
International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 19, May 2015 

28 

A Performance Comparison of GA and ACO Applied to 

TSP 

Sabry Ahmed Haroun 
Laboratoire LISER, ENSEM, 

UH2C 
Casablanca, Morocco. 

Benhra Jamal 
Laboratoire LISER, ENSEM, 

UH2C 
Casablanca, Morocco. 

El Hassani Hicham 
Laboratoire LISER, ENSEM, 

UH2C 
Casablanca, Morocco. 

 
ABSTRACT 

This work presents a contribution to comparing two nature 

inspired metaheuristics for solving the TSP. We run ACO and 

GA on three benchmark instances with varying size and 

complexity, in addition to one real world application in the 

field of urban transportation and logistics. A first chapter 

presents algorithmic approaches. Results and discussion 

chapter outlines the computational behavior of the algorithms 

throughout the problem sets. The conclusion closes the 

discussion with recommendations and future scopes.  
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1. INTRODUCTION 
A huge majority of engineering problems can be expressed in 

a general form of an optimization problem, wherein an 

objective function or cost function is defined, that is to be 

minimized with respect to all the involved constraints.  

For example the widely studied traveling salesman problem 

(TSP), where the objective is to minimize the total travelled 

distance on a single closed tour visiting each city once. K. 

Menger [1] was one of the first researchers to address the TSP 

and study it in detail. The Euclidian TSP is a special case of 

the problem in which cities have coordinates in a Euclidian 

plane [2].  

It was proven that this problem is NP-hard [3], solving it 

would require the use of very efficient algorithms, therefore 

we opt for the use of two famous algorithmic approaches: Ant 

colony optimization and Genetic Algorithms. A real world 

TSP is a more general case in which cities are represented in a 

geographic coordinates system. 

These two approaches are called metaheuristics. Generally, 

metaheuristics are widely applied to all aspects of 

combinatorial optimization. We find in this family other 

approaches like Tabu search, simulated annealing [4], particle 

swarm optimization, and Evolutionary programming. They all 

aim to provide sufficiently good solutions to challenging 

problems [5] [6].  

This work aims to compare ACO and GA at solving different 

instances of the famous TSP [7] [8], for this we are using one 

real world asymmetric TSP from the complex urban 

environment of the city of Casablanca and three benchmark 

Euclidian symmetric TSPs with increasing complexity. This 

work is structured as follow: the second chapter dresses a state 

of art of the methods implemented, the third chapter presents 

the results of the different simulations, and the final chapter 

concludes this work. 

 

 

2. STATE OF THE ART 

2.1 The Genetic Algorithm 
The concept of GA was first introduced by Holland and his 

colleagues in the late 1960s [8] The GA are inspired from 

evolutionary theory.  

In nature, unfit and weak species compared to their 

environment are facing extinction through natural selection. 

The strongest species have a greater opportunity to pass on 

their genes to future generations through reproduction; this 

process is time taking and gradual. In the long term, the 

species carrying the right combination of genes become more 

dominant [9].  

Sometimes, during this slow process of evolution, random 

changes can occur to the genes. These unintended variations 

offer supplementary benefits to the natural selection process 

through diversification. In this never-ending challenge for 

survival, new species evolve from old ones, unsuccessful 

changes and combinations are automatically eliminated by 

natural selection [10] [11]. 

In the terminology of GA, a solution vector is called 

individual or chromosome. These chromosomes are made of 

discrete units called genes. Each gene controls one or more 

elements of the chromosome. The original implementation of 

GA’s by Holland had binary digits as genes [8]. Latest 

implementations brought a greater variety of gene 

representations and encodings. 

Normally, a chromosome is a unique solution in the solution 

space. GA operates with a set of chromosomes, called 

population. The population is normally initialized randomly. 

As the algorithm runs, it progressively finds individuals of 

higher fitness; each candidate has a set of properties 

(genotype) which can be mutated resulting in a higher chance 

of finding better solutions [12]. The algorithm terminates 

when a criterion was met (maximum number of iterations or a 

satisfactory fitness level reached). Hereby, the pseudo code of 

the GA: 

Start Genetic Algorithm 

Initialize population; 

Evaluate population; 

While : not termination do  

    Create new solutions: 

Apply Crossover operator; 

Apply Mutation operator; 

   Evaluate created solutions; 

End While; 
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2.2 Ant Colony Optimization  
The ant colony optimization algorithm is an agents based 

metaheuristic that is used to find solutions to various 

optimization problems. Agents are called artificial ants. These 

algorithms were inspired by the behavior of ants and 

constitute with other swarm inspired algorithms a distinct 

family of optimization metaheuristics [13]. 

The algorithm is a result of the close observation of the 

behavior of social insects in general and ants in particular. 

The ants are social insects and they have a collective behavior 

aimed towards the good of the colony. Every ant is 

independent and communicates with other ants through highly 

volatile chemicals called pheromone [14].  

Ants are very sensitive to these substances and they use them 

to mark their path, to be discovered by their nest mates. The 

most common example is the journey from the nest to food 

sources, upon discovery of the source; it deposits pheromones 

on the ground via its abdominal glands. Each new ant can 

easily follow this odorous trail that will guide it to the food 

source, and subsequently to the nest. Each individual is thus 

indirectly and collectively helped by the community [15].  

Several ACO variants are available. The first ACO to appear 

is Ant System (AS) by Dorigo et al. [16]. Formally, An ant k 

positioned on city i at time t will choose the next city j 

according to the visibility η of this city and the amount of 

deposited pheromone τ on the arc connecting these two cities, 

other algorithmic variants use different pheromone deposit 

practices [7][15]. The selection of the next city is made 

stochastically, with a probability of selecting the city j as 

follow : 

 

Hereby, the pseudo code of the Algorithm: 

Initialize pheromone trails ; 

While : not termination do : 

   Construct : the construction is done by ants travelling 

through the graph; 

   Daemon activities : optional use of a local search heuristic ; 

   Update pheromone trails, locally or globally; 

End While; 

2.3 The Travelling Salesman Problem  
The Traveling Salesman Problem is one of the most studied 

problems in computational mathematics. It is an NP-hard 

problem and due to its easy to use formalism, it is often used 

as a benchmark for many optimization methods [17]. The 

problem is as follow, given a set of cities and the distances 

between them, what is the shortest possible route that visits 

each city exactly once and returns to the origin city (least total 

distance). 

The problem can be formulated as a weighted graph, where 

edges are the cities, and the arc costs are the distances 

between them. A TSP can be symmetric, it is the general form 

of a TSP where the distance from city i to city j is the same as 

going from j to i. the weighted graph is said to be undirected. 

Another form of the TSP is the asymmetric or directed 

weighed graph, where arcs may not exist or have different 

weights in the two directions. The ATSP can be found in 

several real world applications mainly in logistics, planning 

and DNA sequencing [2][17][18].  

To test the algorithmic approaches we decided to run several 

experiments, varying the complexity and the type of the TSP. 

The two algorithms are tested on three benchmark instances 

and one real word asymmetric problem. Most of the 

benchmark problems can be found in TSPLIB: 

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/ 

TSPLIB95/TSPLIB.html. The benchmark TSPs are Berlin52, 

Eil76, and A280. The real world application is Casablanca40 

[19][20]. 

TSPLIB offers problem coordinates, best tour and the 

optimum solutions for the three test problems [19]. 

Casablanca40 is different; the problem is asymmetric and 

respects geographical configuration and city architecture [20]. 

The city is economically and demographically the largest of 

Morocco and is characterized with high traffic flows and 

surfacing transportation problems.  

3. RESULTS AND DISCUSSIONS  
All the simulations were completed on a Windows 64 bits 

personal computer with an i5-3470 processor clocked at 

3.20GHz, and 4 GB of Ram. The Genetic algorithm was 

developed in C++ using the GAlib [21]. The Ant colony 

optimization algorithm was written in native C#.  

3.1 The Genetic Algorithm 
3.1.1 Berlin52 
The first instance to test the GA is Berlin52 with 52 locations 

in Berlin (Groetschel) [19]. The Genetic Algorithm finds the 

optimal tour in 3.485 seconds. Fig 1 presents the evolution of 

the objective function (here distance) over time. Fig 8 (a) 

shows the found tour overlaying the instance optimal tour, 

both tours are 7542. 

 

Fig1- Evolution of GA results over time in Berlin52 

3.1.2 Eil76 
The second instance is Eil76 with 76 cities. it is considered a 

large TSP instance[19]. The GA gives satisfying results but 

doesn’t find the optimal solution. Fig 8 (b)  illustrates the 

differences between the optimal tour of 538 and the GA tour. 

The convergence time is considerably short. The GA returns a 

best tour of 570 in 13.441 seconds. With an approximate error 

of 5.9479%.  
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Fig2- Evolution of GA results over time in Eil76 

3.1.3 A280 
The largest  instance in this paper has 280 cities, its optimal 

tour is 2579 [19]. Due to its complexity, this instance requires 

more computational time and a precise tuning. The GA 

handles this instance with a steady improvement factor as 

seen in Fig 3 and returns a best tour of 3218 in 517.965 

seconds. With an error rate of 24.777%. 

 

Fig3- Evolution of GA results over time in A280 

3.1.4 Casablanca40 
This instance is a special case of the TSP applied to logistics, 

more specifically urban transportation [20]. The routes are 

presented as a directed weighted disjunctive graph; the result 

will be a single tour that passes by all the 40 markers of the 

problem. The disjunctive graph has 1560 arcs connecting 40 

edges. The total cumulated distance of the arcs is 16273.18 

Kilometers. The solution space contains theoretically 

2.04E+46 possible solutions. The GA returns a best tour of 

125.974 Kilometers in less than 24.759 seconds. The returned 

tour is illustrated in Fig 5. 

 

Fig4- Evolution of GA results over time in Casablanca40 

 

 

 

 

Fig5- A map visualization of the tour returned by the GA 

3.2 The Ant Colony Optimization 
3.2.1 Berlin52 
The ACO converges quickly but doesn’t find the optimal tour. 

It finds a tour of length 7575 in 17.727, with an error rate of 

0.4375% from the optimal tour. Fig 6 shows the evolution of 

the objective function over time. The evolution can be 

separated in two main phases: The first phase where the 

algorithm converges quickly and finds a solution of distance 

7680 in less than 3.568 seconds, this behavior is close to that 

of the GA. The second phase where there is no improvement 

until seconds 16.619 and 17.727 with respectively minor 

improvements of 0.2218% and 1.1617%.  

This second phase is due to the high pheromone deposit on 

trails that leads to early convergence followed by a phase of 

stagnation. The late minor improvements can be explained by 

pheromone evaporation that led to a late diversification of the 

discovered paths.  

3.2.2 Eil76 

Eil76 optimal tour is 538. The ACO maintains the same two 

phases behavior; it converges quickly to a tour of 588 in 4.886 

seconds. With an error rate of 9.2936%. Then returns an 

overall best tour of 551 after 73.906 seconds with an error rate 

of  2.4163%. Fig 8 (b) illustrates the performance of the ACO 

in providing a near optimal tour. 

 

Fig6- Evolution of ACO results over time in Berlin52 
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Fig7- Evolution of ACO results over time in Eil76 

 

GA ACO 

 
 

a- Berlin52 

  

b- Eil76 
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c- A280 

Fig8- GA and ACO results compared to optimal tours 

3.2.3 A280 
This instance is large and the behavior of the ACO slightly 

changed. A middle phase can be observed between seconds 

45.717 and 323.242. This phase is characterized with a slow 

but steady improvement ratio and the absence of any 

stagnation behaviors.  

The runtime ends returning the best tour value 3092 in 
767.711 seconds with an error rate of 19.8914%.

 

Fig9- Evolution of ACO results over time in A280 

3.2.4 Casablanca40 

The last instance to test the ACO with is Casablanca40 [20]. 

There is no mathematically proven optimal tour of this real 

world problem, the best actual tour we have is the one 

provided by the GA previously. ACO terminates really fast 

and reaches a better solution of distance 125.216 in 20.618 

seconds. The ACO is qualitatively 0.6053% better, and 

computationally 20.0843% faster. Actual best tour of 

Casablanca40 is shown in Fig11.  

 

Fig10- Evolution of ACO results over time in 

Casablanca40 

 

 

Fig11- A map visualization of the tour returned by the 

ACO 
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TABLE 1.  OVERVIEW OF SIMULATION RESULTS 

Instance GA ACO 

Name Best Tour Error rate % Time seconds Tour Error rate % Time seconds 

Berlin52 7542 7542 0.0 3.673 7575 0.4375 17.727 

Eil76 538 570 5.9479 13.519 551 2.4163 73.906 

A280 2579 3218 24.7770 531.087 3092 19.8914 767.711 

Name Tour Time seconds Tour Time seconds 

Casablanca40 125.974 24.759 125.216 20.618 
 

3.3 Comparison of the results 
Qualitative and quantitative comparisons were made to 

understand these two algorithmic approaches. Both algorithms 

give good results in handling this NP-hard optimization 

problem. They are both efficient in attacking all instances of 

the TSP. Where the search space is large, complex and poorly 

known and no prior mathematical analysis was given. Table 1 

shows the computational results. 

Both algorithms provide satisfying results over the four 

instances; they show adequate performance over small 

instances and robustness over medium and large ones.  

The GA is excellent with small to medium size instances; 

without any prior knowledge of the solution space or the help 

of any local search routine, it ensures rapid convergence and 

finding of optimal solutions. Through all the instances, the 

algorithm is robust and maintains a steady improvement 

behavior, it always gives solutions and solutions get better 

with time. 

The ACO gives better results in large instances. Even with its 

significant performance compared to GA. It is prone to falling 

in the local optima because it updates the pheromone 

according to the current best path [13]. But given enough time 

for the pheromones to evaporate as seen in Fig13, The ACO 

ensures finding better results than the GA. And the 

convergence speed is notable in early iterations. 

. 
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Fig12– Overlaid computational results of GA and ACO  

When it comes to computational cost, a close comparison 

through Fig12 shows that ACO converges earlier and 

maintains an explorative behavior throughout the available 

runtime. GA guarantees a steady improvement behavior and 

once it stagnates, it leaves the processor fruitless. During the 

active runtime, ACO is greedier due to its distributed 

processing nature [16].  

Fig13 shows the error rate of the algorithms, Casablanca40 

results were omitted because the problem is a real world 

logistics problem with no mathematically proven optimal tour, 

and the two approaches returned nearly the same tours. 

It is clear that error rate increases with problem complexity. 

When the number of cities is less, GA provides better results, 

when the number of cities and solution space is larger ACO 

outperforms GA in the quality of the results. The difference in 

error rates between the two algorithms is higher with larger 

problems, thus advantaging the ACO. 

4. CONCLUSION AND FUTURE SCOPE 
This paper presented a comparison of the qualitative and 

computational performances of two famous metaheuristics: 

GA and ACO. While both algorithms provided satisfactory 

results all over the test problems a few remarks can be 

outlined.  

The GA is fast, easy to implement and cost efficient in terms 

of computational resources. The ACO is greedier but provides 

better results, particularly with large problems. 

Based on our simulation results we recommend: 

 GA for low computational resources and/or small to 

medium size problems. Suitable for rapid finding of 

optimum solutions. Is easy to prototype and 

implement. 

 ACO for greater computation resources and/or 

large and complex problems. Suitable for finding 

high quality solutions in a noticeable runtime. Is 

distributed, easy to hybrid and accommodate with 

other algorithms. 

The two algorithmic approaches have a great potential in 

solving many TSP based real world applications ranging from 

logistics to manufacturing and robotics. Future scope has been 

focused to finding better performing derivatives and 

hybridations of these algorithms. 

The algorithms are very sensitive to parameters variation. In 

the present work we rely on the authors experience to fine 

 

Fig13- Error rates in GA and ACO 
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tune the algorithms in order to provide the best results. Future 

work can be focused to automatic parameters adaptation 

routines based on problem type and other accessible data. 
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