6] directly to solve (5). The existence and 

uniqueness of the optimal solution are also guaranteed. 

Moreover, the computational complexity of solving problem (5) 

by the Newton -Armijo method is O (m̃) while solving the 

nonlinear SSVM with the full square kernel is O (m3) [6]. 

Typically, m̃<< m. the numerical test in [8] on the adult data 

set[9] shows that sample standard deviation of test set 

correctness for 50 replicate runs using Ã ϵ R326×123 out of Ã ϵ 

R32562×123 is less 0.001. The smallness of the standard error 

provides guidance for determining m̃.  

In summary, the RSVM can be split into two parts. First, it 

select a small random subset  

{𝐾 Ã1, · , {𝐾 Ã2, · ,···, {𝐾 Ãm̃ , · } from the full-data bases 

{𝑘 𝐴𝑖 , .  }𝑖=1
𝑚  for building the separating surface prior to training, 

while the conventional SVMs use a set of support vectors which 

are determined after training for building the surface. When 

projected onto the separating surface, the full-data bases are 

likely highly correlated with possibly heavy overlaps, which 

make room for model reduction. Second, the RSVM determines 

the best coefficients of the selected kernel functions by solving 

the unconstrained minimization problem (4) or (5) using the 

entire data though the RSVM uses only a small portion of kernel 

bases, it can still keep most of the relevant pattern information 

given by the entire training set. 

2. PROPOSED METHOD 
In the proposed method, we have applied the SVM algorithm on 

the Eigen structure on the whole dataset. The main idea of our 

algorithm is of two steps broadly: 

1) Find the compressed Eigen structure of dataset:  

The process of compressing the dataset is as follows: 

a) Let’s the dataset is, if 

 

𝑋 =  

𝑥1 ⋯ 𝑥𝑚

⋮ ⋱ ⋮

𝑥𝑛 ⋯ 𝑥𝑚𝑛

 

𝑚×𝑛

 

b) Subtract the mean 

𝑋𝑖𝑗 = 𝑋𝑖𝑗 −
 𝑋𝑖𝑗

𝑚
𝑗=1

𝑚
 

And say after subtracting the mean, new matrix is 

N.    

c) Find the covariance matrix, such that element 

 

𝑋𝑖𝑗 = 𝑐𝑜𝑣 𝑋𝑖𝑗, 𝑋𝑗𝑖   

Where 𝑐𝑜𝑣 𝑋, 𝑌 =
  𝑋𝑖 −𝕏 (𝑌𝑖  −𝕐)𝑚

𝑖=1

𝑚−1
 

𝕏 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋  

And 

𝕐 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑌  

 

In a covariance matrix, 
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𝑋𝑖𝑗 = 𝑋𝑗𝑖 = 𝑐𝑜𝑣 𝑋𝑖𝑗 , 𝑋𝑗𝑖  =  
 𝑋𝑖𝑗 − 𝕏  𝑋𝑗𝑖 − 𝕏 

𝑚 − 1
 

 

d) Find Eigen vectors and Eigen values of 

covariance matrix. And sort Eigen vector 

corresponding to their Eigen value in a decreasing 

order. 

e)  Select Eigen vectors as selected-vector matrix Ƒ. 

You can reduce no of dimension here i.e. if you 

want to reduce data 50%, and then select only 

50% of Eigen vectors.    

f) Then find finally reduced data R as follows: 

𝑅 =  Ƒ𝑡 × 𝑁𝑡  

2) Finding the support vector 

In second step one can classify the dataset by finding 

hyper plane. Take the reduced data R, find a hyper 

plane, set of points x, satisfying,  

𝑤𝑥 + 𝑏 = 0 

Where w is normal vector to the hyper plane. 

Figure 1 shows the linear separation of data. And It 

just classify data into two classes. 

 

 

 

Fig. 1.Linear separation of data using hyper plane 

The parameter  determine the offset of 

hyperplane from the origin along the normal vector w. 

For nonlinear classification, one can use kernel 

functions i.e. Gaussian Radial basis function, 

multilayer preceptron, Quadratic kernel, polynomial 

kernel etc. 

3. RESULT ANALYSIS 
We have tested our method on BUPA, PIMA, and PHONEME 

dataset+. BUPA dataset is created by a company which provides 

private medical insurance, named as The British United 

Provident Association Limited. This dataset contains six 

attributes and can be classified into two classes. PIMA dataset is 

of Indians Diabetes dataset. This dataset contains seven 

attributes and it can also be classified into two classes. 

PHONEME dataset is basically used to classify nasal and oral 

sounds. This dataset contains five attributes and can be classified 

into two classes. We have tested SVM (Simple Support Vector 

Machine), RSVM (Reduced Support Vector Machine) and Our 

Method using ten-fold dataset. 

We have taken training and testing data size for each dataset as 

following: 

Dataset BUPA PIMA Phoneme 

Training 

data 

310x6 200x 541 

Testing data 35x6 25 50 

Table1. Training and testing data size for each dataset 

The comparison analysis of number of support vector using 

different method is as following:  

 Method 
No. of Support Vector 

BUPA  PIMA Phoneme 

SVM 256 174 259 

RSVM 143 95 153 

Our Method 260 137 246 

Table2. Comparison analysis of generated no. of support 

vector using different method 

 Comparison analysis based on Accuracy is as follows:  

Table3. Comparison analysis based on Accuracy 

Method BUPA PIMA Phoneme 

SVM 57.14 60 % 78 % 

RSVM 54.28 48 % 78 % 

Our Method 57.14 72 % 80 % 

 

Comparison Analysis Based on Time Taken is as follows: 

Table4. Comparison Analysis Based on Time Taken 

Method BUPA PIMA Phoneme 

SVM 1.0776 0.3182 0.5396 

RSVM 0.034 0.0302 0.0509 

Our Method 0.0774 0.0381 0.0846 

 

Our method is used to classify data after reducing its dimensions 

so that its space and time complexity can be reduced. 

We have tested SVM, RSVM and Our method on three different 

test datasets. Following graph shows accuracy of these methods 

tested on BUPA dataset.   
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Fig.2. Accuracy of BUPA dataset 

Following graph shows accuracy of SVM, RSVM and Our 

method tested on three test dataset of PIMA. 

 

Fig. 3.Accuracy of PIMA dataset 

Following graph shows accuracy of SVM, RSVM and Our 

method tested on three test dataset of PHONEME. 

 

Fig. 4.Accuracy of PHONEME dataset 

An analysis has been done for showing the actual result. We 

have taken different dataset and plotted a graph by taking test 

number (i.e. 1st test, 2nd test etc.) on X-axis and their 

corresponding accuracy on Y-axis. This graph shows that our 

method performs better than RSVM.  

 

Fig. 4.Spectral result analysis 

4. CONCLUSION AND FUTURE WORK 
For large data set, Numbers of Support Vector are usually large. 

Because of that the computational complexity increases and the 

training time as well as testing time also increases. To simplify 

the SVM and reducing the number of Support Vectors, RSVM 

works well. But most of the time it reduces the testing accuracy. 

As results shows that the proposed method, not only reduce the 

training time but also improves the testing accuracy. Although 

time taken by our algorithm is more than that of RSVM, but 

always less than SVM.  
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