
International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

35 

A Robust Method for Image Steganography based on 

Chaos Theory 

Anoop Kumar 
Tiwari 

Research Scholar  
Dept of Computer Science 
Banaras Hindu University 

Varanasi, India 

 

Ajay Rajpoot,  
Ex-M.Sc. Student 
Dept of Computer 

Science BHU 
Varanasi, India 

 

K. K. Shukla, Ph.D. 
Professor 

Dept of Computer Science 
and Engineering 

IIT (BHU),  
Varanasi, India 

 

S. Karthikeyan, 
Ph.D. 

Associate Professor 
Dept of Computer 

Science  
BHU 

Varanasi, India 

 

 

ABSTRACT 
The Internet provides very economical real-time 

communications between computers and delivers 

services/products almost instantly to the users. The sensitive 

data transmitted through the internet must be secured as it is 

growingly susceptible to security related problems such as 

eavesdropping, malicious interventions etc. The 

steganography is an alternative to cryptographic techniques 

for secured transmission of data over the internet, where the 

secret message is hidden in some other innocuous 

communication so that only the rightful recipient can able to 

detect the presence of the secret message and extract it. 

Recently, many data embedding schemes have been proposed 

for achieving the robustness of this technique. However, most 

of the schemes lack to strike a tradeoff between the 

embedding capacity and the visual quality. In this paper, we 

have proposed a new method for hiding messages in a color 

image in the spatial domain based on chaos theory, which 

uses chaotic maps to embed data. This method is robust as 

well as has the higher payload capacity and compression 

resistant. 

Keywords 
Steganography, chaotic map, chaotic pixel selection 

Bifurcation diagram, Histogram, Logistic map 

1. INTRODUCTION 
In recent years the information and communication 

technology is advancing at tremendous pace which result in 

an easy access to the internet resources/services very 

economically to common man. The internet is increasing 

becoming more powerful and convenient medium for 

communication and supports many applications that require 

securing transmission of sensitive data. So there is a need for 

securing the data transmitted over the internet exclusively 

while communicating secret messages.   

The issues of security and privacy have traditionally been 

dealt with using tools from cryptography that uses encrypting/ 

decrypting techniques. Messages can be appended with a 

message authentication code and encrypted so that only the 

rightful recipient can read them and verify their integrity and 

authenticity. But when intercepted, the encrypted messages 

can readily be identified as the sender and recipient are 

communicating secretly. So there is a need for some different 

approaches so that the secret communication can be hidden 

from the eyes of eavesdroppers and it can be prevented from 

being intervened [04,05]. Steganography[03] becomes an 

alternative tool where the secret messages are hidden in other 

innocuous-looking objects so that their very presence is not 

discovered. There are many major differences between 

cryptography and steganography, but the major advantage of 

steganography over cryptography is that the presence of the 

secret message is hidden and hence the communication does 

not attract the attackers or eavesdroppers towards itself. The 

Steganography is classified into different types [01,02], 

namely:  

(i) Steganography in text (Text Steganography),  

(ii) Steganography in images (Image Steganography),  

(iii) Steganography in audio (Audio Steganography),  

(iv) Steganography in video (Video Steganography), 

(v)  Steganography in TCP/IP Protocols etc.  

Each of these types of steganography uses different 

techniques for embedding the secret message into the covert 

communication. 

2. PREVIOUS WORKS 
Recently chaos theory has been widely used in both 

steganography and cryptography. Bhavana et al. [06] had 

proposed a chaos based method for hiding text in images. The 

method explained about how a secret message can be hidden 

into an image using least significant bit insertion method 

along with chaos. They used henon map as a chaotic map to 

generate sequences of chaotic numbers. The sequences are 

converted to binary by taking their average as threshold value. 

Each bit of the converted message is XORed with this chaotic 

sequence. Each XORed bit is again XORed with the least 

significant bit of the pixel of the image selected as the cover 

image to hide that secret message's bit.  

Simple Illustration: 

Consider, the binary value of I (ASCII-73), 01001001  

Step 1: 01001001 is XORed with the binary chaotic sequence, 

say 10010001000100 and the output will be 

11011000. 

Step 2: Each of these bits is again XORed with LSB of 

individual pixel of the cover image. Suppose the 1st 

pixel of the image is 56 (which have an equivalent 

binary value 00111000). The LSB is `0' and  is 

XORed with `1', which is obtained in the above 

sequence.  

Step 3: The above step is repeated until all the bits are 

embedded in the image.  

The desteganography is done to get back the secret message 

by following the reverse process followed for steganography.  



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

36 

Tayel, M et al [07] had proposed a new chaos based method 

for hiding multimedia data into cover image. The proposed 

steganography algorithm started with increasing the cover 

image's pixels from byte to word color capacity, and then 

distributes the secret-image's pixel randomly within the lower 

byte of the cover image's pixels using chaos distribution. The 

original image is separated from the received stego-image at 

the first stage of the receiver. The initial condition of the 

chaotic random sequence is used to collect the stego-image 

from the lower byte of the pixels. Then the hidden-image is 

reconstructed. 

Bo Wang and JiuchaoFeng  [08] had proposed  a chaos based 

method for hiding a secret message in 'H.264' Standard Video 

Sequences. In this proposed method,  the sender and the 

receiver initialize and synchronize the chaos generator „C‟ 

with the same key, then two sequences can be obtained from 

C, one is Si, (i == 1, 2, ... ) for encryption, and another is Gk, 

(k == 1, 2,... ) for embedding control. The plain text is 

encrypted into cryptograph c by using the algorithm EC ('), 

and c is embedded into the video sequence under the control 

of Gk by using the algorithm ES (.). Finally, d, containing 

secret message, can be obtained and is sent to the receiver 

through a channel. The receiver can recover m by the 

algorithm DEC(·) and DES(·) by using the same sequence Si 

and Gk.  

A Chaotic system is a deterministic, non-linear, dynamic 

system, but unpredictable. The unpredictability in chaotic 

system is due to insufficient knowledge about initial 

conditions. The chaotic systems are very sensitive to initial 

conditions. Any little differences in initial conditions yield 

widely diverging outcomes. In our proposed algorithm we 

also have exploited the critical dependency of chaotic systems 

towards their initial conditions. 

3. PROPOSED METHODOLOGY 
This method is primarily designed by keeping all the basic 

requirements of steganography (i.e. Capacity, Robustness and 

Imperceptibility) in mind and also hides the secret message in 

spatial domain so as to get  larger capacity.  

Our proposed methodology uses two chaotic systems (chaotic 

maps), one to chaotically select the image's data and the other 

to hide the message's bits. The chaotic system is used to select 

the positions of pixel to hide message's bits which leads to 

pixel's positions to hide message's bits becomes unpredictable 

and hence withstands against many steganalysis attacks. For 

better unpredictability, we use the first chaotic system to 

determine the initial condition of the second chaotic map and 

furthermore the initial condition of the first chaotic map is 

modified interactively at a fixed interval of 32 pixels, just to 

increase the chaocity. In this way the unpredictability and 

hence robustness of the methodology is increased. 

The two chaotic maps used for selecting the position of pixels 

for embedding message's bits are Logistic map [9] and it is 

defined as follows: 

Xn+1 = 4λx(1-xn), such that xnЄ (0, 1)  and  λ> 0       (1) 

Where λ is a control parameter. 

The figure 1 represents the bifurcation diagrams of the 

Logistic map with initial condition x0 =0.5 and  λ Є [.71, 1.0]. 

 

 

 

Fig 1: Bifurcation diagram 

It is observed that the points on a line parallel to x-axis are 

very dense when parameter λ is in either the range [0.97675, 

0.99000] or in the range [0.99075, 1.00000).  

So, we have chosen λ = 0.9999 for the logistic maps. 

Accordingly the value of λ can be in any of the above 

intervals too, but the second interval is statistically found to 

be superior. 

The two logistic maps, namely 'cm1' and 'cm2' generate two 

sequences, namely 'sequence1' and 'sequence2' of chaotic 

numbers. Two different 6_hexadecimal_digits keys 'key1' and 

'key2' are used for these maps. Initially a 6-hexadecimal_digits 

value is assigned to the first key 'key1' and  the „null‟ value is 

assigned to the second key 'key2'. During, each iteration, we 

consider only 32 pixels and at the last iteration if there would 

not be a complete set of 32 pixels then we consider only the 

remaining pixels. These iterations repeat until there is no more 

bits of secret message remained to be embed.  Here  the first 

key 'key1' is modified by a predefined binary operation (here 

we choose bitwise XOR operation) performed on first and 

second key (i.e. 'key1' ←'key1'XOR 'key2'), then this 

modified key 'key1' is used to determine the initial condition 

of the map 'cm1' that in turn used to generate a chaotic 

sequence 'sequence1' of 6 non-negative integers in [0, 15] 

which is assigned to the second key 'key2'. The second key 

'key2' is then used to determine the initial condition of the 

second chaotic map. The second chaotic map, then used to 

generate a sequence of n (where n = 

'bits_to_be_hidden'<='24') non-negative integers in the 

interval [0, 31] that gives the positions of the pixels in the 

current segment of 32 pixels, and then 'bits_to_be_hidden' 

number of bits from the secret message are embed in the 

Luma-component of the pixels on these positions, the number 

'bits_to_be_hidden' is determined for each iteration and it 

depends upon the image size and payload (size of the secret 

message). The method after successfully embedding the secret 

message within the image generates the stego-key to recover 

the message from the stego-image, only with this stego-key 

one can recover the embedded message. 

Furthermore, the method is compression resistant i.e. 

withstands various compression techniques (e.g. JPEG, JPEG 

2000, etc.) as  it encodes the message's bits in the value of the 

Luma component of the selected pixel. Any compression 

method has to compromise with the characteristic of the 



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

37 

Human-visual-system (HVS). The HVS is much more 

sensitive to intensity than to color information; therefore any 

compression technique does not try to reduce the intensity 

information much. So the Luma (intensity) component of a 

pixel value is used to encode the message's bits in this 

method. In order to tolerate the changes made to the Luma 

components by the compression technique, we adjust the 

Luma value of the selected pixel according to certain 

compression tolerance coefficient that is also to be passed into 

the method. 

Algorithm 1 Embedding the secret message 

PROCEDURE Stegano_Hide 

READ value of compression tolerance coefficient into 'l'; 

READ color cover image into image 'cover_img'; 

READ secret text message into array 'msg'; 

READ secret stego key into 'stego_key'; 

'original_key' ←'key1'←'stego_key'; 

'key2'  ←'null'; 

'stego_img' ← 'cover_img'; 

'img_width'←width of the stego/cover image; 

'img_height'←height of the stego/cover image; 

'img_size'←'img_width' * 'img_height'; 

'nos'← FLOOR('img_size' / '32');  

 'rp' ←'img_size' mod '32'; 

'msg_size'←size of the secret message in Bytes; 

'msg_bits'←'msg_size' * '8'; 

'bpp'←'msg_bits' / 'img_size'; 

IF 'bpp' >'0.75' THEN ABORT THE PROCESS; 

'bit_count'←'0';         'seg_count'←'0‟; 

'bfps'←'0.0'; 'seg_len'←'32'; 

WHILE 'bit_count' <=('msg_bits'-'1')       AND 

'seg_count' <='nos' DO 

IF 'seg_count='nos' THEN 'seg_len'←'rp'; 

'bits_at_hand' ←'seg_len'*'bpp' + 'bfps'; 

'abh' ←ROUND('bits_at_hand'); 

IF('abh' NOT= '0') THEN DO 

 'key1' ← 'key1' XOR 'key2'; 

'sequence1'←cm1.getChaoticSequence 

('key1.numValue', 16,6); //'sequence1': 6 non-negative 

integers generated by CM 'cm1'. 

'key2'←sequence1'; 

'sequence2'←cm2.getChaoticSequence('key2.numValue', 

'seg_len', 'abh'); 

//'sequence2': 'abh' no. of non-negative integers generated 

by CM 'cm2'. 

'next_bits'  ←first 'abh' no. of bits of the remaining secret 

message;EMBED('next_bits', 'sequence2', 

'actual_bits_to_be_hid'); 

END IF 

'seg_count'←'seg_count'+'1'; 

'bfps'← 'bits_at_hand' - 'abh'; 

END WHILE 

'rec_key_part2'← 'original_key' XOR 'msg_size'; 

'recovery_key' ←6-HexDigit 'original_key' + 6-HexDigit 

'rec_key_part2' 

END PROCEDURE 

 

Algorithm 2 Embedding 'n' bits of secret message in the 

current segment given by 'seg_count' 

FUNCTION EMBED('bits'[ ], 'pixl_pos'[ ], 'n') 

GLOBAL VARIABLE: 'seg_count'; 

FOR 'i'='0' TO 'n'-'1' DO 

'current_pixel_position'←'32'*'seg_count' + 

'pixl_pos'['i'];'x'←'current_pixel_position' mod 

'img_width'; 

'y'←'current_pixel_position' / 'img_width' 

'Luma' ←Value of Luma component of the pixel of 

'stego_img' at ('x', 'y'); 

IF 'bits'['i'] == '0' THEN //when bit to be hid is zero '0' 

Adjust the value of 'Luma' such that 

when divided by '4'*'l' yields remainder 'l'; 

ELSE   //when bit to be hid is zero '1' 

Adjust the value of 'Luma' such that 

when divided by '4'*'l' yields remainder '3'*'l'; 

END IF 

END FOR 

END FUNCTION 

 

 

Algorithm 3 Recovering the embedded message 

PROCEDURE Stegano_Recover 

READ value of compression tolerance coefficient into 

'l'; 

READ color cover image into image 'stego_img'; 

READ secret stego key into 'recovery_key'; 

'key1' ←first 6 digits of 'recovery_key'; 

'key2' ← 'null'; 

'img_width'←width of the stego image; 

'img_height'←height of the stego image; 

'img_size'←'img_width' * 'img_height'; 

'nos'← FLOOR('img_size' / '32'); 



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

38 

'rp'← 'img_size' mod '32'; 

'msg'['0'..'msg_size'-'1'] //byte array for holding the 

extracted message. 

'msg_size'←decimalequivalant of last 6 digits of 

'recovery_key'; 

'msg_bits'←'msg_size' * '8'; 

'bpp'←'msg_bits' / 'img_size'; 

IF 'bpp' >'0.75' THEN ABORT THE PROCESS; 

'bit_count' ←'0'; 'seg_count'← '0'; 

'bfps'←'0.0'; 'seg_len'←'32'; 

WHILE 'bit_count' <=('msg_bits'-'1')   AND 'seg_count' 

<='nos' DO 

IF 'seg_count='nos' THEN 'seg_len'←'rp'; 

'bits_at_hand' ←'seg_len'*'bpp' + 'bfps'; 

'abh' ←ROUND('bits_at_hand'); 

IF('abh' NOT= '0') THEN DO 

'key1'←'key1'XOR'key2';'       

sequence1'←cm1.getChaoticSequence('key1.numValue', 

16,6);//'sequence1': 6 non-negative integers generated by 

CM 'cm1'. 

'key2' ←'sequence1'; 

'sequence2'←cm2.getChaoticSequence('key2.numValue', 

'seg_len', 'abh'); 

//'sequence2': 'abh' no. of non-negative integers generated 

by CM 'cm2'. 

'next_bits' ←EXTRACT('sequence2', 

'actual_bits_to_be_hid'); 

//next 'abh' no. of bits extracted as the next bits of the 

remaining secret message; 

APPEND 'next_bits' to 'msg'; 

              END IF 

         'seg_count'←'seg_count'+'1'; 

'bfps'←'bits_at_hand' - 'abh'; 

END WHILE 

SAVE the extracted message 'msg'; 

END PROCEDURE 

 

Algorithm 4 Extracting next 'n' bits of secret message 

from the current segment given by 'seg_count' 

FUNCTION EXTRACT('pixl_pos'[ ], 'n') 

GLOBAL VARIABLE: 'seg_count'; 

bits[0..'n-1']; // array for storing next 'n' bits of secret 

message. 

FOR 'i'='0' TO 'n'-'1' DO 

'current_pixel_position'←'32'*'seg_count'+ 'pixl_pos'['i']; 

'x'←'current_pixel_position' mod 'img_width'; 

'y'←'current_pixel_position' / 'img_width' 

'Luma' ←Value of Luma component of the pixel of 

'stego_img' at ('x', 'y') ; 

IF 'Luma' mod '4'*'l' = 'l' THEN 'bits'['i'] ←'0'; 

ELSE 'bits'['i'] ←'1'; 

END IF 

END FOR 

RETURN 'bits'; 

END FUNCTION 

Description of the Input and Output for the above 

algorithms (For Embedding Process): 

INPUT: 

1. RGB Color Image 'cover_img'; 

2. Text message 'msg'['1'..'msg_size'] this is an array of 

characters representing each character as 8-bit 

(ASCII) integer (e.g. 'A' as 65 (8-bit int) or 

01000001 (binary)); 

3. Value of compression tolerance coefficient 'l'; 

4. A 6-Hexadecimal-Digit secret key 'stego_key'; 

OUTPUT: 

1. A Stego-image 'stego_img' (this will be the 

modified cover image with the secret text message 

embeded in it); 

2. A 12-Hexadecimal_Digit secret key 'recovery_key' 

to recover the secret text message from the stego-

image; 

A small simulation of the embedding algorithm: 

Here's a small simulation of the embedding process for the 

following parameters: 

size of the input cover image, 'img_size' = '10*10' = '100' 

number of 32-pixel segments 'nos' = QUOTIENT(100/32) = 3 

number of remainig pixels 'rp' = REMAINDER(100/32) = 4 

input message msg[] = “Rajpoot” 

msg_size = 7 Byte 

msg_bits = 7*8 = 56 bits 

average bits to be hidden per pixel 'bpp' = 56/100 = 0.56 bits-

per-pixel 

initialize: 'bfps'=0.0, 'seg_count'=0 

'bits_at_hand' is computed as: 

'bits_at_hand' ←'seg_len'*'bpp' + 'bfps'; 

'abh' is computed as: 

'abh' ←ROUND('bits_at_hand'); 

The chaotic sequence is generated with the stego-key 

“AB106F” and parameter λ = 0.9999. 

Since the sequence is large to fit in the cell, therefore the 

sequences are listed here: 



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

39 

seq1: 29, 23, 25, 9, 18, 31, 21, 4, 14, 16, 6, 3, 20, 7, 8, 26, 0, 

27 

seq2: 23, 15, 25, 3, 27, 7, 18, 21, 16, 2, 19, 26, 24, 28, 11, 29, 

14, 13 

seq3: 30, 0, 19, 2, 8, 18, 16, 27, 22, 29, 4, 14, 25, 23, 5, 24, 

15, 7 

seq4: 1, 0 

The actual pixel position in the image is computed as follows: 

'pixel_position' ←'32'*'seg_count' + 'seq'['i']; 

compueted as above the pixel positions are: 

px_pos1: 29, 23, 25, 9, 18, 31, 21, 4, 14, 16, 6, 3, 20, 7, 8, 26, 

0, 27 

px_pos2: 55, 47, 57, 35, 59, 39, 50, 53, 48, 34, 51, 58, 56, 60, 

43, 61, 46, 45 

px_pos3: 94, 64, 83, 66, 72, 82, 80, 91, 86, 93, 68, 78, 89, 87, 

69, 88, 79, 71 

px_pos4: 97, 96 

Table 1: Simulation Result of the Algorithm 

'seg_count' 0 1 2 3 

No. of pixels in 

segment 

(seg_len). 

32 32 32 4 

'bfps' 0.0 -0.08 -0.16 -0.24 

'bits_at_hand' 17.92 17.81 17.76 2 

'abh' 18 18 18 2 

Chaotic 

Sequence 
seq1 seq2 seq3 seq4 

pixel positions 

for hiding next 

'abh' no. of 

bits 

px_pos1 px_pos2 px_pos3 px_pos4 

 

 

 

 

 

Table 2: Hiding 

'R' 0 1 0 1 0 0 1 0 

px_pos 29 23 25 9 18 31 21 4 

 

'a' 0 1 1 0 0 0 0 1 

px_pos 14 16 6 3 20 7 8 26 

 

'j' 0 1 1 0 1 0 1 0 

px_pos 0 27 55 47 57 35 59 39 

 

'p' 0 1 1 1 0 0 0 0 

px_pos 50 53 48 34 51 58 56 60 

 

'o' 0 1 1 0 1 1 1 1 

px_pos 43 61 46 45 94 64 83 66 

 

'o' 0 1 1 0 1 1 1 1 

px_pos 72 82 80 91 86 93 68 78 

 

't' 0 1 1 1 0 1 0 0 

px_pos 89 87 69 88 79 71 97 96 

Above 56 pixel positions are the positions where the 

subsequent bits of the 56 bits of the message are hidden. 

Selected pixel's Luma component is adjusted to encode the 

message bit. 

4. EXPERIMENTAL RESULTS 
The method is separately tested with two standard images 

'lenna', 'babun' of  resolution of '512*512' against various 

quality measures. The secret message is embedded in each 

image is with a compression tolerance coefficient of '15'. A 

512 bytes secret text message is used to test a given 

combination of image and compression tolerance coefficient. 

For compression tolerance coefficients '01' the method shows 

very good results against all the three requirements of 

Steganogaphy i.e. Payload capacity, visual Imperceptibility 

and Robustness, but it could not tolerate compression. We 

analyze the results with the most common quality measures 

histogram and entropy only. 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

40 

Fig 2: Original Image 'lenna' Fig. 3:Stego-Image 'lenna' 

Fig 4: Original Image 'babun' Fig 5:Stego-Image 'babun' 

Fig 6: Histograms of original Lenna images  Fig 7: Histograms of original Babun images  



International Journal of Computer Applications (0975 – 8887)  

Volume 113 – No. 4, March 2015 

41 

Fig 8: Histograms of stegol Lenna images  Fig 9: Histograms of stego Babun images  

Entropies of luma component of original images 'lenna' and 

'babun' are 7.3583 and 7.4451 respectively, and that of 

corresponding stego images are 7.3716 and 7.4596 

respectively. This shows that the change in entropies is not 

much noticeable. If any attack would unfortunately guess or 

find the presence of some secret communication in the image, 

yet it is almost impossible to retrieve the secret message. 

5. CONCLUSION 
In this paper, we present a robust method that uses two 

chaotic maps for selecting pixels to be used for embedding the 

bits of secret message. Further, the initial conditions are 

changed during each iteration, with fixed number of pixels 

and the initial conditions are made chaotic to hide the secret 

message from the unauthorized persons or attackers. Hence 

the capability of the method to keep the secret message secret 

is very high and at the same time keeping the method robust. 

The salient feature of this method is compression resistant. 

The results show that this method can successfully embed the 

secret message by tolerating the changes upto'15' in Luma 

component, without affecting the image quality much. 

The payload capacity of the method is also high as it embeds 

the secret message in spatial domain not in DCT coefficient 

unlike in transform domain in which one has to compromise 

with the payload capacity. 

For further enhancing the robustness, this method can be 

preceded by an encryption technique that is fist encrypt the 

secret message and then embed into a cover-image by the 

proposed method. 

The method can also be implemented upon segments of 32-

pixels in parallel by using parallel programming; this would 

increase the speed of the process. 

6. FUTURE WORK 
The method can be improved by making the pixel selection 

depending upon the properties of the cover image, e.g. we can 

select only those segments which are noisier and then select 

the pixels chaotically using chaotic maps. To hide the secrete 

communication we can also select in the image the areas that 

marks some objects identified according to some pre-specified 

criteria. Although making the pixel selection in this way may 

decrease the payload capacity, but will definitely increase the 

imperceptibility of the method and also the robustness. 

 

7. REFERENCES 
[1] Herodotus , John M. Marincola and  Aubrey De 

Selincourt, “Herodotus:T he Histories”. Penguin 

Classics, London, 1996 

[2] Shawn D. Dickman “An Overview of Steganography” 

James Madison University InfosecTechreport, JMU-

INFOSEC-TR-2007-002, July 2007. 

[3] Ingemar J. Cox, Matthew L. Miller, JeffreyA. Bloom, 

JessicaFridrich, TonKalker, “Digital Watermarking and 

steganography” Morgan Kaufmann, 2007. 

[4] Pan ,H.K., Y.Y., Chen, and Y.C., Tseng, “A Secure Data 

Hiding Scheme for Two-Color Images”, Proc. Fifth IEEE 

Symp.Computers and Comm., IEEE Press, Piscataway, 

N.J., 2000. 

[5] Westfeld, A., “F5-A Steganographic Algorithm: High 

Capacity Despite Better Steganalysis”, 4th International 

Workshop on Information Hiding, 2001. 

[6] Bhavana.S, K.L.Sudha, “Text Steganography Using LSB 

Insertion Method Along With Chaos Theory”, 

International Journal of Computer Science, Engineering 

and Applications (IJCSEA) Vol.2, No.2, April 2012. 

[7] Tayel, M.; Shawky, H.; Hafez, A.E.S., "A new chaos 

steganography algorithm for hiding multimedia 

data," Advanced Communication Technology (ICACT), 

2012 14th International Conference on , vol., no., 

pp.208,212, 19-22 Feb.  

[8] Bo Wang; Jiuchao Feng, "A chaos-based steganography 

algorithm for H.264 standard video 

sequences," Communications, Circuits and Systems, 

2008. ICCCAS 2008. International Conference on , vol., 

no., pp.750,753, 25-27 May 2008 

[9] Nidhi Sethi and Deepika Sharma, (2012) “A novel 

method of image encryption using logistic mapping”, in 

Proc. of International Journal of Computer Science 

Engineering (IJCSE), Vol. 1, No. 2, pp. 115-119. 

IJCATM : www.ijcaonline.org 


