
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

28

A Performance Comparison of GA and ACO Applied to

TSP

Sabry Ahmed Haroun
Laboratoire LISER, ENSEM,

UH2C
Casablanca, Morocco.

Benhra Jamal
Laboratoire LISER, ENSEM,

UH2C
Casablanca, Morocco.

El Hassani Hicham
Laboratoire LISER, ENSEM,

UH2C
Casablanca, Morocco.

ABSTRACT

This work presents a contribution to comparing two nature

inspired metaheuristics for solving the TSP. We run ACO and

GA on three benchmark instances with varying size and

complexity, in addition to one real world application in the

field of urban transportation and logistics. A first chapter

presents algorithmic approaches. Results and discussion

chapter outlines the computational behavior of the algorithms

throughout the problem sets. The conclusion closes the

discussion with recommendations and future scopes.

Keywords

Traveling salesman problem; Genetic algorithm; Ant colony

optimization;

1. INTRODUCTION
A huge majority of engineering problems can be expressed in

a general form of an optimization problem, wherein an

objective function or cost function is defined, that is to be

minimized with respect to all the involved constraints.

For example the widely studied traveling salesman problem

(TSP), where the objective is to minimize the total travelled

distance on a single closed tour visiting each city once. K.

Menger [1] was one of the first researchers to address the TSP

and study it in detail. The Euclidian TSP is a special case of

the problem in which cities have coordinates in a Euclidian

plane [2].

It was proven that this problem is NP-hard [3], solving it

would require the use of very efficient algorithms, therefore

we opt for the use of two famous algorithmic approaches: Ant

colony optimization and Genetic Algorithms. A real world

TSP is a more general case in which cities are represented in a

geographic coordinates system.

These two approaches are called metaheuristics. Generally,

metaheuristics are widely applied to all aspects of

combinatorial optimization. We find in this family other

approaches like Tabu search, simulated annealing [4], particle

swarm optimization, and Evolutionary programming. They all

aim to provide sufficiently good solutions to challenging

problems [5] [6].

This work aims to compare ACO and GA at solving different

instances of the famous TSP [7] [8], for this we are using one

real world asymmetric TSP from the complex urban

environment of the city of Casablanca and three benchmark

Euclidian symmetric TSPs with increasing complexity. This

work is structured as follow: the second chapter dresses a state

of art of the methods implemented, the third chapter presents

the results of the different simulations, and the final chapter

concludes this work.

2. STATE OF THE ART

2.1 The Genetic Algorithm
The concept of GA was first introduced by Holland and his

colleagues in the late 1960s [8] The GA are inspired from

evolutionary theory.

In nature, unfit and weak species compared to their

environment are facing extinction through natural selection.

The strongest species have a greater opportunity to pass on

their genes to future generations through reproduction; this

process is time taking and gradual. In the long term, the

species carrying the right combination of genes become more

dominant [9].

Sometimes, during this slow process of evolution, random

changes can occur to the genes. These unintended variations

offer supplementary benefits to the natural selection process

through diversification. In this never-ending challenge for

survival, new species evolve from old ones, unsuccessful

changes and combinations are automatically eliminated by

natural selection [10] [11].

In the terminology of GA, a solution vector is called

individual or chromosome. These chromosomes are made of

discrete units called genes. Each gene controls one or more

elements of the chromosome. The original implementation of

GA’s by Holland had binary digits as genes [8]. Latest

implementations brought a greater variety of gene

representations and encodings.

Normally, a chromosome is a unique solution in the solution

space. GA operates with a set of chromosomes, called

population. The population is normally initialized randomly.

As the algorithm runs, it progressively finds individuals of

higher fitness; each candidate has a set of properties

(genotype) which can be mutated resulting in a higher chance

of finding better solutions [12]. The algorithm terminates

when a criterion was met (maximum number of iterations or a

satisfactory fitness level reached). Hereby, the pseudo code of

the GA:

Start Genetic Algorithm

Initialize population;

Evaluate population;

While : not termination do

 Create new solutions:

Apply Crossover operator;

Apply Mutation operator;

 Evaluate created solutions;

End While;

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

29

2.2 Ant Colony Optimization
The ant colony optimization algorithm is an agents based

metaheuristic that is used to find solutions to various

optimization problems. Agents are called artificial ants. These

algorithms were inspired by the behavior of ants and

constitute with other swarm inspired algorithms a distinct

family of optimization metaheuristics [13].

The algorithm is a result of the close observation of the

behavior of social insects in general and ants in particular.

The ants are social insects and they have a collective behavior

aimed towards the good of the colony. Every ant is

independent and communicates with other ants through highly

volatile chemicals called pheromone [14].

Ants are very sensitive to these substances and they use them

to mark their path, to be discovered by their nest mates. The

most common example is the journey from the nest to food

sources, upon discovery of the source; it deposits pheromones

on the ground via its abdominal glands. Each new ant can

easily follow this odorous trail that will guide it to the food

source, and subsequently to the nest. Each individual is thus

indirectly and collectively helped by the community [15].

Several ACO variants are available. The first ACO to appear

is Ant System (AS) by Dorigo et al. [16]. Formally, An ant k

positioned on city i at time t will choose the next city j

according to the visibility η of this city and the amount of

deposited pheromone τ on the arc connecting these two cities,

other algorithmic variants use different pheromone deposit

practices [7][15]. The selection of the next city is made

stochastically, with a probability of selecting the city j as

follow :

Hereby, the pseudo code of the Algorithm:

Initialize pheromone trails ;

While : not termination do :

 Construct : the construction is done by ants travelling

through the graph;

 Daemon activities : optional use of a local search heuristic ;

 Update pheromone trails, locally or globally;

End While;

2.3 The Travelling Salesman Problem
The Traveling Salesman Problem is one of the most studied

problems in computational mathematics. It is an NP-hard

problem and due to its easy to use formalism, it is often used

as a benchmark for many optimization methods [17]. The

problem is as follow, given a set of cities and the distances

between them, what is the shortest possible route that visits

each city exactly once and returns to the origin city (least total

distance).

The problem can be formulated as a weighted graph, where

edges are the cities, and the arc costs are the distances

between them. A TSP can be symmetric, it is the general form

of a TSP where the distance from city i to city j is the same as

going from j to i. the weighted graph is said to be undirected.

Another form of the TSP is the asymmetric or directed

weighed graph, where arcs may not exist or have different

weights in the two directions. The ATSP can be found in

several real world applications mainly in logistics, planning

and DNA sequencing [2][17][18].

To test the algorithmic approaches we decided to run several

experiments, varying the complexity and the type of the TSP.

The two algorithms are tested on three benchmark instances

and one real word asymmetric problem. Most of the

benchmark problems can be found in TSPLIB:

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/

TSPLIB95/TSPLIB.html. The benchmark TSPs are Berlin52,

Eil76, and A280. The real world application is Casablanca40

[19][20].

TSPLIB offers problem coordinates, best tour and the

optimum solutions for the three test problems [19].

Casablanca40 is different; the problem is asymmetric and

respects geographical configuration and city architecture [20].

The city is economically and demographically the largest of

Morocco and is characterized with high traffic flows and

surfacing transportation problems.

3. RESULTS AND DISCUSSIONS
All the simulations were completed on a Windows 64 bits

personal computer with an i5-3470 processor clocked at

3.20GHz, and 4 GB of Ram. The Genetic algorithm was

developed in C++ using the GAlib [21]. The Ant colony

optimization algorithm was written in native C#.

3.1 The Genetic Algorithm
3.1.1 Berlin52
The first instance to test the GA is Berlin52 with 52 locations

in Berlin (Groetschel) [19]. The Genetic Algorithm finds the

optimal tour in 3.485 seconds. Fig 1 presents the evolution of

the objective function (here distance) over time. Fig 8 (a)

shows the found tour overlaying the instance optimal tour,

both tours are 7542.

Fig1- Evolution of GA results over time in Berlin52

3.1.2 Eil76
The second instance is Eil76 with 76 cities. it is considered a

large TSP instance[19]. The GA gives satisfying results but

doesn’t find the optimal solution. Fig 8 (b) illustrates the

differences between the optimal tour of 538 and the GA tour.

The convergence time is considerably short. The GA returns a

best tour of 570 in 13.441 seconds. With an approximate error

of 5.9479%.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

30

Fig2- Evolution of GA results over time in Eil76

3.1.3 A280
The largest instance in this paper has 280 cities, its optimal

tour is 2579 [19]. Due to its complexity, this instance requires

more computational time and a precise tuning. The GA

handles this instance with a steady improvement factor as

seen in Fig 3 and returns a best tour of 3218 in 517.965

seconds. With an error rate of 24.777%.

Fig3- Evolution of GA results over time in A280

3.1.4 Casablanca40
This instance is a special case of the TSP applied to logistics,

more specifically urban transportation [20]. The routes are

presented as a directed weighted disjunctive graph; the result

will be a single tour that passes by all the 40 markers of the

problem. The disjunctive graph has 1560 arcs connecting 40

edges. The total cumulated distance of the arcs is 16273.18

Kilometers. The solution space contains theoretically

2.04E+46 possible solutions. The GA returns a best tour of

125.974 Kilometers in less than 24.759 seconds. The returned

tour is illustrated in Fig 5.

Fig4- Evolution of GA results over time in Casablanca40

Fig5- A map visualization of the tour returned by the GA

3.2 The Ant Colony Optimization
3.2.1 Berlin52
The ACO converges quickly but doesn’t find the optimal tour.

It finds a tour of length 7575 in 17.727, with an error rate of

0.4375% from the optimal tour. Fig 6 shows the evolution of

the objective function over time. The evolution can be

separated in two main phases: The first phase where the

algorithm converges quickly and finds a solution of distance

7680 in less than 3.568 seconds, this behavior is close to that

of the GA. The second phase where there is no improvement

until seconds 16.619 and 17.727 with respectively minor

improvements of 0.2218% and 1.1617%.

This second phase is due to the high pheromone deposit on

trails that leads to early convergence followed by a phase of

stagnation. The late minor improvements can be explained by

pheromone evaporation that led to a late diversification of the

discovered paths.

3.2.2 Eil76

Eil76 optimal tour is 538. The ACO maintains the same two

phases behavior; it converges quickly to a tour of 588 in 4.886

seconds. With an error rate of 9.2936%. Then returns an

overall best tour of 551 after 73.906 seconds with an error rate

of 2.4163%. Fig 8 (b) illustrates the performance of the ACO

in providing a near optimal tour.

Fig6- Evolution of ACO results over time in Berlin52

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

31

Fig7- Evolution of ACO results over time in Eil76

GA ACO

a- Berlin52

b- Eil76

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

32

c- A280

Fig8- GA and ACO results compared to optimal tours

3.2.3 A280
This instance is large and the behavior of the ACO slightly

changed. A middle phase can be observed between seconds

45.717 and 323.242. This phase is characterized with a slow

but steady improvement ratio and the absence of any

stagnation behaviors.

The runtime ends returning the best tour value 3092 in
767.711 seconds with an error rate of 19.8914%.

Fig9- Evolution of ACO results over time in A280

3.2.4 Casablanca40

The last instance to test the ACO with is Casablanca40 [20].

There is no mathematically proven optimal tour of this real

world problem, the best actual tour we have is the one

provided by the GA previously. ACO terminates really fast

and reaches a better solution of distance 125.216 in 20.618

seconds. The ACO is qualitatively 0.6053% better, and

computationally 20.0843% faster. Actual best tour of

Casablanca40 is shown in Fig11.

Fig10- Evolution of ACO results over time in

Casablanca40

Fig11- A map visualization of the tour returned by the

ACO

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

33

TABLE 1. OVERVIEW OF SIMULATION RESULTS

Instance GA ACO

Name Best Tour Error rate % Time seconds Tour Error rate % Time seconds

Berlin52 7542 7542 0.0 3.673 7575 0.4375 17.727

Eil76 538 570 5.9479 13.519 551 2.4163 73.906

A280 2579 3218 24.7770 531.087 3092 19.8914 767.711

Name Tour Time seconds Tour Time seconds

Casablanca40 125.974 24.759 125.216 20.618

3.3 Comparison of the results
Qualitative and quantitative comparisons were made to

understand these two algorithmic approaches. Both algorithms

give good results in handling this NP-hard optimization

problem. They are both efficient in attacking all instances of

the TSP. Where the search space is large, complex and poorly

known and no prior mathematical analysis was given. Table 1

shows the computational results.

Both algorithms provide satisfying results over the four

instances; they show adequate performance over small

instances and robustness over medium and large ones.

The GA is excellent with small to medium size instances;

without any prior knowledge of the solution space or the help

of any local search routine, it ensures rapid convergence and

finding of optimal solutions. Through all the instances, the

algorithm is robust and maintains a steady improvement

behavior, it always gives solutions and solutions get better

with time.

The ACO gives better results in large instances. Even with its

significant performance compared to GA. It is prone to falling

in the local optima because it updates the pheromone

according to the current best path [13]. But given enough time

for the pheromones to evaporate as seen in Fig13, The ACO

ensures finding better results than the GA. And the

convergence speed is notable in early iterations.

.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

34

Fig12– Overlaid computational results of GA and ACO

When it comes to computational cost, a close comparison

through Fig12 shows that ACO converges earlier and

maintains an explorative behavior throughout the available

runtime. GA guarantees a steady improvement behavior and

once it stagnates, it leaves the processor fruitless. During the

active runtime, ACO is greedier due to its distributed

processing nature [16].

Fig13 shows the error rate of the algorithms, Casablanca40

results were omitted because the problem is a real world

logistics problem with no mathematically proven optimal tour,

and the two approaches returned nearly the same tours.

It is clear that error rate increases with problem complexity.

When the number of cities is less, GA provides better results,

when the number of cities and solution space is larger ACO

outperforms GA in the quality of the results. The difference in

error rates between the two algorithms is higher with larger

problems, thus advantaging the ACO.

4. CONCLUSION AND FUTURE SCOPE
This paper presented a comparison of the qualitative and

computational performances of two famous metaheuristics:

GA and ACO. While both algorithms provided satisfactory

results all over the test problems a few remarks can be

outlined.

The GA is fast, easy to implement and cost efficient in terms

of computational resources. The ACO is greedier but provides

better results, particularly with large problems.

Based on our simulation results we recommend:

 GA for low computational resources and/or small to

medium size problems. Suitable for rapid finding of

optimum solutions. Is easy to prototype and

implement.

 ACO for greater computation resources and/or

large and complex problems. Suitable for finding

high quality solutions in a noticeable runtime. Is

distributed, easy to hybrid and accommodate with

other algorithms.

The two algorithmic approaches have a great potential in

solving many TSP based real world applications ranging from

logistics to manufacturing and robotics. Future scope has been

focused to finding better performing derivatives and

hybridations of these algorithms.

The algorithms are very sensitive to parameters variation. In

the present work we rely on the authors experience to fine

Fig13- Error rates in GA and ACO

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

35

tune the algorithms in order to provide the best results. Future

work can be focused to automatic parameters adaptation

routines based on problem type and other accessible data.

5. REFERENCES
[1] K. Menger, Ergebnisse eines mathematischen

Kolloquiums: Deuticke, 1932.

[2] A. Punnen, "The Traveling Salesman Problem:

Applications, Formulations and Variations," in The

Traveling Salesman Problem and Its Variations. vol. 12,

G. Gutin and A. Punnen, Eds., ed: Springer US, 2007,

pp. 1-28.

[3] C. H. Papadimitriou, "The Euclidean travelling salesman

problem is NP-complete," Theoretical Computer

Science, vol. 4, pp. 237-244, 1977.

[4] P. Siarry, "La méthode du recuit simulé: théorie et

applications," Automatique-productique informatique

industrielle, vol. 29, pp. 535-561, 1995.

[5] H. El Hassani, J. Benhra, and S. Benkachcha, "Utilisation

des algorithmes génétiques (AG) dans l’Optimisation

multi-objectif en logistique avec prise en compte de

l’aspect environnemental (émissions du CO2)," in

Colloque international LOGISTIQUA, RABAT, 2012.

[6] TALBI, El-Ghazali. Metaheuristics: from design to

implementation. John Wiley & Sons, 2009.

[7] M. Dorigo and L. M. Gambardella, "Ant colony system:

a cooperative learning approach to the traveling salesman

problem," IEEE Transactions on Evolutionary

Computation, vol. 1, pp. 53-66, 1997.

[8] J. H. Holland, "Adaption in Natural and Artificial

Systems," The University of Michigan Press, 1975.

[9] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial

Intelligence Through Simulated Evolution: John Wiley &

Sons, 1966

[10] D. B. Fogel, "The evolution of intelligent decision

making in gaming," Cybernetics and Systems, vol. 22,

pp. 223-236, 1991.

[11] L. D. Davis, Handbook Of Genetic Algorithms, 1 ed.:

Van Nostrand Reinhold;, 1991.

[12] M. Vazquez and L. D. Whitley, "A Hybrid Genetic

Algorithm for the Quadratic Assignment Problem," in

GECCO, 2000, pp. 135-142.

[13] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system:

optimization by a colony of cooperating agents,"

Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 26, pp. 29-41, 1996.

[14] J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels,

"The self-organizing exploratory pattern of the argentine

ant," Journal of insect behavior, vol. 3, pp. 159-168,

1990.

[15] T. Stützle and H. H. Hoos, "MAX–MIN ant system,"

Future generation computer systems, vol. 16, pp. 889-

914, 2000.

[16] A. Colorni, M. Dorigo, and V. Maniezzo, "Distributed

optimization by ant colonies," in Proceedings of the first

European conference on artificial life, 1991, pp. 134-142.

[17] G. Gutin and A. P. Punnen, The traveling salesman

problem and its variations vol. 12: Springer Science &

Business Media, 2002.

[18] SHIN, Soo-Yong, LEE, In-Hee, KIM, Dongmin, et al.

Multiobjective evolutionary optimization of DNA

sequences for reliable DNA computing. Evolutionary

Computation, IEEE Transactions on, 2005, vol. 9, no 2,

p. 143-158.

[19] G. Reinelt, "TSPLIB—A Traveling Salesman Problem

Library," ORSA Journal of Computing, vol. 3, pp. 376-

384, 1991.

[20] A. H. Sabry, A. Bacha, and J. Benhra, "A contribution to

solving the traveling salesman problem using ant colony

optimization and web mapping platforms Application to

logistics in a urban context," in Codit'14, Metz, France,

2014.

[21] WALL, Matthew. GAlib: A C++ library of genetic

algorithm components. Mechanical Engineering

Department, Massachusetts Institute of Technology,

1996, vol. 87, p. 54.

IJCATM : www.ijcaonline.org

