
International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

6 

Crowd-Enhanced Cloud Services: Issues and Directions 

Saeed Arbabi 
The University of Zabol 

Zabol, Iran 
 

Mohammad Allahbakhsh 
The University of Zabol 

Zabol, Iran 
 

Mohsen Sharifi 
Iran University of Science and 

Technology 
Tehran, Iran 

 

ABSTRACT 

Cloud computing systems have emerged as a type of 

distributed systems in which a multitude of interconnected 

machines are gathered and recruited over the internet to help 

solve a computation or data-intensive problem. There are 

large numbers of cases in which Cloud techniques solely are 

not able to solve the job due to the nature of the tasks. To 

overcome this problem recently a strong inclination has 

emerged towards enlisting the human intelligence and wisdom 

of crowds a.k.a. Crowdsourcing in combination with the 

machine automated techniques. In this paper the authors 

propose a model for integrating crowds of people in the Cloud 

environments to enrich Cloud computing environments to be 

able to provide hybrid human-machine services enabling it to 

solve a wider variety of problems which some of them are 

studied here. The authors nickname these rich types of 

services, Crowd-enhanced Cloud services. At the end, the 

modality and challenges of this convergence and its 

future trends are explored.   

General Terms 

Cloud Computing, Crowdsourcing. 

Keywords 

Crowdsourcing, Cloud Services, Distributed Systems. 

1. INTRODUCTION 
Cloud computing systems are a type of distributed systems in 

which a collection of interconnected computing resources 

(e.g., CPU and storage) are shared, virtualized and presented 

as one or more unified computing services based on service-

level agreements [1]. So cloud computing is a model for 

enabling convenient, on demand network access to a shared 

pool of configurable computing resources that can be rapidly 

provisioned and released with minimal management effort or 

service providers’ interactions. Crowdsourcing also is an 

online distributed problem solving and production model that 

has emerged in recent years [2]. Crowdsourcing systems enlist 

a multitude of humans to help solve a wide variety of 

problems [3] ranging from labeling images [4], to finding 3-D 

protein structures [5], to classifying galaxies in Hubble 

images [6]. There are many problems for which one or more 

computational services in combination with human agents 

can actually offer whole or part of a badly needed service 

that can achieve a level of service quality that cannot be 

achieved under each regime solely. An example service is the 

human evaluation of the output of a language translation 

job done by machine; human query processing to 

complement database query processing [7]. Another 

example are big-data management approaches for large-scale 

classification of items, here the authors discuss Walmart 

product classification system [8] as a case-study in this paper. 

This is the concept of “augmentation” that Doug 

Engelbart had proposed nearly 50 years ago in which 

machine-based services could improve semantically by 

integrating with human-provided services [9, 10]. 

Nowadays, crowds are increasingly employed in software 

and used alongside with the computers to solve problems. 

The same trend is emerging in the cloud services as well 

[11, 12]. Crowd-enhanced cloud which is the goal of this 

paper is a type of distributed system created as a result of 

injecting crowdsourcing into cloud computing at the lowest 

level of cloud hierarchy a.k.a resource pool. The authors aim 

to augment the cloud computing resource pool by considering 

the human crowd as a type of resource.  

In this paper it is tried to find answers to the following 

questions in this paper: 

1. Why is it necessary to enhance cloud services with a 

crowd (WHY)? 

2. Where in the cloud hierarchy, the crowd should be 

injected (WHERE)? 

3. What techniques exist for injecting a crowd into a cloud 

service (HOW)?  

By answering these questions, the authors aim to define 

key research issues and articulate future research 

challenges and directions for crowd-enhanced cloud 

computing. 

The rest of the paper is organized as follows. Section 2 

explores the concept of crowdsourcing and some key 

issues in designing a crowdsourcing system. Section 3 

defines cloud computing and exhibits several key 

characteristics of cloud computing systems. Section 4 

discusses the relationship between Cloud computing and 

crowdsourcing in modern Web and then answers the three 

above questions; why, how and where to inject crowd into 

cloud. Next, the authors discuss issues and research 

challenges faced when injecting crowd into cloud in Section 

6. Sections 7 and 8 conclude the work with a vision on 

future directions. 

2. CLOUD SERVICE PRINCIPLES 
In this section first an overview of the cloud computing 

service principles are studied and then some of the issues 

in this area are explored. 

2.1 Overview 
Clouds are vast pools of computing resources (e.g. 

processing, storage, applications) and cloud computing is a 

service-driven business model meaning that delivers these 

resources as a utility service via the internet on users’ 

demands [13,14]. Although recently known as the 

revolution in IT industry [15], the idea behind the cloud 

computing, looked like a dream in 1960s when John 

McCarthy envisioned that the computing facilities will be 

provided to general public as a utility [8]. However, the 

“cloud computing” as a whole was first introduced in 2006 

after Google’s CEO Eric Schmidt coined the word to 

describe a business model for providing services across the 

Internet [16], and popularity of the word actually started 

sometime in October 2007 when IBM and Google 

announced a collaboration in that domain [17, 18]. Google, 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

7 

Amazon, Oracle Cloud, Rackspace, Salesforce, Zoho and 

Microsoft are some well-known cloud vendors. 

Cloud computing vendors, a.k.a. cloud providers, provide 

their infrastructure (resource pool) as a utility to host service 

providers enabling them to provide their software services 

over Internet for service users. So service providers no longer 

need to be concerned about large capital outlays in hardware 

to host their services or experts to operate and maintain it [14, 

19, 13]. Figure 1 shows an architecture for cloud computing. 

In cloud’s service-driven business model, three general groups 

of services are provided: Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service 

(SaaS). 

Infrastructure as a Service. Cloud providers usually 

virtualize infrastructure resources in an on-demand fashion for 

cloud infrastructure users. Amazon EC2 or the Rackspace 

Cloud  are examples of IaaS cloud providers. 

Platfrom as a Service. Cloud providers can provide as a 

service the software platform that systems run on. This 

software platform include operating system, software 

development framework and execution environments. Google 

App Engine, Microsoft’s Azure cloud platforms are examples 

of well-known Platforms as Services. 

Software as a Service. Cloud providers can provide 

applications over the Internet, giving users the chance to work 

with an application without locally installing it. Amazon Web 

Services is one example of Software as a Service. 

 

Fig 1: Cloud Computing Diagram 

2.2 Dimensions 
In this part some aspects of cloud computing model are 

explored. 

Service Development. In cloud computing environments, 

cyber infrastructure developers develop and maintain the 

cloud framework. They are also in charge of hiding the 

infrastructure complexities from service users and higher level 

service providers. 

Resource Provisioning. In modern clouds, services share the 

underlying computing resources by running in isolated virtual 

machines. Every cloud computing platform should be able to 

allocate and de-allocate resources on-demand to match the 

workloads on virtual machines. This is not easy to map 

service level objectives such as quality of service to low level 

hardware resources such as CPU or memory. There are two 

operations necessary for efficient resource provisioning: (1) 

static provisioning, when virtual machines are created with 

special size and then consolidated to a special set of physical 

machines [20], and (2) dynamic provisioning that allows 

virtual machine hardware resources to dynamically adjust 

themselves to match on-demand workloads [21, 22]. 

Quality of Service. The pool of computing resources is 

dynamically  reconfigured and exploited based on the 

workloads on virtual machines running services. This is 

provided by the infrastructure provider with a guarantee on 

the performance and availability of service, a.k.a. Service 

Level Agreement (SLA) negotiated between the consumer 

and provider of a service. Due to dynamic nature of cloud 

resource allocation and de-allocation, continuous monitoring 

of quality of service is necessary to ensure SLA [14, 23]. 

Definition of the SLA with an appropriate level of granularity 

is an issue, so that it can completely cover the user needs and 

at the same time simple enough to be weighted, verified, 

evaluated and enforced by a resource provisioning mechanism 

in the cloud [24]. 

Cost and Payment Methods. Although moving onto cloud 

would considerably reduce the infrastructure costs, but at the 

same time it would raise the cost of data communication as 

the organization’s data should transfer up to cloud and then 

down to organization. So organizations should consider this 

tradeoff when making decisions on migrating to the cloud 

[25]. From the point of view of a cloud provider, calculating 

the cost of consumed resources is a complicated task in 

dynamic resource provisioning cloud systems than static 

computing ones. Also a complete charging model needs to 

consider virtual machine associated items such as software 

licenses and virtual network usage in addition to above costs 

[24]. 

Service Interoperability.  The concept of a cloud 

operated by one service provider or enterprise interoperating 

with a cloud operated by another is a powerful idea. Of course 

from within one cloud, explicit instructions can be issued over 

the Internet to another cloud. For example, code executing 

within Google AppEngine can also reference storage residing 

on AWS. However, there are no implicit ways that cloud 

resources and services can be exported or caused to 

interoperate. 

3. CROWDSOURCING PRINCIPLES 
In this section an overview of the crowdsourcing concept is 

provided and then the important dimensions of a 

crowdsourcing process are explored. 

3.1 Overview 
Crowdsourcing is the process of enlisting a crowd of people to 

solve a problem [26, 27]. The idea of crowdsourcing was first 

introduced by Jeff. Howe in 2006 [27]. Since then, an 

enormous amount of efforts has been put into this area from 

both academia and industry and many crowdsourcing 

platforms and research prototypes (either general or special 

purpose) have been introduced. Amazon Mechanical Turk1 

(MTurk), Crowdflower2, Wikipedia3 and Stackoverflow4 are 

examples of well-known crowdsourcing platforms. 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

8 

To crowdsource a problem, the problem owner, also called the 

requester, prepares a request for the crowd’s contributions and 

submits it to a crowdsourcing platform. This request, also referred 

to as the crowdsourcing task or shortly as the task, consists of a 

description of the problem that is asked to be solved, a set of 

requirements necessary for task accomplishment, a possible 

criteria for evaluating quality of crowd contributions and any other 

information that can help workers produce contributions of higher 

quality levels. People who are willing to contribute to the task, also 

called workers, select the task if they are eligible to do so, and 

provide the requester with their contributions. The contributions 

are sent to the requester directly or through the crowdsourcing 

platform. The requester may evaluate the contributions and reward 

the workers whose contributions have been accepted [28, 29, 30]. 

3.2 Dimensions 
Several dimensions characterize a crowdsourcing process, 

each of which impacts various aspects of the process from 

outcome quality to execution time and costs. 

Task Definition. Task definition is important in the success 

of a crowdsourcing process. A poorly designed task can result 

in receiving low quality contributions, attracting malicious 

workers or leaving the task unsolved due to unnecessary 

complications [31, 32]. Therefore, it is highly recommended 

to design robust tasks. A robust task is designed so that it is 

easier to do it rather than to cheat [33]. Moreover, a requester 

should make sure to provide all information required by 

workers to do the task to increase the chance of receiving 

contributions of higher quality levels. The importance of this 

dimension is because of its direct impact mainly on the 

outcome quality, task execution time and the number of 

recruited workers. 

Worker Selection. Quality of workers who contribute to a 

task can directly impact the quality of its outcome [33, 32, 

34]. Low quality or malicious workers can produce low 

quality contributions and consequently waste the resources of 

the requester. Research shows that recruiting suitable workers 

can lead to receiving higher quality contributions [34, 35]. A 

suitable worker is a worker whose profile, history, 

experiences and expertise highly matches the requirements of 

a task. In a crowdsourcing process, workers might be 

recruited through various methods such as open-call, 

publish/subscribe [36], friend-based [37], profile-based [34] 

and team-based methods [38]. 

Real-time Control and Support. During the execution of the 

task, the requester may manually or automatically control the 

workflow of the task and manipulate the workflow or the list 

of the workers who are involved in the task in order to 

increase the chance of receiving high quality contributions 

[39, 40]. Moreover, workers may increase their experience 

while contributing to a task by receiving real-time feedback 

from other workers or requester. The feedback received in 

real-time, and before final submission of the worker’s 

contribution, can assist the worker to pre-assess the provided 

contribution and enhance the contribution to satisfy the task 

requirements more fully [41]. Real-time workflow control and 

feedback can directly impact the outcome quality, the 

execution time and also the cost of the task, so they should be 

taken into account when studying crowdsourcing processes. 

Quality Assessment. Assessing the quality of contributions 

received from the crowd is another important aspect of a 

crowdsourcing process. Quality in crowdsourcing is always 

under question. The reason is that workers in crowdsourcing 

systems have different levels of expertise and experiences; 

they contribute with different incentives and motivations; and 

even they might be included in collaborative unfair activities 

[33, 42, 43]. Several approaches are proposed to assess quality 

of workers’ contributions such as expert review, input 

agreement, output agreement, majority consensus and ground 

truth [33]. 

Compensation Policy. Rewarding the workers whose 

contributions have been accepted, or punishing malicious or 

low quality workers, can directly impact their chance, 

eligibility and motivation to contribute to future tasks. 

Rewards can be monetary (extrinsic) or non-monetary 

(intrinsic). Research shows that the impact of intrinsic 

rewards, e.g., altruism or recognition in the community, on the 

quality of the workers’ contributions is more than monetary 

rewards [44]. Choosing an adequate compensation policy can 

greatly impact the number of contributing workers as well as 

the quality of their contributions. Hence, compensation policy 

is an important aspect of a crowdsourcing process. 

Aggregation Technique. A single crowdsourcing task might 

be assigned to several workers. The final outcome of such a 

task can be one or few individual contributions received from 

workers or an aggregation of all of them [23, 30]. Voting is an 

example of the tasks that crowd contributions are aggregated 

to build up the final task outcome. In contrast, in competition 

tasks only one or few workers’ contributions are accepted and 

rewarded. Each of the individual contributions has its own 

characteristics such as quality level, worker’s reputation and 

expertise. Therefore, combining or even comparing these 

contributions is a challenging task and choosing a wrong 

aggregation method can directly impact the quality of the task 

outcome. 

Integration. A drawback of existing crowdsourcing platforms 

is that each defines a stand-alone system with rigid structure 

and requirements, and thus demands significant work in order 

to integrate human computation into larger applications. Each 

new application may require building a pipeline from the 

ground up, and in many cases, a new community. Particularly 

for complex applications, which may involve several steps of 

human computation using different crowdsourcing platforms 

interleaved with machine computation, constructing such a 

pipeline can be a tedious effort. In practice, complex systems 

are discouraged, and most uses of human computation avoid 

multiple interleaved processing steps. 

4. INJECTING CROWD INTO CLOUD 

SERVICES 

Nowadays, crowd are increasingly employed in software and 

used alongside with computers to solve problems. The same 

trend is emerging in the cloud services as well [11,12]. 

Therefore, in this section it is tried to present justifications on 

cloud-crowd computing by answering the following 

questions: 

1. Why is it necessary to enhance cloud services with a crowd 

(WHY)? 

2. In which level or levels of the cloud service stack (Fig.1), a 

crowd should be injected (WHERE)? 

3. What techniques exist for injecting crowd sources into 

cloud (HOW)? 

4.1 Why to inject Crowd into Cloud? 
To answer this question, one should recall the definition of a 

cloud service presented in Section 3. According to this 

definition, one of the main resource categories that a cloud 

service can offer to its users is the computing resource. This 

fact is also depicted in Figure 1. For example, CPUs as 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

9 

computing resources can be granted and revoked to users 

based on their requests and requirements. 

On the other hand, the most important aspect of 

crowdsourcing that differentiates it from other distributed 

systems is harnessing crowd intelligence and wisdom to solve 

a problem. In other words, crowdsourcing services employ 

people as computing resources to solve a certain task. People 

as computing resources can be involved in any type of task, 

but their major strength points is that they perform well in 

tasks that are pretty hard for computers but very easy for 

humans. Photo tagging is a very good example of these type 

of tasks. These tasks are also called Human Intelligence Tasks 

(HITs) [45]. Due to the rapid application of computers and 

mobile devices in people’s daily life and the emerging field of 

mobile cloud computing platforms, a very wide variety of 

problems, a reasonable amount of them HITs, show up in our 

daily life. Probably, the best way to tackle these problems, 

mainly HITs, is to use crowdsourcing techniques in the cloud 

service context. Therefore, it is vital to enhance the cloud 

services with injecting the crowd computing power into cloud. 

4.2 Where to inject Crowd? 
Computing resources in clouds are managed in the lowest 

level of the hierarchy, a.k.a. infrastructure level or resource 

pool. Therefore, the authors here aim to inject crowd of 

people as a resource in the resource pool creating a rich type 

of cloud. Such augmentation enriches all service levels of 

target cloud computing system without changing the stack. 

There are some crowdsourcing systems that have tried to 

inject crowd into cloud. An example is the crowdsourcing 

system reported in [12] that considers a crowdsourcing system 

with the mission of video quality testing and then tries shifting 

the videos onto the cloud, thus optimizing the production of 

videos to the workers. Lenk et al based on such works, 

redesigned the cloud computing service stack and offered a 

new crowdsourcing layer on top of it entitled human as a 

service [46]. 

Hybrid cloud architecture, presented in [47] also includes 

human as a service layer. This is the most similar work to our 

research, but it changes the cloud stack and their view is 

limited to software as a service layer while this work's 

contribution embeds crowds as resources into the cloud 

computing original stack without changing it and trying to 

have resource type transparency in mind. There exists some 

attempts at injecting crowd into cloud. An example is the 

work reported in [12]. 

4.3 How to inject the Crowd? 
In [48] inevitable change in data-centric systems is considered 

as an effect of connectivity of billions of device-enabled 

people to the massive cloud computing infrastructure and is 

envisioned by developing hybrid cloud/crowd systems but no 

clear solution is suggested. 

Crowd-servicing is the name picked for evolving vision in 

Web 3.0 by [7] in which services provided by human agents 

and machines are integrated over the World Wide Web to 

represent the full flowering of the augmentation concept [9]. 

Combining the power of both machine and human clouds 

within a hybrid cloud/crowd design that combines query Web 

services, string similarity algorithms and crowdsourcing in a 

real project case. The goal of this research as a proof of 

concept was to show that crowdsourcing can be used 

effectively and efficiently as part of software engineering 

practices [11]. 

Some works specially the one reported in [49] tried 

empowering the crowdsourcing service by changing it to be 

cloud-enabled. Delivering a general purpose crowdsourcing 

capability is studied in some works. The work done in [49] 

explores the technical requirements for delivering an end-to-

end general purpose crowdsourcing platform  in four sections: 

registration, initializing crowdsourcing request, carrying out 

crowdsourcing request, and complete crowdsourcing request. 

Then it has studied the extent to which four different 

crowdsourcing platforms meet the specific subset of these 

technical requirements. She demonstrates how the cloud 

infrastructure can be used as a scalable hosting and 

application development environment for dynamic, task-based 

crowd teaming. 

A step forward in building a general purpose crowdsourcing 

platform and creating a tool for crowdsourcing programmers 

is reported in [28]. They have created a human and machine 

resource management system called Dormouse, and explore 

the drawbacks of current crowdsourcing paradigms such as 

treating human workers as homogenous and rigid structure 

that makes them hard to integrate with other platforms. Other 

human computation frameworks have been presented in [50, 

51, 52] but they are all platform-dependent design patterns 

compared to jabberwocky, which is a full stack general 

purpose crowdsourcing. 

Another type of effort for a crowdsourcing toolkit is usage of 

declarative query languages for human computation 

introduced in [53, 54]. The concept of global brain [55] is 

described to view all the people and computers on our planet. 

Because of the involvement of people, the programming skills 

needed for global brain is completely different from 

traditional computer programming and software engineering. 

Then the challenge of programming this global brain is 

studied. 

There are real-time or single-worker applications, for example 

the work presented in [56], which is a computer-implemented 

method and system (Legion) for capturing and outsourcing an 

existing graphical user interface (GUI) of an application to a 

crowd for their collaborative real-time control using an input 

device. 

5. CROWD-ENHANCED CLOUD 

SERVICE STACK 
As discussed in Section 4, one should consider both people 

and machines as first-class citizens in cloud. Such injection 

empowers all the above layers of the cloud service stack, 

including Iaas, Paas and SaaS. In this section we clarify this 

consideration. 

5.1 Crowd-Enhanced IaaS 
A human and machine resource management system is needed 

on top of resource pool that feeds IaaS layer directly, like the 

virtualization layer in every other cloud service stack shown 

in Fig 1. This layer should interact with both people and 

machines, and in addition maintain real identities, user 

profiles, and social relationships for the people who comprise 

the system, and allow IaaS provider to define arbitrary person-

level properties and social structures in the system. Further, 

because this virtualization layer defines communication 

protocols for both people and machines, by means of that, 

IaaS users could naturally interact with both in unified control 

flows even for complex parallel processing tasks. An example 

of such resource management layer named Dormous is 

presented in [28]. 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

10 

In existing crowdsourcing systems, human workers are often 

treated as homogeneous and interchangeable, which is useful 

in handling issues of scale and availability. However, limited 

notions of identity, reputation, expertise, and social 

relationships limit the scope of tasks that can be addressed by 

these systems. Incorporating real identities, social structure, 

and expertise modeling has proven valuable in a range of 

applications, for example, in question-answering with 

Aardvark. Building general frameworks for human 

computation that include these notions will enable complex 

applications to be built more easily. 

5.2 Crowd-Enhanced PaaS 
Some large-scale data applications such as MapReduce 

platform can be proposed as PaaS in crowd-enhanced cloud 

on top of IaaS. This MapReduce implementation can facilitate 

complex data processing tasks. Like main MapReduce, it 

gives the PaaS user the ability to specify map and reduce 

steps, but allowing either step to be powered by human or 

machine computation. The data flow, resource allocation, and 

parallelization necessary for each step are handled by this 

Crowd-Enhanced MapReduce with no onus on the PaaS user.  

In addition to combining machine and human computation, 

crowd-enhanced MapReduce also provides the ability to 

choose particular types of people to complete each task (based 

on crowd-enhanced IaaS), and allows arbitrary dependencies 

between multiple map and reduce steps. Many interesting 

social computing applications fit naturally into this paradigm, 

as they frequently involve the need for parallelization of 

subtasks across people or machines, and subsequent 

aggregation such as writing a summary or averaging the 

ratings. As a simple example, conducting a survey and 

tabulating summary statistics for each question (breaking 

down according to a variety of demographics) can be 

expressed using a human map step that sends the survey in 

parallel to many people, and one or more machines reduce 

steps on the output that aggregate the responses keyed by 

question and/or user demographic. One such implemented 

platform named ManReduce is reported in [28]. 

5.3 Crowd-Enhanced SaaS 
Hybrid cloud architectures, presented in [47] and [46] also 

include human as a service layer on top of main SaaS. In this 

work the authors don’t change the cloud main stack but enrich 

it with the human in resource pool, so here the authors don’t 

propose a human as a service layer but a crowd-enhanced 

software as a service layer. A drawback of existing 

crowdsourcing platforms is that each defines a stand-alone 

system with rigid structure and requirements, and thus 

demands significant work in order to integrate human 

computation into larger applications. Each new application 

may require building a pipeline from the ground up, and in 

many cases, a new community. Particularly for complex 

applications, which may involve several steps of human 

computation using different crowdsourcing platforms 

interleaved with machine computation, constructing such a 

pipeline can be a tedious effort. In practice, complex systems 

are discouraged, and most uses of human computation avoid 

multiple interleaved processing steps. 

Most of the works done in the crowdsourcing to combine pure 

human-enabled Web services with machine-enabled Web 

services, could fit in this layer. The research done in [7] 

introduces the concept of crowdservicing. It then uses a 

scenario to illustrate how a crowdsourcing application as a 

service can provide all or part of a badly needed service, 

which, in combination with one or more computational 

services, can achieve a level of quality that each regime can’t 

achieve separately. 

The work done in [12] considers a crowdsourcing system with 

the mission of video quality testing and then tries shifting the 

videos onto the cloud, thus optimizing the production of 

videos to the workers. So providing such crowdsourcing 

systems as services in SaaS layer can derive a benefit from 

cloud storage, which is the aim of that work. 

5.4 Case-Study: Wall-Mart Product 

Classification 
Wall-Mart product classification project is an example of 

hybrid crowd-machine approaches which is proposed for big 

data analytics [8]. In this project, a huge volume of data is 

constantly being received from various retailers from all 

across the country. The sent data is structured but in most of 

the cases it is incomplete. So, Wall-Mart cannot use only 

machines for the purpose of entity matching and resolution. 

The results, as tested, do not have the required level of 

accuracy. To overcome this problem, Wall-Mart selects some 

individuals with adequate expertise to refine the results 

produced by machine. 

6. RESEARCH ISSUES 
Injecting crowds of workers as a computing resource in 

cloud resource pool raises design challenges. In this section, 

the authors explain what issues raise when one injects 

crowd into cloud. 

6.1 Large-Scale Data Management 
Parallel programming frameworks, including MapReduce, 

Dryad [52], and GPU shader languages [3] have been 

developed in an environment characterized by data-intensive 

applications and the availability of parallel computing 

resources. This characterization also holds for many 

applications in human computation, for example, in image 

processing or machine learning. There are some applications 

where embedding crowd into MapReduce is not suitable, for 

example, for using a single worker in the crowd to control a 

robot [56]. So data-processing applications are well-suited to 

this approach, while this is not true for real-time or single-

worker sequential applications. 

6.2 Human and Machine Resource 

Management System 
The need for a "virtual machine” layer in stack that 

consists of low-level software libraries is a research issue. 

This layer should interact with both people and traditional 

computing machines and maintain real identities, rich user 

profiles, and social relationships for the people who 

comprise the system, and allow end users to define 

arbitrary person-level properties and social structures in 

the system. Further, because this virtualization layer 

defines communication protocols for both people and 

machines, by means of that, programmers could very 

naturally interact with both in unified control flows even 

for complex parallel processing tasks. An example of such 

resource management layer is created in [28] named 

Dormous. 

6.3 Supporting Social Computing 
The other important aspect is to allow the programmer to 

route tasks based on personal properties such as expertise and 

demographic. For example, specify that certain tasks be 

dispatched only to people with graduate degrees in biology, or 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

11 

expertise in computer science, or simply to people under 25 or 

the people of one college. 

6.4 Simple Task/Service Definistion 
The crowd-enhanced cloud system should define simple 

interfaces for using, creating, and sharing functions (human or 

machine) and micro-task templates, making it easy to quickly 

implement a wide range of applications. This means for 

crowd-enabled tasks the need for straight forward 

mechanisms to create new templates for human tasks, and 

importantly, to reuse those created by others. This minimizes 

redundant work and allows programmers to focus on control 

flows rather than creating and optimizing task templates. 

6.5 Quality Assessment 
There are mechanisms for quality control and assessment of 

service both in cloud computing and crowdsourcing environments. 

In a crowd-enhanced cloud computing system a quality control 

mechanism is necessary to ensure some service level agreements 

in the parts of the service that use both human or machine 

resources. 

6.6 Interoperability 
Integration of computational and human-assisted services in 

two crowd-enhanced clouds is a design issue needed to be 

explored. For example, a service in one crowd-enhanced 

cloud, in one step, routes tasks to a large number of 

inexpensive workers from one crowd-enhanced cloud 

computing platform, and in a next step, routes tasks to a 

smaller number of vetted experts from another platform, 

without requiring to learn the separate (and often complex) 

API calls from multiple platforms. 

6.7 Dynamic Pricing Mechanism 
A dynamic pricing component is needed. Software 

components can be developed, which will adjust the pricing of 

crowdsourcing requests according to demand and participant 

availability alongside machine resource providing. The 

pricing mechanism should be something like pay as you go in 

clouds 

7. CONCLUSION AND FUTURE 

DIRECTIONS 
Utilizing the map-reduce could be a future direction. For 

example, machine map step could specify automatic 

information extraction of facts from a set of scientific papers, 

such as genetic and environmental risk factors for a set of 

candidate diseases. Then, a human reduce step could 

aggregate the proposed facts about each disease, check their 

accuracy and convert them into a summary. 

The vast potential one can realize by integrating computation 

with human intellectual power has been recognized from 

computing earliest days. Its origins are in cybernetics, in the 

seminal writings of Norbert Wiener, Hal Ashby, Lick 

Licklider, and others in the 1950s and 60s. Wiener advocated 

for human use of human beings [57], whereas Ashby 

developed the concept of synthetically amplifying human 

intellectual power, which he referred to as intelligence 

amplification [58]. Licklider argued passionately for tightly 

coupling human intellect and computing machines to achieve 

man computer symbiosis. [59] He conjectured that the 

resulting systems can potentially perform at a level superior to 

each subsystem. In many situations, human agents can 

provide all or part of a badly needed service, which, in 

combination with one or more computational services, can 

achieve a level of quality that each regime cannot achieve 

separately. This is the potential that having crowdsourcing as 

services offers. 

The existing crowdsourcing systems are often purpose-built, 

supporting a set of specific, micro tasks in a particular domain 

and a specific part of the product life-cycle. To address the 

identified gaps in architectural support for building 

crowdsourcing service it could embark on building a platform 

for crowdsourcing, demonstrating how the cloud 

infrastructure can be used as a scalable hosting and 

application development environment for dynamic, task-based 

crowd teaming. 

In this paper the authors demonstrated why, how and where to 

inject crowd into cloud and then analyzed some research 

issues and challenges that arise from this convergence 

8. REFERENCE 
[1] Rajkumar Buyya, Chee Shin Yeo, and Srikumar 

Venugopal. Market-oriented cloud computing: Vision, 

hype, and reality for delivering it services as computing 

utili- ties. In High Performance Computing and 

Communications, 2008. HPCC’08. 10th IEEE 

International Conference on, pages 5–13. Ieee, 2008. 

[2] Daren C Brabham. Crowdsourcing as a model for 

problem solving an introduc- tion and cases. 

Convergence: the international journal of research into 

new media technologies,14(1):75–90,2008. 

[3] Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy.  

Crowdsourcing systems on the world-wide web. 

Communications of the ACM, 54(4):86–96, 2011. 

[4] Luis Von Ahn. Games with a purpose. Computer, 

39(6):92–94, 2006. 

[5] Seth Cooper, Firas Khatib, Adrien Treuille, Janos 

Barbero, Jeehyung Lee, Michael Beenen, Andrew 

Leaver-Fay, David Baker, Zoran Popovi´c, et al. 

Predicting protein structures with a multiplayer online 

game. Nature, 466(7307):756–760, 2010. 

[6] Chris J Lintott, Kevin Schawinski, Anˇze Slosar, Kate  

Land,  Steven  Bamford, Daniel Thomas, M Jordan 

Raddick, Robert C Nichol, Alex Szalay, Dan Andreescu, 

et al.  Galaxy zoo: morphologies derived from visual 

inspection of galaxies from the sloan digital sky survey.  

Monthly Notices of the Royal Astronomical Society, 

389(3):1179–1189, 2008. 

[7] Joseph  G Davis.  From crowdsourcing to 

crowdservicing. Internet Computing, IEEE, 15(3):92–94, 

2011. 

[8] Douglas F Parkhill. Challenge of the computer utility, 

1996. 

[9] Douglas C Engelbart. Augmenting human intellect: 

Experiments, concepts, and possibilities. Technical 

report, DTIC Document, 1965. 

[10] Joseph Davis and Huairen Lin. Web 3.0 and 

crowdservicing. 2011. 

[11] Deniz Iren, Gokhan Kul, and Semih Bilgen.  Utilization 

of synergetic human- machine clouds: a big data cleaning 

case. In Proceedings of the 1st International Workshop 

on CrowdSourcing in Software Engineering, pages 15–

18. ACM, 2014. 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

12 

[12] Christian Keimel, Julian Habigt, Clemens Horch, and 

Klaus Diepold. Video quality evaluation in the cloud. In 

Packet Video Workshop (PV), 2012 19th International, 

pages 155–160. IEEE, 2012. 

[13] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud 

computing: state-of-the-art and research challenges. 

Journal of internet services and applications, 1(1):7–18, 

2010 

[14] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and 

Maik Lindner. A break in the clouds: towards a cloud 

definition. ACM SIGCOMM Computer Communication 

Review, 39(1):50–55, 2008. 

[15] Frank Leymann and Dieter Fritsch. Cloud computing: 

The next revolution in it. Proceedings of the 52th 

Photogrammetric Week, pages 3–12, 2009. 

[16] Ling Qian,  Zhiguo Luo, Yujian  Du, and  Leitao  Guo.   

Cloud  computing: An overview. In Cloud computing, 

pages 626–631. Springer, 2009. 

[17] Steve Lohr.  Google and ibm join in cloud 

computingresearch. New York Times, 

[18] Mladen A Vouk.  Cloud computing–issues, research and 

implementations. CIT. Journal of Computing and 

Information Technology, 16(4):235–246, 2008. 

[19] Michael Armbrust, Armando Fox, Rean Griffith, 

Anthony D Joseph, Randy Katz, Andy Konwinski, 

Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et 

al. A view of cloud computing. Communications of the 

ACM, 53(4):50–58,2010 

[20] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and 

Alfons Kemper. Capacity management and demand 

prediction for next generation data centers. In Web 

Services, 2007. ICWS 2007. IEEE International 

Conference on, pages 43–50. IEEE, 

[21] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, 

and Pawan Goyal. Dy- namic provisioning of multi-tier 

internet applications. In Autonomic Computing, 2005. 

ICAC 2005. Proceedings. Second International 

Conference on, pages 217–228. IEEE, 2005.  

[22] Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa 

Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant, and 

Kenneth Salem.  Adaptive control of virtualized re- 

sources in utility computing environments. In ACM 

SIGOPS Operating Systems Review, volume 41, pages 

289–302. ACM, 2007. 

[23] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth.  

Service level agreement in cloud computing. 2009. 

[24] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud 

computing: issues and challenges.  In Advanced 

Information Networking and Applications (AINA), 2010 

[25] Allan Leinwand. The hidden cost of the cloud: 

Bandwidth charges, 2009. 

[26] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. 

Crowdsourcing systems on the world-wide web. 

Commun. ACM, 54:86–96, April 2011. 

[27] Jeff. Howe. The rise of crowdsourcing. Wired, June 

2006. 

[28] Salman Ahmad, Alexis Battle, Zahan Malkani, and 

Sepander Kamvar. The jabberwocky programming 

environment for structured social computing. In 

Proceedings of the 24th annual ACM symposium on 

User interface software and technology, pages 53–64. 

ACM,2011. 

[29] Maja Vukovic and Claudio Bartolini. Towards a research 

agenda for enterprise crowdsourcing. In Tiziana 

Margaria and Bernhard Steffen, editors, Leveraging Ap- 

plications of Formal Methods, Verification, and 

Validation, volume 6415 of Lecture Notes in Computer 

Science, pages 425–434. Springer Berlin / Heidelberg, 

2010. 

[30] M. Vukovic. Crowdsourcing for enterprises. In Services - 

I, 2009 World Conference on, pages 686 –692, july 

2009. 

[31] Natala J. Menezes Jenny J. Chen and Adam D. Bradley. 

Opportunities for crowdsourcing research  on amazon 

mechanical turk.  In Proceeding of The CHI 2011 

[32] Alexander J. Quinn and Benjamin B. Bederson. Human 

computation: a survey and taxonomy of a growing field. 

In Proceedings of the 2011 annual conference on Human 

factors in computing systems, CHI ’11, pages 1403–

1412, New York, NY, USA, 2011. ACM. 

[33] Mohammad   Allahbakhsh,   Boualem   Benatallah,   

Aleksandar  Ignjatovic, Hamid Reza Motahari-Nezhad, 

Elisa Bertino, and Schahram Dustdar.  Quality control  in 

crowdsourcing systems:  Issues and directions.  Internet 

Computing, IEEE, 17(2):76–81, 2013. 

[34] H. Amintoosi and S.S. Kanhere. A trust-based 

recruitment framework for multi-hop social participatory 

sensing.  In Distributed Computing in Sensor  Systems 

(DCOSS), 2013 IEEE International Conference on, pages 

266–273, May 2013. 

[35] Haleh Amintoosi, Salil Kanhere, and Mohammad 

Allahbakhsh. Trust and privacy considerations in 

participant selection for social participatory sensing.  

Technical Report UNSW-CSE-TR-201409, UNSW, 

2014. 

[36] Murat Demirbas, Murat Ali Bayir, Cuneyt Gurcan 

Akcora, Yavuz Selim Yilmaz, and Hakan 

Ferhatosmanoglu. Crowd-sourced sensing and 

collaboration using twit- ter.  In World of Wireless 

Mobile and Multimedia Networks (WoWMoM), 2010 

[37] Michael  S. Bernstein, Desney  Tan,  Greg  Smith, Mary  

Czerwinski, and  Eric Horvitz. Personalization via 

friendsourcing. ACM Trans. Comput.-Hum. Inter- act., 

17(2):6:1–6:28, May 2008. 

[38] Maja Vukovic, Mariana Lopez, and Jim Laredo.  

Peoplecloud for the globally in- tegrated enterprise. In 

Service-Oriented Computing. ICSOC/ServiceWave 2009 

Workshops, volume 6275 of Lecture Notes in Computer 

Science, pages 109–114. Springer Berlin / Heidelberg, 

2010. 

[39] Anand P Kulkarni, Matthew Can, and Bjoern Hartmann. 

Turkomatic: automatic recursive task and workflow 

design for mechanical turk. In CHI’11 Extended Ab- 

stracts on Human Factors in Computing Systems, pages 

2053–2058. ACM, 2011. 

[40] Aniket Kittur, Susheel Khamkar, Paul Andr´e, and 

Robert Kraut. Crowdweaver: visually managing complex 

crowd work. In Proceedings of the ACM 2012 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 21, May 2015 

13 

conference on Computer Supported Cooperative Work, 

pages 1033–1036. ACM, 2012. 

[41] Steven Dow, Anand Kulkarni, Scott Klemmer, and Bjorn 

Hartmann. Shepherding the crowd yields better work.  In 

Proceedings of the ACM 2012 Conference on Computer 

Supported Cooperative Work, CSCW ’12, pages 1013–

1022, New York, NY, USA, 2012. ACM. 

[42] Mohammad Allahbakhsh, Aleksandar Ignjatovic, 

Boualem  Benatallah, Seyed-Mehdi-Reza Beheshti, Elisa 

Bertino, and Norman Foo. Reputation management in 

crowdsourcing systems. In Collaborative Computing: 

Networking, Applications and Worksharing 

(CollaborateCom), 2012 8th International Conference on, 

pages 664–671. IEEE, 2012. 

[43] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, 

Manish Mohanlal, Haitao Zheng, and Ben Y Zhao.  Serf 

and turf: crowdturfing for fun and profit.  In Pro- 

ceedings of the 21st international conference on World 

Wide Web, pages 679–688. ACM, 2012. 

[44] Aniket  Kittur Boris Smus Jim Laredoc  Maja Vukovic 

Jakob Rogstadius, Vassilis Kostakos. An assessment of 

intrinsic and extrinsic motivation on task perfor- mance 

in crowdsourcing. In Proceeding of the Fifth 

International AAAI Conference on Weblogs and Social 

Media. AAAI, 2011.  

[45] Joel Ross, Lilly Irani, M Silberman, Andrew Zaldivar, 

and Bill Tomlinson. Who are the crowdworkers?: 

shifting demographics in mechanical turk. In CHI’10 

Extended Abstracts on Human Factors in Computing 

Systems, pages 2863–2872. ACM, 2010. 

[46] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, 

and Thomas Sandholm. What’s inside the cloud? an 

architectural map of the cloud landscape. In Pro- 

ceedings of the ICSE Workshop on Software 

Engineering Challenges of Cloud Computing, pages 23–

31. IEEE Computer Society, 2009 

[47] Georg Lackermair. Hybrid cloud architectures for the 

online commerce. Proceeding of Computer Science, 

3:550–555, 2011. 1966. 

[48] Sihem  Amer-Yahia, AnHai  Doan,  Jon  Kleinberg, Nick 

Koudas, and  Michael Franklin. Crowds, clouds, and 

algorithms: exploring the human side of big data 

applications. In Proceedings of the 2010 ACM SIGMOD 

International Conference on Management of data, pages 

1259–1260. ACM, 2010. 

[49] Maja Vukovic.  Crowdsourcing for enterprises. In 

Services-I, 2009 World Confer- ence on, pages 686–692. 

IEEE, 2009. 

[50] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert 

E Kraut. Crowdforge: Crowdsourcing complex work. In 

Proceedings of the 24th annual ACM symposium on 

User interface software and technology, pages 43–52. 

ACM, 2011. 

[51] Greg Little, Lydia B Chilton, Max Goldman, and Robert 

C Miller. Turkit: tools for iterative tasks on mechanical 

turk. In Proceedings of the ACM SIGKDD workshop on 

human computation, pages 29–30. ACM, 2009. 

[52] Michael S Bernstein, Greg Little, Robert C Miller, Bjorn 

Hartmann, Mark S Ack- erman, David R Karger, David 

Crowell, and Katrina Panovich. Soylent: a word 

processor with a crowd inside. In Proceedings of the 

23nd annual ACM symposium on User interface 

software and technology, pages 313–322. ACM, 2010. 

[53] Michael J Franklin, Donald Kossmann, Tim Kraska, 

Sukriti Ramesh, and Reynold Xin. Crowddb: answering 

queries with crowdsourcing. In Proceedings of the 2011 

[54] Adam Marcus, Eugene Wu, David R Karger, Samuel 

Madden, and Robert C Miller. Demonstration of qurk: a 

query processor for humanoperators. In Proceedings of 

the 2011 ACM SIGMOD International Conference on 

Management of data 

[55] Abraham Bernstein, Mark Klein, and Thomas W 

Malone. Programming the global brain.  

Communications of the ACM, 55(5):41–43, 2012. 

[56] Jeffrey  Philip  Bigham,  Walter  Stephen  Lasecki,  Kyle  

Ian  Murray, and Samuel Christopher White. Closed-loop 

crowd control of existing interface, July 10 2012. US 

Patent App. 13/545,280. 

[57] Norbert Wiener. The human use of human beings: 

Cybernetics and society. Number 20. Da Capo Press, 

1954. 

[58] William Ross Ashby et al. An introduction to 

cybernetics, volume 2. Chapman & Hall London, 1956. 

[59] Joseph Carl Robnett Licklider. Man-computer symbiosis. 

Human Factors in Elec- tronics, IRE Transactions on, 

(1):4–11, 1960. 

[60] Andrew Tanenbaum and Maarten Van Steen. Distributed 

systems. Pearson Pren- tice Hall, 2007. 

[61] David Alan Grier. When computers were human. 

Princeton University Press, 2013. 

[62] Saeed  Arbabi, Mohsen  Sharifi,  Seyedeh  Leili 

Mirtaheri, and  Ehsan  Mousavi Khaneghah. A low-

overhead structure maintenance approach for building 

robust structured p2p systems. In Telecommunications 

(IST), 2012 Sixth International Symposium on, pages 

586–591. IEEE, 2012. 

 

IJCATM : www.ijcaonline.org 


