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ABSTRACT 
Low autocorrelation binary sequence (LABS) detection is a 

classic problem in the literature. We use these sequences in 

many real-life applications. The detection of these sequences 

involves many problems. In the literature, various methods 

have been developed to approach the LABS issue. Based on 

the length of the sequence, an appropriate method can be 

selected and implemented. For short length sequences, linear 

search is possible and as the length increases we can 

implement various stochastic optimization algorithms. In our 

case that is for long binary sequences, we can use construction 

methods. Kristiansen and Parker [1] in their work have shown 

that Legendre sequences with periodic rotation can achieve a 

merit factor of 6.34.We have applied these Legendre 

sequences to steepest descent and prime step algorithms with 

some modifications. We call these techniques as modified 

Legendre algorithms. Using these improved methods we were 

able to achieve a merit factor of 6.4245 for long binary 

sequences. 

Keywords 
Legendre sequences, prime step algorithm, steepest descent 

algorithm. 

1. INTRODUCTION 
We use Low autocorrelation binary sequences (LABS) in 

radar pulse compression techniques, various communication 

methods and physics like spin icing glasses and also in the 

field of chemistry. In LABS, the complexity lies not in the 

application part, but in the detection/generation part. The first 

problem is the presence of huge search space; second is that, 

no analytical method can be used directly to get the global 

optimum (Best solution). The third problem epistasis, while in 

search for a global optimum, a small change in one parameter 

will result in an enormous difference in the outcome. Due to 

this problem, the time required to solve this issue increases 

exponentially. When the length of the binary sequence is 

small (<48~50), linear search can be implemented as the 

search space is small. With medium length sequences (50-

200) various stochastic and Mimetic algorithms have been 

implemented. These algorithms will not do an exhaustive 

search but instead try to estimate the location of global optima 

in the vast search space. As the sequence length increases 

(beyond 200), even the stochastic methods become incapable 

to deal with this problem. At this point, the only possible 

approach would be to generate these sequences directly. 

Legendre sequences serve as the perfect example of this type 

of construction. Research has proven that enhancing the 

Legendre sequences will further improve the merit factor 

values to a greater degree. There are numerous methods used 

to generate long binary Sequences, apart from Legendre 

sequences; others include twin prime, three and four prime 

Jacobi sequences. 

2. LITERATURE 
Linear search is applicable only for short length binary 

sequences. Golay [4] presented the work of Lindner, who 

performed an exhaustive search for N≤32.Mertens showed a 

parallel branch and bound algorithm for short length 

sequences up to a range of N=48[5].This algorithm was later 

improvised by Bauke [6], and he has achieved the merit 

factors up to a range of N=60.The linear search failed to 

produce better results for long length sequences. Due to the 

lack of scalability of these methods, long sequences cannot be 

dealt with limited time and computing power. 

Stochastic methods were introduced to solve this problem 

[10][12]. In the beginning, even these methods failed to 

produce proper outputs. Simulated Annealing and Ant colony 

optimization methods failed miserably. But later, Prestwich 

[7] used a CLS algorithm that utilized constraint programming 

to obtain results up to a length of N=48. After that, data used a 

Tabu search algorithm to get results up to a range of N=48.       

 To obtain extended binary sequences, we have to rely on 

various construction methods. One of them is Legendre 

sequences. If N is the length of the binary sequence, we want 

to obtain the merit factors as N tends to infinity. There is an 

observation by Turyn that,  a quarter rotated periodic 

Legendre sequence tends to a merit factor value of 6.0 as N 

tends to infinity [2]. These same phenomena were proved to 

be true for modified Jacobi sequences of length (pq). Recent 

improvements include the achievement of merit factor 

observations up to a range of 3000 by two students [3].  

Matthew Parker and Kristiansen [1] used low complexity 

search to obtain a merit factor of 6.3421, they have extended 

the Legendre sequences. We have analyzed their method and 

made lots of improvements. We have applied N/4 Rotated 

periodically extended Legendre sequences to steepest descent 

and prime step algorithms with some modifications. We call 

these techniques as modified Legendre algorithms. We have 

achieved a merit factor of 6.4245 with these algorithms. 

3. BACKGROUND 

3.1 Autocorrelation, Energy, Merit Factor 
Correlation function is a statistical tool that is used to measure 

the similarity between two sequences. Only it answers the 

question “to what level is sequence one similar to sequence 

two?” Autocorrelation is the correlation of a sequence with 

itself with the presence of some time lag. 

Assume that A is a binary sequence with length N. We will 

represent the sequence by a1a2a3….aN   with ai ∈ {-1, 1} for 

1≤ i ≤ N. The aperiodic autocorrelation of elements in the 

sequence A is 

   𝑐𝑚 =  𝑎𝑖
𝑁
𝑖=1 𝑎𝑖+𝑚           (−𝑁 < 𝑚 < 𝑁)    1 
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The cross-correlation can be defined, in the same way. If A 

and B are two different sequences, the cross-correlation 

between A and B is X=A*B 

  𝑥𝑚 =  𝑎𝑖

𝑁

𝑖=1

𝑏𝑖+𝑚     (−𝑁 < 𝑚 < 𝑁)   
2 

Low autocorrelation binary sequence problem for the length I, 

is represented as LABS (I). 

The solution for LABS (I) involves, finding a binary sequence 

of length I, which bears the minimum energy. Assume that 

I=3, we already knew the solutions for this range. We have 

four solutions for range=3.Thesolutionsare{1,-1,-1},{-

1,1,1},{-1,-1,1},{1,1,-1}.The energies of all these sequences 

are same. 

The most important property of LABS sequences is 

symmetry. Even if the obtained result is complemented or 

reversed, the energy value will remain the same. This feature 

is crucial in obtaining remaining global optima. If we know 

one solution we can complement it to get another solution. 

Golay [13] for the first introduced the concept of merit 

factors. The merit factor indicates the autocorrelation side 

lobe energy of a given sequence 

 

 

3.2 Binary Sequence – Element Flipping 
We have applied steepest descent and prime step algorithms 

to Legendre sequences. The whole procedure will be carried 

out in sequential steps to reduce the execution time. The first 

step is to generate the Legendre sequences. Before applying 

these sequences to algorithms, we have to perform an 

intermediate step. This action is called one-element or multi-

element flipping. In order to understand why we are doing this 

step, we have first to understand how steepest descent and 

prime step algorithms work. These two algorithms help us to 

determine the sequence that has the least autocorrelation 

energy. The algorithm has to identify those elements in the 

sequence which upon flipping (1 to -1 or -1 to 1) will give the 

least energy. There will be one element flips or multi-element 

flips 

3.2.1 One – Element Flips   
In this case, only one element is flipped at a time, and we 

iterate the whole process for all the elements. The flip with the 

least energy is the solution. To do this, we will calculate the 

energy of primary Legendre sequence and then we have to 

take the energies of sequences for all the possible flips. Then 

we will calculate the difference between primary sequence 

energy and current flipped sequence energy. After that, we 

will compare all the differences to see which flip got the least 

energy. Let us say that with one element flip the difference in 

energy is δ1 .For all the flips, the difference energies will be 

saved in the vector Δ. 

So   Δ = [δ1, δ2, δ3, δ4…., δN ]. Here, δj represents the 

complete difference in auto-correlation energy between 

primary and flipped sequence (produced by flipping element 

j). We compare all the values in Δ. While doing this lot of 

time wastage would be there. So instead of computing Δ in 

this procedure we have designed a better approach, by 

expressing Δ in its correlation and autocorrelation terms and 

applying Fast Fourier transform techniques (FFT) to it. 

 

Energy of the sequence is given by 

𝐸 = 2  𝑐𝑚
2

𝑁−1

𝑚=1

 

            

4 

If one element in A is changed by flipping then the change in 

energy is given by 

𝛿𝑗

= 2  𝑑𝑚
2

𝑁−1

𝑚=1

− 𝐸 

        

5 

Here D= [d1, d2…dN] are the auto-correlation energies of the 

flipped sequence A. The auto-correlation side-lobe energies 

differ whenever ai or a i+m in (1) change. That is when i=j 

or i+m=j 

We can simplify the equation (6) 

   𝑑𝑚 = 𝑐𝑚 − 2𝑎𝑗  𝑎𝑗+𝑚 + 𝑎𝑗−𝑚    6 

     𝑑𝑚 =  (𝑎𝑖
𝑁
𝑖=1 𝑎𝑖+𝑚 ) − 2𝑎𝑗𝑎𝑗+𝑚 −

2𝑎𝑗−𝑚𝑎𝑗  

7 

We have to define two terms to simplify the notation (7) 

further 

   𝑆𝑗 ,𝑚 = 𝑎𝑗+𝑚+𝑎𝑗−𝑚    8 

𝑃𝑗 ,𝑚 = 𝑎𝑗+𝑚𝑎𝑗−𝑚    9 

Based on the above assumptions the modified energies will 

become 

𝑑𝑚 = 𝑐𝑚 − 2𝑎𝑗 𝑆𝑗 ,𝑚  10 

And the side lobe autocorrelation energy m is given by 

𝑑𝑚
2  = 𝑐𝑚

2  – 4ajSj,mcm  + 4𝑎𝑗
2𝑆𝑗 ,𝑚,

2   11 

The total change in energy of autocorrelation side lobes with 

an element flip j is given by 

   δj = 2  𝑁−1
𝑚=1  (– 4ajSj,mcm  +  4𝑎𝑗

2𝑆𝑗 ,𝑚 ,
2 )           12 

  = 8  𝑁−1
𝑚=1 (-ajSj,mcm  +  𝑆𝑗 ,𝑚,

2 )     13 

The above procedure will take a lot of time to compute the δj 

for all values of j. We have to simplify this process to execute 

the steps in less time. We have to remember that 

              𝑆𝑗 ,𝑚
2    = 𝑎𝑗+𝑚

2   +  𝑎𝑗−𝑚
2  +  2𝑃𝑗 ,𝑚         14 

So from 13 we get      

δj= 8  𝑁−1
𝑚=1 (-ajSj,mcm  + 2𝑃𝑗 ,𝑚 )  +   𝑁−1

𝑚=1 (𝑎𝑗+𝑚
2   +  𝑎𝑗−𝑚

2 ) 15 

      =8  𝑁−1
𝑚=1 (-ajSj,mcm  +  2𝑃𝑗 ,𝑚 )  + 8(𝑁 − 1)                                         16 

Now we can rewrite the change in energy as 

δj= -8aj  𝑁−1
𝑚=1 Sj,mcm  + 8  𝑁−1

𝑚=−𝑁+1 𝑃𝑗 ,𝑚  +8 (N-2)                               17 

Observe the equation 17 keenly. We can relate this equation 

to correlations pair. 

  𝑁−1
𝑚=1 Sj,mcm  \=   𝑁−1

𝑚=1 (𝑎𝑗+𝑚+𝑎𝑗−𝑚 )cm                                                   18 

=   𝑁−1
𝑚=1 (Cm𝑎𝑗+𝑚+ Cm𝑎𝑁+1−𝑗+𝑚

𝑟 )          19 

        𝐹 𝐴 =
𝑁2

2  𝑐𝑚2
𝑁−1
𝑚=1

     3 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 2, April 2015 

13 

Here r indicates the reverse of the corresponding sequence. 

Equation (19) is now in the form of cross-correlation (2) 

    𝑁−1
𝑚=1 Sj,mcm  = (C*A)j +  (C*Ar)N- j+1                                                      20 

Here the alphabet C represents the autocorrelation sidelobe 

energies of A*A. The second term in (7) is also in the form of 

correlation. 

      𝑁−1
𝑚=−𝑁+1 𝑃𝑗 ,𝑚  =      𝑁−1

𝑚=−𝑁+1 𝑎𝑗+𝑚𝑎𝑗−𝑚      21 

      =     
𝑁−1+𝑗
𝑚=−𝑁+1+𝑗 am𝑎𝑁+1−2𝑗+𝑚

𝑟           22 

We already know that 1 ≤ am ≤ N, so we have to change the 

limits of the summation to make the sum congruent to cross-

correlation (2).We have to do this in such a way that it will 

not affect the aggregate value 

     𝑁−1
𝑚=−𝑁+1 𝑃𝑗 ,𝑚   =     𝑁

𝑚=1 am𝑎𝑁+1−2𝑗+𝑚
𝑟   23 

  =     (A*Ar)N+1-2j   24 

We have to mix the two summations to get the δj value 

δj = -8aj(C*A)j + (C*Ar)N- j+1 + 8(A*Ar)N+1-2j + 8 (N-2)                         25 

If we want to compute the above equation directly, lot of time 

is required. To simplify the process, we make use of Fourier 

transform [9]. FFT is a perfect way to compute this sum. 

FFT (A*B) = FFT (A) FFT (Br)                                                            26 

When we apply inverse Fourier transform to above equation 

we get                    

  A*B = F-1(FFT (A) FFT (Br))                                                                27 

 Here F-1 indicates the inverse Fourier transform function. 

Equation (A.25) consists of multiple correlation pairs. So the 

Fourier transform implementation involves multiple FFTS. 

The minimum length of each FFT is 2N-1.If N is of smaller 

length, equation (A.13) is a better approach than (A.27).This 

change will not create any problems in our calculations 

because in our experiments we only consider very long 

sequences. 

3.2.2 Multi – Element Flips   
So far, we have explained the mechanism of single element 

flips calculations. Now we want to explain multiple elements 

flip calculations. In multiple element flips, more than one 

element flips will be allowed to give the solution, and the 

whole process repeats for several iterations. We want to 

describe the procedure for calculations here 

Assume that s be a set that consists of all element flips. Let f 

be another set that consists of all the distances between the 

flipped elements. Let gm be the pairwise sum of all the 

products of all flipped elements. The indices all these 

elements differ by m. The value of gm will be zero when m∉f.. 

    gm   =    𝑎𝑗  ∈𝑠,(𝑗+𝑚 )∈ 𝑠 jaj+m ,  if (m∈f)                                               

    gm   =  0,                          otherwise 

  28 

Now the changed autocorrelation side lobe energies will be 

described as 

𝑑𝑚 = 𝑐m – 2 𝑎𝑛∈𝑠 nSn,m + 4gm                                                                      29 

We can rewrite Equation (29) as 

dm
2 = − 4cm   an

nϵS

Sn,m + 4   anSn,m

nϵS

 

2

+ 8gm cm  

   

30 

− 16gm  anSn,m   + 16gm    
2

nϵS

 
 

The total energy of sidelobes is given by 

       δS  = 2  dm
2      −  cm

2  N−1
m =1                                             31 

=  2  𝑛 − 4𝑐𝑚  𝑎𝑛𝑆𝑛,𝑚 + 4   𝑎𝑛𝑆𝑛,𝑚

𝑛∈𝑆

 ∗   𝑎𝑛𝑆𝑛,𝑚

𝑛∈𝑆

  𝑎 

𝑚∈𝑆

𝑁−1

𝑚=1

 

     

 

     

           +2  8𝑔𝑚𝑐𝑚16𝑔𝑚     𝑎𝑛𝑛∈𝑆 𝑆𝑛,𝑚  16𝑔𝑚
2  .                          32𝑚∈𝑓  

 

Some part of this equation replicates single element changes.  

We will use (13) to transform this equation. So we get 

  δS =   δn

n∈S

+  8    anapSn,m Sp,m  

p∈S,p≠nn∈S

N−1

m=1

 

     

33 

+ 16   gm cm −  2gm  anSn,m + 2gm
2

n∈S

 .  

              m∈f

 

 

We will arrange the triple summations according the 

requirements of correlations structures. 

δS =   δn

n∈S

+  8  anap   Sn,m Sp,m

N−1

m=1pϵS,p≠nnϵS

 

     

34 

+ 16  (δm cm −  2gm   an

nϵS

Sn,m +  2gm
2 )

mϵf

 
 

Now we have to expand the term Sn, m Sp, m 

  Sn,m Sp,m =N−1
m=1   an+m + an−m 

N−1
m=1  ap+m + ap−m                        35 

=  (an+m ap+m + an+m ap−m + an−m ap+m + an−m ap−m

N−1

m=1

) 

  

36 

   =  (an+m ap+m + an+m ap−m − 2anap)N−1
m=−N+1    37 

=  (am ap−n+m    )

N−1+n

m=−N+1+n

  + 

  38 

         (an+m𝑎𝑁+1−𝑝+
𝑟

𝑚
− 2anap)N−1

m=−N+1                 

   =  cp−n  +  (A ∗ 𝐴𝑟)𝑁+1−𝑝−𝑛    −   2anap  
               39 

With the help of (39), we can simplify δS 

δs =  δn

n∈S

+  8   (anapcn−p  − 2)

p∈s,p≠n

   

n∈s

 
 40 

+  8   an ap

p∈s,p≠n

 (A ∗ 𝐴𝑟)𝑁+1−𝑝−𝑛      

n∈s

 
 

+  16    gm cm −  2gm  an Sn,m +  2 gm
2

n∈s

 .

m∈f

 
 

8   anapcn−p   =     16 gm cmm∈fp∈s,p≠nn∈s                    41 

8  −2p∈s,p≠nn∈s      =   −16Ns Ns − 1                                          42 

Here NS represents the number of flipped elements. We will 

use 41 and 42 on 40 to give 

       δs  =    δnn∈s  −   16Ns Ns − 1   +                                           43 
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8  anap

p∈s,p≠n

 (A ∗ 𝐴𝑟)𝑁+1−𝑝−𝑛      +   32  

n∈s

 
 

 δn

n∈s

−   16Ns Ns − 1 16  anap

p∈s,p>𝑛

 (A ∗ 𝐴𝑟)𝑁+1−𝑝−𝑛      

n∈s

 
 

+  32    gm cm − gm  anSn,m +  2 gm
2

n∈s

  

m∈f

 

 

The speed of (43) depends on the number of flipped elements. 

If Δ is calculated first then   δS does not depend upon the 

length of the sequence N. The time required to implement 43 

is very high. So in order to execute the calculation faster 43 is 

approximated by the following equation. 

   ≈ −32     gm  anSn,mn∈s    ≈  −32 m∈f Ns
2     44 

If the N value increases, the accuracy of (A.44) decreases. In 

our experience, our inaccuracies have been minimum. 

3.2.3 Reduction of Delta Complexity   
Our algorithms implement an iterative method in which single 

or multi-element flips will occur. Once the flip occurs, the Δ 

will become useless. We should calculate new Δ for each and 

every iteration, which makes the program execution very 

complicated. We found a method to overcome this problem.  

We will flip an element k in the sequence. Indicate the 

modified sequence by a dot. The modified sequence is Ả. 

    ai    =      
−ai ,                i = k
ai ,      otherwise

                  45 

In the similar notation we can write∆  =   [δi
  , δ2

  , … δN
  ] . ∆  is 

the new vector for the changed energy. When j = k, we get 

δj  
   =   −δk .When j ≠ k  , we get    δj,k   =  δk  +    δj .When 

we apply this change in (A.43) we get 

δj  
 =  δj,k    − δk = δj  +  16ajak    A ∗ 𝐴𝑟 𝑁+1−𝑗−𝑘    +  2c k−j   46 

−32aja2j−k − 32ak  a2k−j − 64    

Equation 46 represents the autocorrelation A*A
r
 and the 

sidelobe energies C. If we assume that Δ is calculated earlier 

using (25), then A and A
r
 need not be calculated again. It is 

done already at the time of (25).When m = N + 1 - 2k, the 

modified elements in A and A
r
 overlap. So A*A

r
 will not 

have any change. 

    A ∗ 𝐴𝑟= 𝑎𝑖𝑎𝑁−𝑖+1−𝑚  − 4𝑎𝑘𝑎𝑁+1−𝑚−𝑘  𝑁
𝑖=1    47 

=  A ∗ 𝐴𝑟 𝑚  −   4𝑎𝑘𝑎𝑁+1−𝑚−𝑘   

We can calculate sidelobe energies without any problem. 

 They are given by 

      cm  =  cm −  2ak   ak+m + ak−m      48 

With the help of (46), we reduced the complexity of Δ 

calculation. Thus, it will update Δ value continuously 

3.3 Construction of Legendre Sequences   

3.3.1 Legendre symbol 
A lot of algorithms are present in the literature with which we 

can solve quadratic equations. But the classical methods are 

restricted to a region C. No algorithms were present in order 

to solve the quadratic equations over the finite field regions. 

The complexity is very high in finite fields. Let us take an 

example. For an integer x, and an odd prime number p, 

previously it was not even possible to know if there exists any 

solution for z2≡x(mod p).To solve this kind of typical 

problems, Legendre introduced his notation[14] to prove the 

quadratic reciprocity law. 

 a

p
 =  

1  only if a is  quadratic residue− modulo p and a ≠ 0   mod p  
−1  if a is a quadratic nonresidue−  modulo p                               

0  if a = 0  mod(p)                                                                             

  

49  

An alternate definition of Legendre symbol is given by 

     a

p
  ≡  a

 p−1 
2     mod p  and  a

p
  ∈   −1,0,1  

 50  

3.3.2 Legendre Sequence 
Now we have an idea of Legendre symbol. We will use the 

Legendre symbol’s notation to define a Legendre sequence 

 We can define the Legendre sequence as 

   j
N
 =   

0,       only if      j = 0                                                          
+1, only if j is a quadratic−  residue (mod N) 

−1,                 other − wise                                                   

  
  

 51 

Here N is the length of the sequence, and it must be an odd 

prime. The Legendre symbol assigns zero value to its first 

element. But in the present sequence, for convenience 

purpose, we will assign that value to +1.The correct sequence 

definition is 

  aj =   
1,               if           j = 0    

 j
N
 ,            if  0 < 𝑗 < 𝑁      

  
  52 

3.3.3 Rotated Legendre Sequences 
Generally speaking, the merit factors of Legendre sequences 

lie in a range of 1.5.But when we rotate the Legendre 

sequences, the merit factor jumps to a value of six. Rotation is 

the method in which we will detach a part of the Legendre 

sequence from one side and will attach it to the other end. 

Golay has introduced an equation describing this method 

  1 F =   2
3  −  4f + 8f 2 ,         f ≤  

1

2
 53 

Here f is the fraction of a rotation 

3.3.4 Extended Legendre Sequences 
Kirilusha proved that when the rotated Legendre sequences 

undergo periodic extension, the merit factor of these 

sequences reaches beyond a value of six. Borwein [8] 

Concluded that 0.25 is not the most efficient fraction of the 

rotation. He recommended a value of 0.2211 for rotation and a 

value of 0.0578 to extend the sequence. He achieved a merit 

factor value of 6.3421 using his method. He gave an equation 

accurately to determine the long Legendre sequence merit 

factors. The equation is 

  limn→∞F Xr ;  Xr 
t =  

6 1+t 2

−8t3+ 18t2+1+48  r−
1

4
+

t

2
 

2   54 

We need not go into the details of the equation because it does 

not have a proof. 

Kris and parker [1] extended the Legendre sequences with the 

help of directed search. They almost got the replicable results 

of that of Borwein. Schmidt [11] in their research proved that 

m-sequences with periodic extension have a merit factor of 

3.34.Equation.53 has been proved without Ergodicity 

postulate by Jensen and Hoholdt[15]. 
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3.4 Modified Legendre Algorithms 
We have developed two algorithms for Legendre sequences. 

We achieved satisfactory results with these algorithms. The 

two algorithms are Prime step algorithm and steepest descent 

algorithm. We are inspired from Baden’s research [16]. 

3.4.1 Prime step algorithm 
It is a non-iterative algorithm, and the computation is very 

simple. The algorithm improves the merit factor by flipping 

all the elements in the isolated sequence. We will consider 

only those sequences that have a negative Δ. Consider a new 

sequence D produced by inverting all the elements in 

sequence A which has a negative Δ. The formula describes the 

prime step algorithm. 

𝑑𝑗 =  
𝑎𝑗          𝛿𝑗   

⦥ 0

−𝑎𝑗     𝛿𝑗   < 0
               

   55  

The prime step algorithm first calculates Equation (25) and 

then applies (55) to it with no iterations. 

3.4.2 Steep descent algorithm (modified version 

of steepest descent algorithm) 
When there is no analytic procedure to obtain the minimum 

value of a given function, we will go for iterative technique 

for achieving approximate solution. Newton has defined a 

method to achieve the minimal value, but it is not reliable. To 

solve these kinds of problems, we go to steepest descent 

method. The first step in the algorithm is to calculate the 

gradient of the given function at a given point. In order find 

the local optimum, we should proceed stepwise towards 

negative gradient of given function. We will begin at a place 

x0 and slowly we will proceed from xi to xi+1 by taking 

minimal values along the straight line from xl towards the 

course of –ve gradient. 

Consider an example: If we apply this algorithm to a random 

function f(x), the structure of the iteration will be 

𝑥𝑖 = 𝑥𝑖−1 − 𝜀𝑓′ (𝑥𝑖−1)   56 

We applied steepest descent algorithm to LABS problem. 

Results were satisfactory, but still we tried to improve them. 

For very long sequences, the inability of steepest descent 

method to create multiple flips in a single iteration became a 

limitation. We were not able to get the merit factors in quick 

time. The algorithm flips the elements one at a time, and the 

flip that gives the highest merit factor will be the solution. 

Without multiple element flips and a better iterative 

procedure, it is almost impossible to say that this method has 

the best approach. The steepest descent algorithm is very 

simple, but it has its limitations when applied to long 

Legendre sequences 

We modified the steepest descent algorithm and named it as 

steep descent algorithm. This algorithm allows multiple 

element flips in each iteration. So the number of iterations 

will be less, which improves the speed of the algorithm. In 

every iteration, all the elements in the sequence with negative 

Δ value will be flipped. If the merit factor value improves 

with this iteration, Δ is again calculated for the new sequence, 

and the iterations will go on. If the value of the merit factor is 

not increasing then, we will consider the  element subsets with 

– Δ (subsets range from 10%,20% ….so on).Algorithm selects 

the  subset that provides the best merit factor implements it, 

and the process of iteration will continue. When additional 

flips do not produce any improvement in merit factors, the 

iteration procedure will terminate. This termination will also 

occur when large number of iterations is over. 

We have tried several variations of steep descent method. We 

varied the number of element flips in each iteration, and we 

observed the results. For almost all the variations, the merit 

factor values were identical. The changes are not discussed 

here as they are not important. It became apparent to us that 

the steep descent algorithm is far more efficient than steepest 

descent algorithm. We named, both the prime step algorithm 

and steep descent algorithm as modified Legendre algorithms 

because with the application of these algorithms the merit 

factors of Legendre sequences has reached above 6.4 

4. RESULTS 
To get the results, we applied Legendre sequences (both 

normal and extended) to both of the modified algorithms. We 

got significant improvements in merit factors for various 

sequences. We conclude that, on a relative basis, steep descent 

algorithm performed well than prime step algorithm. In 

results, first we will discuss the Prime step results and then the 

Steep descent results. Later, we will compare the results of 

Steep descent and prime Step algorithms using two statistical 

methods. Finally, we will discuss the highest merit factors 

obtained in our experiments. 

4.1 Prime Step Algorithm Results 
There was a significant improvement in merit factor values 

when we applied the prime step algorithm to the Legendre 

sequences. We have selected only Legendre sequences 

because even without the application of prime step algorithm, 

they are capable of producing good results by themselves with 

the periodical extension. Once we have applied the algorithm, 

it further improved merit factor values. 

Table 1 

Sequence 

Length 

Legendre 

-Merit 

factor 

Periodically 

extended  - 

merit factor 

Prime step 

-Merit 

factor 

467 1.5021 6.0096 6.4039 

1669 1.4987 5.9498 6.3235 

2309 1.499 6.0039 6.3235 

3461 1.4994 6.0098 6.3314 

4973 1.4994 5.9838 6.3401 

5821 1.4996 5.99 6.3511 

6221 1.4996 5.9811 6.3275 

7741 1.4997 5.9856 6.3378 

7829 1.4997 5.9957 6.3243 

17597 1.4999 5.9921 6.3343 

Table 1 shows the merit factor values for some of the 

Legendre sequences. The generated Legendre sequences tend 

to a merit factor range of 1.5(approximately).When we rotated 

the sequence by N/4 and extended it periodically, the merit 

factors tend to a range of 5.9 to 6.0.But when we applied 

prime step algorithm to it the merit factor range improved 

significantly to (6.3-6.4). 
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We have conducted experiments for odd primes up to a length 

of 40000.We have observed the same phenomenon in all these 

sequences. We tried to represent all those merit factors in a 

graph, but the graph lacks clarity. So we sampled a sequence 

from each of hundredth series. So for a length of 40000 we 

got 400 sequences that would efficiently determine the 

performance of our results 

Fig.1 represents the comparison graph for 400 elements; they 

are samples from 40000 elements. We can conclude from the 

figure that the merit factors of Prime step Legendre 

completely dominated the merit factors of normal Legendre 

sequences. We can also prove this in the case of extended 

Legendre sequences. But Prime step is not our best algorithm, 

Steep descent is. So we will show the comparison in steep 

descent algorithm case. 

 

Fig.1 

4.2 Steep Descent Algorithm Results 
So far in our experiments this algorithm provided the best 

results. At shorter lengths, the merit factor values for the 

prime step and steep descent algorithms are almost identical. 

But with an increase in sequence length, we observed a 

significant difference in both the values. Steep descent 

provides better results for long length sequences. 

Table 2 

Sequence 

length 

Prime step – 

Merit Factors 

Steep Descent 

– merit factors 

127 6.1117 6.1117 

131 5.8726 5.8726 

167 6.0063 6.0063 

179 6.1716 6.1716 

16573 6.3450 6.3459 

16633 6.3766 6.3811 

16661 6.3778 6.3813 

16699 6.3504 6.3512 

16829 6.3617 6.3647 

In Table 2 we want to show the difference between the two 

algorithms for short and long length sequences. So we took  

the first four column elements from a range below 1000 and 

the next five column elements from a range of 16000.We can 

clearly see the increase in merit factor for long length 

sequences in case of Steep descent legend merit factors. 

Whereas for short length sequences the merit factors for both 

the algorithms remains the same. 

Similar to Prime step algorithm case, we want to compare the 

results of Legendre sequences with Steep descent Legendre 

sequences .Figure 3 describes an exact representation of that. 

We can clearly observe the domination of steep descent merit 

factors over Legendre merit factors. In Table 3 we have 

represented some of our steep descents Legendre results. Our  

merit factor reached around 6.4245.We also compared the 

steep descent results with extended Legendre results in Figure 

2.Clearly steep descent merit factors dominate the extended 

Legendre merit factors. 

 

Fig.2 

 

Fig.3 

4.3 Steep Descent VS Prime Step Results 
The results show that the steep descent results improve over  

Table 3 

Sequence 

Length 

Legendre 

-Merit 

factor 

Periodically 

extended  - 

merit factor 

Steep 

Descent- 

Merit Factor 

467 1.5021 6.0096 6.4039 

1669 1.4987 5.9498 6.4008 
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2141 1.499 5.9756 6.3981 

2309 1.499 6.0039 6.4245 

3461 1.4994 6.0098 6.3979 

5821 1.4996 5.99 6.4017 

6221 1.4996 5.9811 6.4033 

7741 1.4997 5.9856 6.4078 

12941 1.4998 5.997 6.3988 

Prime step results for long sequences. We compared the two 

results in Figure 3.There is no clarity in visual representation. 

So we should adopt another method that would determine the 

results clearly. We used two statistical methods to compare 

the results. The results show that the steep descent results 

improve over Prime step results for long sequences. We 

compared the two results in Figure 3.There is no clarity in 

visual representation. So we should adopt another method that 

would determine the results clearly. We used two statistical 

methods to compare the results. 

1) Mann-Whitney Rank Sum test 

2)Kruskal-Wallis one-way Analysis of Variance on Ranks 

4.3.1 Mann-Whitney Rank Sum test 
We compared the results of Prime step Legendre and Steep 

descent Legendre algorithms using this tool. This statistical 

test ranks the merit factors for each and every condition 

between two groups (in our case Prime step Legendre and 

Steep descent Legendre) and then it will analyze how 

different the two rank sums are. If there exists a systematic 

change between the two selected groups, then most of the 

high ranks will represent one group(Steep descent).Then most 

of the low ranks will represent another group(Prime step).Due 

to this, the rank totals will change for each cluster. The 

statistic “U” represents the difference between the two ranks. 

We can clearly observe the difference in median value, and 

the 25% and the 75% values. 

Mann-Whitney U Statistic = 53183.500 

Table 4 

GROUP Number of 

samples 

Median 25% 75% 

Prime step 

Legendre 

400 6.378 6.372 6.383 

Steep 

Descent 

Legendre 

400 6.380 6.374 6.386 

With test results in Table 4, we can conclude that that the 

steep descent algorithm performs well than Prime step 

algorithms in almost all the instances. 

4.3.2 Kruskal-Wallis one-way Analysis of 

Variance on Ranks 
We compared the results of Prime step Legendre, Steep 

descent Legendre algorithms with original Legendre sequence 

using this tool. It is an extension of Mann-Whitney Rank Sum 

test for three different groups. We can conclude from the 

results that prime step and steepest descent algorithms 

performed well over Legendre sequences. 

Table 5 

GROUP 

 

Number 

of samples 

Median 25% 75% 

Legendre 400 1.500 1.500 1.500 

Prime step 

Legendre 

400 6.378 6.372 6.383 

Steep 

Descent 

Legendre 

400 6.380 6.374 6.386 

Table 6 

Comparison 

between 

Difference of 

ranks 

q P<0.05 

Legendre vs. 

steep descent 

Legendre 

194624.500 34.013 yes 

Prime step 

Legendre vs 

steep descent 

Legendre 

17537.000 3.065 No 

Legendre vs. 

Prime step 

Legendre 

177087.500 30.948 yes 

In Table 6,”Difference of ranks is very important. High-rank 

differences indicate that the second group has performed 

exceedingly well over the first group. 

4.4 Best Merit Factors 
In table7, we include our top ten merit factors with their 

corresponding sequence lengths. In figure 4 we compared the 

top ten merit factors of steepest descent to that of prime step 

algorithm. Some of the bubbles overlap, so we cannot see all 

the ten results. 

Table 7 

Sequence 

length 

Prime step merit 

factors 

Steep descent 

merit factors 

2309 6.4205 6.4245 

7741 6.4036 6.4078 

467 6.4039 6.4039 

6221 6.4033 6.4033 

5821 6.4017 6.4017 
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1669 6.4008 6.4008 

12941 6.3956 6.3988 

17597 6.3978 6.3986 

2141 6.3939 6.3981 

3461 6.397 6.3979 

 

Fig.4 

5. CONCLUSION 
Extended Legendre sequences exhibit good merit factor range 

of 6.0. Kristiansen [1] used direct search method on extended 

Legendre sequences to obtain a merit factor of 6.34.We 

applied these extended sequences to Prime step and steepest 

descent algorithms. There is a significant improvement in 

merit factor range. We got the highest merit factor value of 

6.4245.We have calculated the merit factors of Legendre 

sequences up to a length of 40000.We want to increase the 

length to a value of one million to observe the behavior of 

Extended Legendre sequences under the influence of 

enhanced algorithms. If Kristiansen had utilized the inner 

values in their direct search, they might achieve the same 

results that we have got. A lot of research is going on various 

classes of sequences other than Legendre sequences. Jacobi 

sequences, Modified Jacobi sequences, m-sequences are the 

others. In future, we want to apply our algorithms to these 

sequences to observe the asymptotic merit factor behavior. 

These sequences by themselves exhibit good merit factor 

values. The major limitation of LABS problem is 

computational power. If we can access supercomputers 

instead of normal ones, we can achieve very interesting results 

and we can do the research on very long length sequences 

(say 100 million). 
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