Simulation Model for Cyber Crime Reduction

Bhanu Sahu
AISECT University
Bhopal

Deepti Maheshwari
AISECT University
Bhopal

Neeraj Sahu
AISECT University
Bhopal

ABSTRACT
We want to reduce cyber crime using simulation. The Experimental Results show how user behavior based model help to reduce cyber crime. User behavior prediction and most probable its nature is show cyber crime probability is high and low. We use simulation reduce cyber crime. Outcomes are more efficient and accurate.

Keywords
User behavior based modeling, Behaviour, Cyber Crime reduction, Computer Simulation.

1. INTRODUCTION
There are many types of user behavior where judgments authorities do not able to decide take decision with different new methods of user behavior because this type user behavior is first time found. User behavior basic classification is show in figure 1.

![User Behavior Classification](image)

Figure 1: Classification of User behavior

In 1975 Baldwin, J. gave British areal studies of grime: An assessment[3].

In 1976 Baldwin, J., & Bottoms, A. E. gave The urban criminal: A study in Sheffield[4].

In 1994 Beavon, D. J. K., Brantingham, P. L., & Brantingham, P. J. gave The influence of street networks on the patterning of property offenses[5].

In 1997 Axelrod, R. gave Advancing the art of simulation in the social sciences and R.Conte, R. Hegselmann, & P. Terna gave Simulating social phenomena [2].

In 1997 Bowers, K., & Hirschfield, A. gave Exploring the link between crime and disadvantage in north-west England: An analysis using geographical information systems[6].

In 2003 Brailsford, S., & Schmidt, B. gave Towards incorporating human behaviour in models of health care systems: An approach using discrete event simulation[7].

In 2003 Brantingham, P. L., & Brantingham, P. J. gave Computer simulation as a tool for environmental criminologists[9].

In 2005 Brantingham, P., Glasser, U., Kinney, B., Singh, K., & Vajihollahi, M. gave A computational model for simulating spatial aspects of crime in urban environments[10].

In 2009 Al-Ahmadi, K., Heppenstall, A. J., Hogg, J., & See, L gave A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia[1].

The paper is shows in Section-I described the introduction and review of literatures. In Section-II, Calculation for reduction Cyber crime is described. In Section-III, Methodology of Cyber crime is described. In Section-IV, Experimental results are described.

2. CALCULATIONS FOR REDUCTION CYBER CRIME

Table 1 show % of cyber crime reduction in first top 20 countries United States of America, China, Germany, Britain, Brazil, Spain, Italy, France, Turkey and Poland, India, Russia, Canada, South Korea and Taiwan, Japan, Mexico, Argentina, Australia and Israel.

<table>
<thead>
<tr>
<th>Countries</th>
<th>Cyber crime Reduction Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>16</td>
</tr>
<tr>
<td>China</td>
<td>5</td>
</tr>
<tr>
<td>Germany</td>
<td>7</td>
</tr>
<tr>
<td>Britain</td>
<td>4</td>
</tr>
<tr>
<td>Brazil</td>
<td>5</td>
</tr>
<tr>
<td>Spain</td>
<td>5</td>
</tr>
<tr>
<td>Italy</td>
<td>5</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
</tr>
<tr>
<td>Turkey</td>
<td>4</td>
</tr>
<tr>
<td>Poland</td>
<td>5</td>
</tr>
<tr>
<td>India</td>
<td>6</td>
</tr>
<tr>
<td>Russia</td>
<td>3</td>
</tr>
<tr>
<td>Canada</td>
<td>5</td>
</tr>
<tr>
<td>South Korea</td>
<td>3</td>
</tr>
<tr>
<td>Taiwan</td>
<td>2</td>
</tr>
<tr>
<td>Japan</td>
<td>2</td>
</tr>
</tbody>
</table>
3. METHODOLOGY

3.1 The Users
The model used by users. Money need level is depend on user to do cyber crime. Intensity function shows need, environmental influences. Intensity analyzer show work, behavior and no action with action planner. N use for Need, EI use for Environmental Influences, OI use for Others Influences in F function.

3.2 The Model Environment
The model environment user behavior in house, road, work place, empty space. H1 to H5 house, R1 to R6 roads, W1 and W2 workplaces and E1, E2, E3 are empty space.

3.3 Model Experimentation
The model will be applied to testing out crime theories and the effectiveness of varying crime reduction strategies. The following experiments will performed.

3.3.1 Control behavior: The model use to control behavior of users.

3.3.2 Different types of users: The model used by different type of users.

3.3.3 Target security: verification of sender’s message as know authentication and give rights to access users as know authorization.

4. EXPERIMENTAL RESULTS
Cyber crime reduction Percentages in top 20 countries is show in graphical format Figure 4 to 7 show % of cyber crime reduction.

Figure 4: Cyber crime reduction % in first five top countries
Figure 4 show % of cyber crime reduction in first five top countries United States of America, China, Germany, Britain, and Brazil.

Figure 5: Cyber crime reduction % in second five top countries
Figure 5 show % of cyber crime reduction in second five top countries Spain, Italy, France, Turkey and Poland.
Figure 6: Cyber crime reduction % in third five top countries

Figure 6 show % of cyber crime reduction in third five top countries India, Russia, Canada, South Korea and Taiwan.

Figure 7: Cyber crime reduction % in fourth five top countries

Figure 7 show % of cyber crime reduction in fourth five top countries Japan, Mexico, Argentina, Australia and Israel.

5. ACKNOWLEDGMENTS
Our thanks to the Dr. Deepti Maheshwari who have contributed towards development of the Model.

6. REFERENCES